Araştırma Makalesi
BibTex RIS Kaynak Göster

İzmir Çamaltı Tuzlası’ndan izole edilen endüstriyel potansiyele sahip poliekstremotolerant bakteri suşlarının (Kocuria, Virgibacillus ve Halomonas) karakterizasyonu

Yıl 2025, Cilt: 42 Sayı: 4, 307 - 316

Öz

Bu çalışmada, endüstriyel açıdan önemli halotolerant bakteri suşlarının İzmir Çamaltı Tuzlası’ndan alınan deniz suyu ve yığın örneklerinden izolasyonu, saflaştırılması ve tanılanması gerçekleştirilmiştir. Seçilen üç izolat, fenotipik, biyokimyasal ve kısmi 16S rRNA dizi analizleri ile kapsamlı şekilde incelenmiş ve türler erişim numaraları alınarak GenBank’a kayıt edilmiştir.Türe özgü filogenetik ağaçlar MEGA6.06 programı kullanılarak oluşturulmuştur. Suşların sırasıyla Firmicutes, Actinobacteria ve Gammaproteobacteria filumlarına; %95 benzerlik ile Virgibacillus, %99 benzerlik ile Kocuria ve %99 benzerlik ile Halomonas cinslerine ait olduğu belirlenmiştir. Suşlar Kocuria sp. CT-6 (KP238667), Virgibacillus sp. CT-5 (KP238666) ve Halomonas sp. CS-5 (KP238669) olarak adlandırılmıştır. Fenotipik karakterizasyona göre Virgibacillus sp. CT-5 termotolerant olup 20-55 °C aralığında büyüyebilmektedir; Kocuria sp. CT-6 psikrotolerant olup 4-37 °C aralığında yaşamaktadır; Halomonas sp. CS-5 ise hem psikrotolerant hem termotolerant olup 4-45 °C aralığında gelişim göstermektedir. Tüm suşlar alkalitolerant olup pH 5-11 aralığında büyüyebilmekte; halotolerant olup sırasıyla Virgibacillus sp. CT-5 için %0-22 (w/v), Kocuria sp. CT-6 için %0-19 (w/v) ve Halomonas sp. CS-5 için %0-25 (w/v) NaCl konsantrasyonlarında gelişim gösterebilmektedir. Bu çalışmada, İzmir Çamaltı Tuzlası’ndan izole edilen üç poliekstremotolerant bakteri suşu- Kocuria sp. CT-6, Virgibacillus sp. CT-5 ve Halomonas sp. CS-5- bildirilmiştir. Bu suşlar, birden fazla tolerans özelliğine sahip olup, endüstriyel uygulamalar için büyük bir öneme sahiptir. Bu çalışma, bu bölgeden poliekstremotolerant suşların rapor edildiği ilk çalışmadır.

Proje Numarası

2011 FEN 010

Kaynakça

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., & Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Arahal, D.R., Vreeland, R.H., Litchfield, C.D., Mormile, M.R., Tindall, B.J., Oren, A., Bejar, V., Quesada, E., & Ventosa A. (2007). Recommended minimal standards for describing new taxa of the family Halomonadaceae. International Journal of Systematic Evolutionary Microbiology, 57, 2436-2446. https://doi.org/10.1099/ijs.0.65430-0
  • Arahal, D.R., Marquez, M.C., Volcani, B.E., Schleifer, K.H., & Ventosa, A. (1999). Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea. International Journal of Systematic Bacteriology, 49(2), 521-30. https://doi.org/10.1099/00207713-49-2-521
  • Bauer, A.W., Kirby, W.M.M., Sherris, J.C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493 496. https://doi.org/10.1093/ajcp/45.4_ts.493
  • Brooker, D.C., Lund, M.E., & Blazevic, D.J. (1973). Rapid test for lysine decarboxylase activity in Enterobacteriaceae. Journal of Applied Microbiology, 26(4), 622-623. https://doi.org/10.1128/am.26.4.622-623.1973
  • Ceylan, S., Yılan, G., Akbulut, B.S., Poli, A., & Kazan, D. (2012). Interplay of adaptive capabilities of Halomonas sp. AAD12 under salt stress. Journal of Bioscience and Bioengineering, 114(1), 45 52. https://doi.org/10.1016/j.jbiosc.2012.02.030
  • Christian, J.H., & Waltho J.A. (1962). Solute concentrations within cells of halophilic and non-halophilic bacteria. Journal of Biochimica et Biophysica Acta, 65, 506-508. https://doi.org/10.1016/0006-3002(62)90453-5
  • CLSI. (2015). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational SupplementCLSI Document M100-S25). Clinical and Laboratory Standards Institute, Wayne, PA, USA.
  • Cojoc, R., Merciu, S., Popescu, G., Dumitru, L., Kamekura, M., & Enache, M. (2009). Extracellular hydrolytic enzymes of halophilic bacteria isolated from a subterranean rock salt crystal. Journal of Romanian Biotechnological Letters, 14(5), 4658-4664.
  • Ederer, G.M., Chu, J.H., & Blazevic, D.J. (1971). Rapid test for urease and phenylalanine deaminase production. Journal of Applied Microbiology, 21(3), 545. https://doi.org/10.1128/am.21.3.545-545.1971
  • Essghaier, B., Fardeau, M.L., Cayol, J.L., Hajlaoui, M.R., Boudabous, A., Jijakli, H., & Sadfi-Zouaoui, N. (2009). Biological control of grey mould in strawberry fruits by halophilic bacteria. Journal of Applied Microbiology, 106(3), 833–846. https://doi.org/10.1111/j.1365-2672.2008.04053.x
  • Fay, G.D., & Barry, A.L. (1972). Rapid ornithine decarboxylase test for the identification of Enterobacteriaceae. Journal of Applied Microbiology, 23(4), 710-713. https://doi.org/10.1128/am.23.4.710-713.1972
  • Goldschmidt, M.C., & Lockhart, B.M. (1971). Rapid methods for determining decarboxylase activity: arginine decarboxylase. Journal of Applied Microbiology, 22(3), 350–357. https://doi.org/10.1128/am.22.3.350-357.1971
  • Hodson, M.E., & Shah, P.L. (1995). DNase trials in cystic fibrosis. European Respiratory Journal, 8(10), 1786 91. https://doi.org/10.1183/09031936.95.08101786
  • Jeffries, C.D., Holtman, D.F., & Guse, D.G. (1957). Rapid method for determining the activity of microorganisms on nucleic acids, Journal of Bacteriology, 73(4), 590–59. https://doi.org/10.1128/jb.73.4.590-591.1957
  • Kamble, K.D., & Kadu, S.S. (2012). Enhancement of DNase production from a moderate halophilic bacterium and studies on its phylogeny. International Journal of Environmental Science, 3(3), 1031-1037.
  • Kazak Sarilmiser, H., Ates, O., Ozdemir, G., Arga, K.Y., & Toksoy Oner, E. (2015). Effective stimulating factors for microbial levan production by Halomonas smyrnensis AAD6T. Journal of Bioscience and Bioengineering, 119(4), 455 463. https://doi.org/10.1016/j.jbiosc.2014.09.019
  • Kim, K.K., Jin, L., Yang, H.C., & Lee, S.T. (2007). Halomonas gomseomensis sp. nov., Halomonas janggokensis sp. nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halophilic bacteria isolated from saline water. International Journal of Systematic Evolutionary Microbiology, 57(4), 675 681. https://doi.org/10.1099/ijs.0.64767-0
  • Kim, S.B., Nedashkovskaya, O.I., Mikhailov, V.V., Han, S.K., Kim, K.O., Rhee, M.S., & Bae, K.S. (2004). Kocuria marina sp. nov., a novel actinobacterium isolated from marine sediment. International Journal of Systematic Evolutionary Microbiology, 54(Pt 5), 1617 1620. https://doi.org/10.1099/ijs.0.02742-0 Koru, E. (2004). Artemia and it’s importance in Çamaltı Saltworks (Izmir, Turkey) ecosystem. Ege University Journal of Fisheries and Aquatic Sciences, 21(1-2), 187-189.
  • Kovács, N. (1956). Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature, 178, 703–704. https://doi.org/10.1038/178703a0 Kushner, D.J. (1992). Growth and nutrition of halophilic bacteria. In: R.H. Vreeland, L.I. Hochstein (Eds.) The Biology of Halophilic Bacteria (pp.87 103).CRC Press: Boca Raton. https://doi.org/10.1201/9781003069140
  • Lam, M.Q., Nik Mut, N.N., Thevarajoo, S., Chen, S.J., Selvaratnam, C., Hussin, H., Jamaluddin, H., & Chong, C.S. (2018). Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6. 3 Biotechnology, 8(2), 104. https://doi.org/10.1007/s13205-018-1133-2
  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., & Higgins, D.G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947 2948. https://doi.org/10.1093/bioinformatics/btm404 Moreno, M.L., Perez, D., Garcia, M.T., & Mellado, E. (2013). Halophilic bacteria as a source of novel hydrolytic enzymes. Life, 3(1), 38-51. https://doi.org/10.3390/life3010038
  • Mutlu, M.B., & Güven, K. (2015) Bacterial diversity in Çamaltı Saltern, Turkey. Polish Journal of Microbiology, 64(1), 37–45.
  • Poli, A., Nicolaus, B., Denizci, A.A., Yavuzturk, B., & Kazan, D. (2013). Halomonas smyrnensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium. International Journal of Systematic Evolutionary Microbiology, 63, 10 18. https://doi.org/10.1099/ijs.0.037036-0
  • Romano, I., Gambacorta, A., Lama, L., Nicolaus, B., & Giordano, A. (2005). Salinivibrio costicola subsp. alcaliphilus subsp. nov., a haloalkaliphilic aerobe from Campania Region (Italy). Journal of Systematic Applied Microbiology, 28, 34-42. https://doi.org/10.1016/j.syapm.2004.10.001
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Journal of Molecular Biology and Evolution, 4, 406 425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  • Soto-Padilla, M.Y., Gortáres-Moroyoqui, P., Cira-Chávez, L.A., Levasseur, A., Dendooven, L., & Estrada-Alvarado, M.I. (2016). Characterization of extracellular amylase produced by haloalkalophilic strain Kocuria sp. HJ014. International Journal of Environmental Health Research, 26(4), 396–404. https://doi.org/10.1080/09603123.2015.1135310
  • Stackebrandt, E., & Goebel, B.M. (1994). Taxonomic Note: A Place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology. 44(4), 846-849. https://doi.org/10.1099/00207713-44-4-846
  • Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Journal of Molecular Biology and Evolution, 10(3):512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023
  • Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. The Proceedings of the National Academy of Sciences (USA), 101(30), 11030-11035. https://doi.org/10.1073/pnas.0404206101
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Journal of Molecular Biology and Evolution, 30(12), 2725-2729. https://doi.org/10.1093/molbev/mst197
  • Tatar, D., Guven, K., Spröer, C., Klenk, H.P. & Şahin, N. (2014). Streptomyces iconiensis sp. nov. and Streptomyces smyrnaeus sp. nov., two halotolerant actinomycetes isolated from a salt lake and saltern. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 9), 3126–3133. https://doi.org/10.1099/ijs.0.062216-0
  • Tavano, O.L., Berenguer-Murcia, A., Secundo, F., & Fernandez-Lafuente, R. (2018). Biotechnological applications of proteases in food technology. Comprehensive Reviews in Food Science and Food Safety, 17(2), 412-436. https://doi.org/10.1111/1541-4337.12326
  • Tekin, E. (2015). Isolation, purification and identification of moderately halophilic bacteria and determination of some molecular properties. (PhD Thesis). Ege University Institute of Science. Bornova, İzmir. Thesis No: 405278, pp. 253.
  • Tetz, G.V., Artemenko, N.K., & Tetz, V.V. (2009). Effect of DNase and antibiotics on biofilm characteristics. Antimicrobial Agents and Chemotherapy, 53(3), 1204–1209. https://doi.org/10.1128/AAC.00471-08
  • Tindall, B.J., Rosselló-Móra, R., Busse, H.J., Ludwig, W. & Kämpfer, P. (2010). Notes on the characterization of prokaryote strains for taxonomic purposes. International Journal of Systematic and Evolutionary Microbiology, 60(Pt 1), 249 266. https://doi.org/10.1099/ijs.0.016949-0
  • Tsiamis, G., Katsaveli, K., Ntougias, S., Kyrpides, N., Andersen, G., Piceno, Y., & Bourtzis, K. (2008). Prokaryotic community profiles at different operational stages of a Greek solar Saltern. Research on Microbiology, 159(9-10), 609-27. https://doi.org/10.1016/j.resmic.2008.09.007
  • Uzyol, K.S., Sariyer-Akbulut, B., Denizci, A.A., & Kazan, D. (2012). Thermostable\ alpha-amylase from moderately halophilic Halomonas sp. AAD21. Turkish Journal of Biology, 36(3), 327-338. https://doi.org/10.3906/biy-1106-7
  • Ventosa, A., Quesada, E., Rodríguez-Valera, F., Ruiz-Berraquero, F., & Ramos-Cormenzana, A. (1982). Numerical taxonomy of moderately halophilic gram-negative rods. Journal of General Microbiology, 128(9), 1959–1968. https://doi.org/10.1099/00221287-128-9-1959
  • Vreeland, R.H., Anderson, R., & Murray, R.G.E. (1984). Cell wall and phospholipid composition and their contribution to the salt tolerance of Halomonas elongata. Journal of Bacteriology, 160(3), 879-883. https://doi.org/10.1128/jb.160.3.879-883.1984
  • Najari, M., Moosavi-Nejad, Z., Javaheri, E.S.S.J., Asgarani, E. (2017). Natural overproduction of catalase by Kocuria sp. ASB 107: Extraction and semi-purification, Iran Journal of Microbiology, 9(6), 356-362.
  • Weisburg, W.G., Barns, S.M., Pelletier, D.A., & Lane, D.J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703. https://doi.org/10.1128/jb.173.2.697-703.1991
  • Yaşa, İ., Kahraman, Ö., Tekin, E., & Koçyiğit, A. (2008). Isolation and molecular identification of extreme halophilic archaea from Çamaltı Saltern. Ege University Journal of Fisheries and Aquatic Sciences, 25(2), 117-121.
  • Yu, Y., Li, H., Zeng, Y., & Chen, B. (2010). Phylogenetic diversity of culturable bacteria from Antarctic sandy intertidal sediments. Polar Biology, 33(6), 869-875. https://doi.org/10.1007/s00300-009-0758-3
  • Yoon, D.S, Won, K., Kim, Y.H., Song, B.K., Kim, S.J., Moon, S.J., Kim, B.S. (2007). Continuous removal of hydrogen peroxide with immobilised catalase for wastewater reuse. Water Science and Technology, 55(1-2), 27-33. https://doi.org/10.2166/wst.2007.016

Characterization of polyextremotolerant bacterial strains (Kocuria, Virgibacillus, and Halomonas) with industrial potential isolated from the İzmir Çamaltı Saltern

Yıl 2025, Cilt: 42 Sayı: 4, 307 - 316

Öz

In this study, industrially important halotolerant bacterial strains were isolated and identified from seawater and bulk samples from the İzmir Çamaltı Saltern. Three selected isolates underwent comprehensive analyses including phenotypic, biochemical, and partial 16S rRNA gene sequencing and accession numbers were taken from GenBank. Species specific trees were constructed using MEGA 6.06 software. The isolates were classified within the phyla Firmicutes, Actinobacteria, and Gammaproteobacteria, exhibiting highest sequence similarity to the genera Virgibacillus (95%), Kocuria (99%), and Halomonas (99%), respectively. The strains were designated as Virgibacillus sp. CT-5 (KP238666), Kocuria sp. CT-6 (KP238667), and Halomonas sp. CS-5 (KP238669). Phenotypic characterization revealed that Virgibacillus sp. CT-5 is thermotolerant, growing at 20–55 °C; Kocuria sp. CT-6 is psychrotolerant, growing at 4-37 °C; and Halomonas sp. CS-5 exhibits both psychrotolerance and thermotolerance, growing at 4-45 °C. All strains were alkalitolerant, thriving within a pH range of 5-11, and halotolerant, with growth observed at 0-22% (w/v) NaCl for Virgibacillus sp. CT-5, 0-19% (w/v) for Kocuria sp. CT-6, and 0-25% (w/v) for Halomonas sp. CS-5. This study presents three polyextremotolerant bacterial strains -Kocuria sp. CT-6, Virgibacillus sp. CT-5, and Halomonas sp. CS-5- isolated from the İzmir Çamaltı Saltern. Their multiple tolerance traits render them highly promising candidates for various industrial applications. This is the first report documenting the polyextremotolerance of these strains from this area.

Etik Beyan

NEthical approval was not necessary for the study.

Destekleyen Kurum

Ege University Scientific Research Council

Proje Numarası

2011 FEN 010

Teşekkür

We are thankful for the support of Ege University Scientific Research Council.

Kaynakça

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., & Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Arahal, D.R., Vreeland, R.H., Litchfield, C.D., Mormile, M.R., Tindall, B.J., Oren, A., Bejar, V., Quesada, E., & Ventosa A. (2007). Recommended minimal standards for describing new taxa of the family Halomonadaceae. International Journal of Systematic Evolutionary Microbiology, 57, 2436-2446. https://doi.org/10.1099/ijs.0.65430-0
  • Arahal, D.R., Marquez, M.C., Volcani, B.E., Schleifer, K.H., & Ventosa, A. (1999). Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea. International Journal of Systematic Bacteriology, 49(2), 521-30. https://doi.org/10.1099/00207713-49-2-521
  • Bauer, A.W., Kirby, W.M.M., Sherris, J.C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493 496. https://doi.org/10.1093/ajcp/45.4_ts.493
  • Brooker, D.C., Lund, M.E., & Blazevic, D.J. (1973). Rapid test for lysine decarboxylase activity in Enterobacteriaceae. Journal of Applied Microbiology, 26(4), 622-623. https://doi.org/10.1128/am.26.4.622-623.1973
  • Ceylan, S., Yılan, G., Akbulut, B.S., Poli, A., & Kazan, D. (2012). Interplay of adaptive capabilities of Halomonas sp. AAD12 under salt stress. Journal of Bioscience and Bioengineering, 114(1), 45 52. https://doi.org/10.1016/j.jbiosc.2012.02.030
  • Christian, J.H., & Waltho J.A. (1962). Solute concentrations within cells of halophilic and non-halophilic bacteria. Journal of Biochimica et Biophysica Acta, 65, 506-508. https://doi.org/10.1016/0006-3002(62)90453-5
  • CLSI. (2015). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational SupplementCLSI Document M100-S25). Clinical and Laboratory Standards Institute, Wayne, PA, USA.
  • Cojoc, R., Merciu, S., Popescu, G., Dumitru, L., Kamekura, M., & Enache, M. (2009). Extracellular hydrolytic enzymes of halophilic bacteria isolated from a subterranean rock salt crystal. Journal of Romanian Biotechnological Letters, 14(5), 4658-4664.
  • Ederer, G.M., Chu, J.H., & Blazevic, D.J. (1971). Rapid test for urease and phenylalanine deaminase production. Journal of Applied Microbiology, 21(3), 545. https://doi.org/10.1128/am.21.3.545-545.1971
  • Essghaier, B., Fardeau, M.L., Cayol, J.L., Hajlaoui, M.R., Boudabous, A., Jijakli, H., & Sadfi-Zouaoui, N. (2009). Biological control of grey mould in strawberry fruits by halophilic bacteria. Journal of Applied Microbiology, 106(3), 833–846. https://doi.org/10.1111/j.1365-2672.2008.04053.x
  • Fay, G.D., & Barry, A.L. (1972). Rapid ornithine decarboxylase test for the identification of Enterobacteriaceae. Journal of Applied Microbiology, 23(4), 710-713. https://doi.org/10.1128/am.23.4.710-713.1972
  • Goldschmidt, M.C., & Lockhart, B.M. (1971). Rapid methods for determining decarboxylase activity: arginine decarboxylase. Journal of Applied Microbiology, 22(3), 350–357. https://doi.org/10.1128/am.22.3.350-357.1971
  • Hodson, M.E., & Shah, P.L. (1995). DNase trials in cystic fibrosis. European Respiratory Journal, 8(10), 1786 91. https://doi.org/10.1183/09031936.95.08101786
  • Jeffries, C.D., Holtman, D.F., & Guse, D.G. (1957). Rapid method for determining the activity of microorganisms on nucleic acids, Journal of Bacteriology, 73(4), 590–59. https://doi.org/10.1128/jb.73.4.590-591.1957
  • Kamble, K.D., & Kadu, S.S. (2012). Enhancement of DNase production from a moderate halophilic bacterium and studies on its phylogeny. International Journal of Environmental Science, 3(3), 1031-1037.
  • Kazak Sarilmiser, H., Ates, O., Ozdemir, G., Arga, K.Y., & Toksoy Oner, E. (2015). Effective stimulating factors for microbial levan production by Halomonas smyrnensis AAD6T. Journal of Bioscience and Bioengineering, 119(4), 455 463. https://doi.org/10.1016/j.jbiosc.2014.09.019
  • Kim, K.K., Jin, L., Yang, H.C., & Lee, S.T. (2007). Halomonas gomseomensis sp. nov., Halomonas janggokensis sp. nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halophilic bacteria isolated from saline water. International Journal of Systematic Evolutionary Microbiology, 57(4), 675 681. https://doi.org/10.1099/ijs.0.64767-0
  • Kim, S.B., Nedashkovskaya, O.I., Mikhailov, V.V., Han, S.K., Kim, K.O., Rhee, M.S., & Bae, K.S. (2004). Kocuria marina sp. nov., a novel actinobacterium isolated from marine sediment. International Journal of Systematic Evolutionary Microbiology, 54(Pt 5), 1617 1620. https://doi.org/10.1099/ijs.0.02742-0 Koru, E. (2004). Artemia and it’s importance in Çamaltı Saltworks (Izmir, Turkey) ecosystem. Ege University Journal of Fisheries and Aquatic Sciences, 21(1-2), 187-189.
  • Kovács, N. (1956). Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature, 178, 703–704. https://doi.org/10.1038/178703a0 Kushner, D.J. (1992). Growth and nutrition of halophilic bacteria. In: R.H. Vreeland, L.I. Hochstein (Eds.) The Biology of Halophilic Bacteria (pp.87 103).CRC Press: Boca Raton. https://doi.org/10.1201/9781003069140
  • Lam, M.Q., Nik Mut, N.N., Thevarajoo, S., Chen, S.J., Selvaratnam, C., Hussin, H., Jamaluddin, H., & Chong, C.S. (2018). Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6. 3 Biotechnology, 8(2), 104. https://doi.org/10.1007/s13205-018-1133-2
  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., & Higgins, D.G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947 2948. https://doi.org/10.1093/bioinformatics/btm404 Moreno, M.L., Perez, D., Garcia, M.T., & Mellado, E. (2013). Halophilic bacteria as a source of novel hydrolytic enzymes. Life, 3(1), 38-51. https://doi.org/10.3390/life3010038
  • Mutlu, M.B., & Güven, K. (2015) Bacterial diversity in Çamaltı Saltern, Turkey. Polish Journal of Microbiology, 64(1), 37–45.
  • Poli, A., Nicolaus, B., Denizci, A.A., Yavuzturk, B., & Kazan, D. (2013). Halomonas smyrnensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium. International Journal of Systematic Evolutionary Microbiology, 63, 10 18. https://doi.org/10.1099/ijs.0.037036-0
  • Romano, I., Gambacorta, A., Lama, L., Nicolaus, B., & Giordano, A. (2005). Salinivibrio costicola subsp. alcaliphilus subsp. nov., a haloalkaliphilic aerobe from Campania Region (Italy). Journal of Systematic Applied Microbiology, 28, 34-42. https://doi.org/10.1016/j.syapm.2004.10.001
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Journal of Molecular Biology and Evolution, 4, 406 425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  • Soto-Padilla, M.Y., Gortáres-Moroyoqui, P., Cira-Chávez, L.A., Levasseur, A., Dendooven, L., & Estrada-Alvarado, M.I. (2016). Characterization of extracellular amylase produced by haloalkalophilic strain Kocuria sp. HJ014. International Journal of Environmental Health Research, 26(4), 396–404. https://doi.org/10.1080/09603123.2015.1135310
  • Stackebrandt, E., & Goebel, B.M. (1994). Taxonomic Note: A Place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology. 44(4), 846-849. https://doi.org/10.1099/00207713-44-4-846
  • Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Journal of Molecular Biology and Evolution, 10(3):512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023
  • Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. The Proceedings of the National Academy of Sciences (USA), 101(30), 11030-11035. https://doi.org/10.1073/pnas.0404206101
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Journal of Molecular Biology and Evolution, 30(12), 2725-2729. https://doi.org/10.1093/molbev/mst197
  • Tatar, D., Guven, K., Spröer, C., Klenk, H.P. & Şahin, N. (2014). Streptomyces iconiensis sp. nov. and Streptomyces smyrnaeus sp. nov., two halotolerant actinomycetes isolated from a salt lake and saltern. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 9), 3126–3133. https://doi.org/10.1099/ijs.0.062216-0
  • Tavano, O.L., Berenguer-Murcia, A., Secundo, F., & Fernandez-Lafuente, R. (2018). Biotechnological applications of proteases in food technology. Comprehensive Reviews in Food Science and Food Safety, 17(2), 412-436. https://doi.org/10.1111/1541-4337.12326
  • Tekin, E. (2015). Isolation, purification and identification of moderately halophilic bacteria and determination of some molecular properties. (PhD Thesis). Ege University Institute of Science. Bornova, İzmir. Thesis No: 405278, pp. 253.
  • Tetz, G.V., Artemenko, N.K., & Tetz, V.V. (2009). Effect of DNase and antibiotics on biofilm characteristics. Antimicrobial Agents and Chemotherapy, 53(3), 1204–1209. https://doi.org/10.1128/AAC.00471-08
  • Tindall, B.J., Rosselló-Móra, R., Busse, H.J., Ludwig, W. & Kämpfer, P. (2010). Notes on the characterization of prokaryote strains for taxonomic purposes. International Journal of Systematic and Evolutionary Microbiology, 60(Pt 1), 249 266. https://doi.org/10.1099/ijs.0.016949-0
  • Tsiamis, G., Katsaveli, K., Ntougias, S., Kyrpides, N., Andersen, G., Piceno, Y., & Bourtzis, K. (2008). Prokaryotic community profiles at different operational stages of a Greek solar Saltern. Research on Microbiology, 159(9-10), 609-27. https://doi.org/10.1016/j.resmic.2008.09.007
  • Uzyol, K.S., Sariyer-Akbulut, B., Denizci, A.A., & Kazan, D. (2012). Thermostable\ alpha-amylase from moderately halophilic Halomonas sp. AAD21. Turkish Journal of Biology, 36(3), 327-338. https://doi.org/10.3906/biy-1106-7
  • Ventosa, A., Quesada, E., Rodríguez-Valera, F., Ruiz-Berraquero, F., & Ramos-Cormenzana, A. (1982). Numerical taxonomy of moderately halophilic gram-negative rods. Journal of General Microbiology, 128(9), 1959–1968. https://doi.org/10.1099/00221287-128-9-1959
  • Vreeland, R.H., Anderson, R., & Murray, R.G.E. (1984). Cell wall and phospholipid composition and their contribution to the salt tolerance of Halomonas elongata. Journal of Bacteriology, 160(3), 879-883. https://doi.org/10.1128/jb.160.3.879-883.1984
  • Najari, M., Moosavi-Nejad, Z., Javaheri, E.S.S.J., Asgarani, E. (2017). Natural overproduction of catalase by Kocuria sp. ASB 107: Extraction and semi-purification, Iran Journal of Microbiology, 9(6), 356-362.
  • Weisburg, W.G., Barns, S.M., Pelletier, D.A., & Lane, D.J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703. https://doi.org/10.1128/jb.173.2.697-703.1991
  • Yaşa, İ., Kahraman, Ö., Tekin, E., & Koçyiğit, A. (2008). Isolation and molecular identification of extreme halophilic archaea from Çamaltı Saltern. Ege University Journal of Fisheries and Aquatic Sciences, 25(2), 117-121.
  • Yu, Y., Li, H., Zeng, Y., & Chen, B. (2010). Phylogenetic diversity of culturable bacteria from Antarctic sandy intertidal sediments. Polar Biology, 33(6), 869-875. https://doi.org/10.1007/s00300-009-0758-3
  • Yoon, D.S, Won, K., Kim, Y.H., Song, B.K., Kim, S.J., Moon, S.J., Kim, B.S. (2007). Continuous removal of hydrogen peroxide with immobilised catalase for wastewater reuse. Water Science and Technology, 55(1-2), 27-33. https://doi.org/10.2166/wst.2007.016
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deniz ve Nehir Ağzı Ekolojisi , Balık Zararlıları ve Hastalıkları
Bölüm Araştırma Makalesi
Yazarlar

Ebru Tekin 0000-0003-2623-1977

Mustafa Ateş 0000-0002-9305-3480

Proje Numarası 2011 FEN 010
Erken Görünüm Tarihi 1 Aralık 2025
Yayımlanma Tarihi 2 Aralık 2025
Gönderilme Tarihi 23 Haziran 2025
Kabul Tarihi 17 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 42 Sayı: 4

Kaynak Göster

APA Tekin, E., & Ateş, M. (2025). Characterization of polyextremotolerant bacterial strains (Kocuria, Virgibacillus, and Halomonas) with industrial potential isolated from the İzmir Çamaltı Saltern. Ege Journal of Fisheries and Aquatic Sciences, 42(4), 307-316.