Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye'nin farklı su kaynaklarından izole edilen mikroalglerin biyoteknolojik kullanımlarının araştırılması

Yıl 2024, Cilt: 41 Sayı: 2, 97 - 104, 14.06.2024
https://doi.org/10.12714/egejfas.41.2.03

Öz

Mikroalgler yenilenebilir enerji kaynağı olarak sürdürülebilir bir dünya için önemli mikroorganizmalar arasında yer almaktadır. Bu çalışmada Türkiye'nin farklı bölgelerinden üç yeni mikroalg izole edilmiş ve moleküler tekniklerle tanımlanmıştır. İlk izolat Dim Nehri'nden izole edilen Chlorella sorokiniana Shihira ve Krauss, 1965, ikinci izolat Tokat'tan izole edilen Pseudochloris wilhelmii Somogyi ve ark., 2013 ve üçüncü izolat ise Tunca Nehri'nden izole edilen Tetradesmus obliquus (Turpin) Wynne ve Hallan, 2016'dır. C. sorokiniana'nın maksimum biyokütlesi 1,02 g/L, P. wilhelmii için 1,86 g/L ve T. obliquus için 0,80 g/L olarak bulunmuştur. Klorofil (a+b) konsantrasyonları C. sorokiniana, P. wilhelmii ve T. obliquus için sırasıyla 0,146, 0,278 ve 0,181 µg/mL olarak bulunmuştur. Bu çalışma kapsamında Türkiye’den izole edilen mikroalg türlerinin biyoteknolojik kullanım kapasiteleri literatür desteğiyle ortaya çıkarılmıştır.

Proje Numarası

TUBITAK 2209-A 1919B012105092

Kaynakça

  • Ahmad, F., Balasubramani, R., Kumar, S., Nasr, M., Rawat, I., & Bux, F. (2019). Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. Journal of Environmental Management, 240, 293–302. https://doi.org/10.1016/j.jenvman.2019.03.123
  • Ajala, S.O., & Alexander, M.L. (2020). Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. International Journal of Energy and Environmental Engineering, 11, 311 326. https://doi.org/10.1007/s40095-019-00333-0
  • Atıcı, T. (2020). Production and collection of microalgae isolated from freshwater reserves in Central Anatolia, Turkey. Species and Habitats, 1, 1, 37-44.
  • Atıcı, T., & Fidan B.B. (2022). Algae Production Methods in the Laboratory Using Domestic Waste. JOGHENS Journal of Global Health & Natural, 2, 2, 55 66. (in Turkish with English abstract) https://doi.org/10.56728/dustad.1169945
  • Atıcı, T., Katırcıoğlu, H., & Akın, B. (2008). Sensitivity of freshwater microalgal strains Chlorella vulgaris Beijerinck and Scenedesmus obliquus (Turpin) Kützing to heavy metals. Fresenius Environmental Bulletin, 17, 3, 268-274.
  • Babu, S.S., Gondi, R., Vincent, G.S., John Samuel, G.C., & Jeyakumar, R.B. (2022). Microalgae biomass and lipids as feedstock for biofuels: sustainable biotechnology strategies. Sustainability, 14(22), 15070. https://doi.org/10.3390/su142215070
  • Barsanti, L., & Gualtieri, P. (2014). Algae. Anatomy, Biochemistry, and Biotechnology. CRC Press Taylor Francis Group Italy. ISBN-13: 978-1439867327. https://doi.org/10.1201/b16544
  • Blazina, M., Fafandel, M., Gecek, S., Haberle, I., Klanjscek, J., Hrustic, E., Husinec, L., Zilic, L., Pritisanac, E., & Klanjscek, T. (2022). Characterization of Pseudochloris wilhelmii potential for oil refinery wastewater remediation and valuable biomass cogeneration. Frontiers in Marine Science, 9:983395. https://doi.org/10.3389/fmars.2022.983395
  • Budisa, A., Haberle, I., Konjević, L., Blažina, M., Djakovac, T., Lukarić-Špalj B., & Hrustic, E. (2019). Marine microalgae Microchloropsis gaditana and Pseudochloris wilhelmii cultivated in oil refinery wastewater – a perspective on remediation and biodiesel production. Fresenius Environmental Bulletin, 28, 7888–7897.
  • Cheah, W.Y., Show, P.L., Chang, J.S., Ling, T.C., & Juan, J.C. (2015). Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology, 184, 190 201. https://doi.org/10.1016/j.biortech.2014.11.026
  • Chu, W.L. (2017). Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock. European Journal of Phycology, 52(4), 419-437. https://doi.org/10.1080/09670262.2017.1379100
  • Concas A., Lutzu G. A., Pisu M., & Cao G. (2019). On the feasibility of Pseudochloris wilhelmii cultivation in sea-wastewater mixtures: Modeling and experiments. Journal of Environmental Chemical Engineering, 7, 103301. https://doi.org/10.1016/j.jece.2019.103301
  • Congur, G., Gul, U.D., & Tastan, B.E. (2022). Fast, cheap and reliable monitoring of microalgae-based paracetamol removal from aquatic environment using electrochemical sensor technology. Journal of The Electrochemical Society, 169. https://doi.org/10.1149/1945-7111/aca0c8
  • Coronado-Reyes, J.A., Salazar-Torres, J.A., Juárez-Campos, B., & González-Hernández J.C. (2022). Chlorella vulgaris, a microalgae important to be used in biotechnology: a review. Food Science and Technology, 42, https://doi.org/10.1590/fst.37320
  • Derakhshandeh, M., Atıcı, T., & Un, U.T. (2019). Lipid extraction from microalgae Chlorella and Synechocystis sp. using glass microparticles as disruption enhancer. Energy & Environment, 30, 8, 1341-1355. https://doi.org/10.1177/0958305X19837463
  • Derakhshandeh, M., Atici, T., & Un, U.T. (2021). Evaluation of Wild-Type Microalgae Species Biomass as Carbon Dioxide Sink and Renewable Energy Resource. Waste and Biomass Valorization, 12, 1, 105-121. https://doi.org/10.1007/s12649-020-00969-8
  • Durrett, T.P., Benning, C., & Ohlrogge J. (2008). Plant triacylglycerols as feedstocks for the production of biofuels. Plant J, 54, 593-607. https://doi.org/10.1111/j.1365-313X.2008.03442.x
  • El-Sheekh, M.M., Bedaiwy, M.Y., Osman, M.E., & Ismail, M.M. (2014). Influence of molasses on growth, biochemical composition and ethanol production of the green algae Chlorella vulgaris and Scenedesmus obliquus. Journal of Agricultural Engineering and Biotechnology, 2, 20–28. https://doi.org/10.18005/JAEB0202002
  • Garrido-Cardenas, J.A., Manzano-Agugliaro, F., Acien-Fernandez, F.G., & Molina-Grima, E. (2018). Microalgae research worldwide. Algal Research, 35:50–60. https://doi.org/10.1016/j.algal.2018.08.005
  • Ghosh, A., Khanra, S., Mondal, M., Halder, G., Tiwari, O.N., Saini, S., Bhowmick, T.K., & Gayen, K. (2016). Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: A review. Energy Conversion and Management, 113, 104 118. https://doi.org/10.1016/j.enconman.2016.01.050
  • Goh, B.H.H., Ong, H.C., Cheah, M.Y., Chen, W.H., Yu, K.L., & Mahlia, T.M.I. (2019). Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renewable & Sustainable Energy Reviews, 107, 59–74. https://doi.org/10.1016/j.rser.2019.02.012
  • Gonzalez, D., & Lorenzo, M.D. (2019). Self-powered photosynthetic biosensor for pesticide detection in water. ECS Meeting Abstracts, MA2019-04: 402. https://doi.org/10.1149/MA2019-04/8/402
  • Guldhe, A., Singh, B., Rawat, I., Permaul, K., & Bux, F. (2015). Biocatalytic conversion of lipids from microalgae Scenedesmus obliquus to biodiesel using Pseudomonas fluorescens lipase. Fuel, 147, 117–124. https://doi.org/10.1016/j.fuel.2015.01.049
  • Ip, P.F., & Chen, F. (2005). Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochemistry, 40, 733-738. https://doi.org/10.1016/j.procbio.2004.01.039
  • Jacob-Lopes, E., Maroneze, M.M., Depra, M.C., Sartori, R.B., Dias, R.R., & Zepka, L.Q. (2019). Bioactive food compounds from microalgae: an innovative framework on industrial biorefineries. Current Opinion in Food Science, 25, 1-7. https://doi.org/10.1016/j.cofs.2018.12.003
  • Kenney, J.F., & Keeping, E.S. (1951). Standard Error of the Mean in Mathematics of Statistics. Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, 110, 132-133.
  • Li, Z., Gao, X.X., Bao, J.F., Li, S.X., Wang, X., Li, Z.H., & Zhu, L.D. (2023). Evaluation of growth and antioxidant responses of freshwater microalgae Chlorella sorokiniana and Scenedesmus dimorphus under exposure of moxifloxacin. Science of The Total Environment, 858, 159788. https://doi.org/10.1016/j.scitotenv.2022.159788
  • Liu, D., Yang, W., Lv, Y., Li, S., Qv, M., Dai, D., & Zhu, L. (2023). Pollutant removal and toxic response mechanisms of freshwater microalgae Chlorella sorokiniana under exposure of tetrabromobisphenol A and cadmium. Chemical Engineering Journal, 461, 142065. https://doi.org/10.1016/j.cej.2023.142065
  • López-Pacheco, I.Y., Castillo-Vagas, E.I., & Castaneda-Hernandez, L. (2021). CO2 biocapture by Scenedesmus sp. grown in industrial wastewater. Science of the Total Environment, 790, 148222. https://doi.org/10.1016/j.scitotenv.2021.148222
  • Lu, W., Wang, Z., Wang, X., & Yuan, Z. (2015). Cultivation of Chlorella sp. using raw diary wastewater for nutrient removal and biodiesel production: characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresource Technology, 1, 1 31. https://doi.org/10.1016/j.biortech.2015.05.094
  • Malakar, B., Das, D., & Mohanty, K. (2023). Utilization of Chlorella biomass grown in waste peels-based substrate for simultaneous production of biofuel and value-added products under microalgal biorefinery approach. Waste Biomass Valor. https://doi.org/10.1007/s12649-023-02058-y
  • Mata, T.M., Martins, A.A., & Caetano N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217 232. https://doi.org/10.1016/j.rser.2009.07.020
  • Mutaf, T., Bilgin, G.Ç., Öncel, S., & Elibol, M. (2023). Green synthesis of metal nanoparticles by microalgae. Ege Journal of Fisheries and Aquatic Sciences, 40, 1, 81–89. (in Turkish with English abstract). https://doi.org/10.12714/egejfas.40.1.12
  • Singab, A.N.B, Ibrahim, N.A., El-Sayed, A.E.K.B., El- Senousy, W.M., Aly, H., Elsamiaei, A.S.A., & Matloub, A.A. (2018). Antiviral, cytotoxic, antioxidant and anticholinesterase activities of polysaccharides isolated from microalgae Spirulina platensis, Scenedesmus obliquus, and Dunaliella salina. Archives of Pharmaceutical Sciences Ain Shams University, 2: 121–137. https://doi.org/10.21608/aps.2018.18740
  • Oliveira, C.Y., Oliveira, C.D., Prasad, R., Ong, H., Araujo, E., Shabnam, N., & Galvez, A. (2021). A multidisciplinary review of Tetradesmus obliquus: a microalga suitable for large-scale biomass production and emerging environmental applications. Reviews in Aquaculture, 13, 1594-1618. https://doi.org/10.1111/raq.12536
  • Ozturk, B.Y., Aşikkutlu, B.,Akköz C., & Atici, T. (2019). Molecular and Morphological Characterization of Several Cyanobacteria and Chlorophyta Species Isolated from Lakes in Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 19, 8, 635-643. https://doi.org/10.4194/1303-2712-v19_8_01
  • Özçiçek, E., Can, E., Yılmaz, K., & Can, Ş.S. (2017). Usage of microalgae as a sustainable food source in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 34, 3, 347 – 354 (in Turkish with English abstract). https://doi.org/10.12714/egejfas.2017.34.3.15
  • Pegallapati, A.K., & Nirmalakhandan, N. (2013). Internally illuminated photobioreactor for algal cultivation under carbon dioxide-supplementation: performance evaluation. Renewable Energy, 56, 129-135. https://doi.org/10.1016/j.renene.2012.09.052
  • Perendeci, N.A., Yilmaz, V., & Tastan, B.E., et al. (2019). Correlations between biochemical composition and biogas production during anaerobic digestion of microalgae and cyanobacteria isolated from different sources of Turkey‎. Bioresource Technology, 281, 209-216. https://doi.org/10.1016/j.biortech.2019.02.086
  • Porra, R.J., Thompson, W.A., & Kreidemann, P.E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta, 975, 384-394. https://doi.org/10.1016/S0005-2728(89)80347-0
  • Qin, Y., Wang, X.W., Lian, J., Zhao, Q.F., & Jiang, H.B. (2023). Combination of non-sterilized wastewater purification and high-level CO2 bio-capture with substantial biomass yield of an indigenous Chlorella strain. Science of The Total Environment, 873, 162442. https://doi.org/10.1016/j.scitotenv.2023.162442
  • Rippka, R. (1988). Recognition and identification of cyanobacteria. Methods in Enzymology, 167, 28-67. https://doi.org/10.1016/0076-6879(88)67005-4
  • Safi, C., Zebib, B., Merah, O., Pontalier, P.Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renewable & Sustainable Energy Reviews, 35, 265–278. https://doi.org/10.1016/j.rser.2014.04.007
  • Sawayama, S., Inoue, S., Dote, Y., & Yokoyama, S.Y. (1995). CO2 fixation and oil production through microalga. Energy Conversion and Management, 36, 729-731. https://doi.org/10.1016/0196-8904(95)00108-P
  • Schenk, P., Thomas-Hall, S., Stephens, E., Marx, U., Mussgnug, J., & Posten, C. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Research, 1, 20–43. https://doi.org/10.1007/s12155-008-9008-8
  • Selvan, S.T., Chandrasekaran, R., Muthusamy, S., & Ramamurthy, D. (2023). Eco-friendly approach for tannery effluent treatment and CO2 sequestration using unicellular green oleaginous microalga Tetradesmus obliquus TS03. Environmental Science and Pollution Research, 30, 48138–48156. https://doi.org/10.1007/s11356-023-25703-4
  • Sherwood, A.R., & Presting, G.G. (2007). Universal primers amplify A 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. Journal of Phycology, 43, 605 608. https://doi.org/10.1111/j.1529 8817.2007.00341.x
  • Shihira, I., & Krauss, R.W. (1965). Chlorella. Physiology and taxonomy of forty-one isolates. pp. 1-97. Maryland: University of Maryland, College Park.
  • Singh, N., Roy, K., Goyal, A., & Moholkar, V.S. (2019). Investigations in ultrasonic enhancement of beta-carotene production by isolated microalgal strain Tetradesmus obliquus SGM19. Ultrasonics Sonochemistry, 58, 104697. https://doi.org/10.1016/j.ultsonch.2019.104697
  • Skjanes, K., Rebours, C., & Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews in Biotechnology, 33(2): 172–215. https://doi.org/10.3109/07388551.2012.681625
  • Somogyi, B., Felföldi, T., Solymosi, K., Flieger, K., Márialigeti, K., Böddi, B., & Vörös L. (2013). One step closer to eliminating the nomenclatural problems of minute coccoid green algae: Pseudochloris wilhelmii, gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). European Journal of Phycology, 48(4), 427 436. https://doi.org/10.1080/09670262.2013.854411
  • Tafti, E.N., Shabani, A.M.H., Dadfarnia, S., Ameri, M., & Seyedabadi, M. (2023). Magnetized microalgae: An efficient tool for Pb and Cd removal from aqueous media. Journal of Applied Phycology. https://doi.org/10.1007/s10811-023-02924-1
  • Taştan, B.E., Duygu, E., & Dönmez, G. (2012a). Boron bioremoval by a newly isolated Chlorella sp. and its stimulation by growth stimulators. Water Research, 46, 167–175. https://doi.org/10.1016/j.watres.2011.10.045
  • Taştan, B.E., Duygu, E., Atakol, O., & Dönmez, G. (2012b). SO2 and NO2 tolerance of microalgae with the help of some growth stimulators. Energy Conversion and Management, 64, 28 34. https://doi.org/10.1016/j.enconman.2012.05.019
  • Taştan, B.E., Duygu, E., Ilbas, M., & Donmez, G. (2016). Enhancement of microalgal biomass production and dissolved inorganic C fixation from actual coal flue gas by exogenous salicylic acid and 1-triacontanol growth promoters. Energy, 103(C), 598 604. https://doi.org/10.1016/j.energy.2016.03.020
  • Yadav, G., Karemore, A., Dash, S.K., & Sen, R. (2015). Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ. Bioresource Technology, 191, 399-406. https://doi.org/10.1016/j.biortech.2015.04.040
  • Xia, L., Tan, J.Q., Huang, R., Zhang, Z.J., Zhou, K.Q., Hu, Y.X., Song, S.X., Xu, L., Farias, M.E., & Sanchez, R.M.T. (2023). Enhanced Cd(II) biomineralization induced by microalgae after cultivating modification in high-phosphorus culture. Journal of Hazardous Materials, 443, 130243. https://doi.org/10.1016/j.jhazmat.2022.130243
  • Vadrale, A.P., Dong, C.D., Haldar, D., Wu, C.H., Chen, C.W., Singhania, R.R., & Patel, A.K. (2023). Bioprocess development to enhance biomass and lutein production from Chlorella sorokiniana Kh12. Bioresource Technology, 370, 128583. https://doi.org/10.1016/j.biortech.2023.128583
  • von Alvensleben, N., Stookey, K., Magnusson, M., & Heimann, K. (2013). Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica. PloS One, 8, 63569. https://doi.org/10.1371/journal.pone.0063569
  • Wynne, M.J., & Hallan, J.K. (2016). Reinstatement of Tetradesmus G. M. Smith (Sphaeropleales, Chlorophyta). Feddes Repertorium, 126, 83-86. https://doi.org/10.1002/fedr.201500021

Investigation of microalgae isolated from different water resources of Türkiye for their biotechnological utilization

Yıl 2024, Cilt: 41 Sayı: 2, 97 - 104, 14.06.2024
https://doi.org/10.12714/egejfas.41.2.03

Öz

Microalgae are among the important microorganisms for a sustainable world as a source of renewable energy. In this study, three new microalgae were isolated from different regions of Türkiye and identified by molecular techniques. First isolate was Chlorella sorokiniana Shihira and Krauss, 1965 which was isolated from Dim River, second was Pseudochloris wilhelmii Somogyi et al., 2013 from Tokat and the third was Tetradesmus obliquus (Turpin) Wynne and Hallan, 2016 from Tunca River. The maximum biomass of C. sorokiniana was 1.02 g/L, 1.86 g/L for P. wilhelmii and 0.80 g/L for T. obliquus. The chlorophyll (a+b) concentrations were 0.146, 0.278 and 0.181 µg/mL for C. sorokiniana, P. wilhelmii and T. obliquus, respectively. The biotechnological utilization capacities of new isolates were revealed with the support of literature.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

TUBITAK 2209-A 1919B012105092

Teşekkür

The study was supported under the TUBITAK 2209-A program with 1919B012105092 application number.

Kaynakça

  • Ahmad, F., Balasubramani, R., Kumar, S., Nasr, M., Rawat, I., & Bux, F. (2019). Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. Journal of Environmental Management, 240, 293–302. https://doi.org/10.1016/j.jenvman.2019.03.123
  • Ajala, S.O., & Alexander, M.L. (2020). Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. International Journal of Energy and Environmental Engineering, 11, 311 326. https://doi.org/10.1007/s40095-019-00333-0
  • Atıcı, T. (2020). Production and collection of microalgae isolated from freshwater reserves in Central Anatolia, Turkey. Species and Habitats, 1, 1, 37-44.
  • Atıcı, T., & Fidan B.B. (2022). Algae Production Methods in the Laboratory Using Domestic Waste. JOGHENS Journal of Global Health & Natural, 2, 2, 55 66. (in Turkish with English abstract) https://doi.org/10.56728/dustad.1169945
  • Atıcı, T., Katırcıoğlu, H., & Akın, B. (2008). Sensitivity of freshwater microalgal strains Chlorella vulgaris Beijerinck and Scenedesmus obliquus (Turpin) Kützing to heavy metals. Fresenius Environmental Bulletin, 17, 3, 268-274.
  • Babu, S.S., Gondi, R., Vincent, G.S., John Samuel, G.C., & Jeyakumar, R.B. (2022). Microalgae biomass and lipids as feedstock for biofuels: sustainable biotechnology strategies. Sustainability, 14(22), 15070. https://doi.org/10.3390/su142215070
  • Barsanti, L., & Gualtieri, P. (2014). Algae. Anatomy, Biochemistry, and Biotechnology. CRC Press Taylor Francis Group Italy. ISBN-13: 978-1439867327. https://doi.org/10.1201/b16544
  • Blazina, M., Fafandel, M., Gecek, S., Haberle, I., Klanjscek, J., Hrustic, E., Husinec, L., Zilic, L., Pritisanac, E., & Klanjscek, T. (2022). Characterization of Pseudochloris wilhelmii potential for oil refinery wastewater remediation and valuable biomass cogeneration. Frontiers in Marine Science, 9:983395. https://doi.org/10.3389/fmars.2022.983395
  • Budisa, A., Haberle, I., Konjević, L., Blažina, M., Djakovac, T., Lukarić-Špalj B., & Hrustic, E. (2019). Marine microalgae Microchloropsis gaditana and Pseudochloris wilhelmii cultivated in oil refinery wastewater – a perspective on remediation and biodiesel production. Fresenius Environmental Bulletin, 28, 7888–7897.
  • Cheah, W.Y., Show, P.L., Chang, J.S., Ling, T.C., & Juan, J.C. (2015). Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology, 184, 190 201. https://doi.org/10.1016/j.biortech.2014.11.026
  • Chu, W.L. (2017). Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock. European Journal of Phycology, 52(4), 419-437. https://doi.org/10.1080/09670262.2017.1379100
  • Concas A., Lutzu G. A., Pisu M., & Cao G. (2019). On the feasibility of Pseudochloris wilhelmii cultivation in sea-wastewater mixtures: Modeling and experiments. Journal of Environmental Chemical Engineering, 7, 103301. https://doi.org/10.1016/j.jece.2019.103301
  • Congur, G., Gul, U.D., & Tastan, B.E. (2022). Fast, cheap and reliable monitoring of microalgae-based paracetamol removal from aquatic environment using electrochemical sensor technology. Journal of The Electrochemical Society, 169. https://doi.org/10.1149/1945-7111/aca0c8
  • Coronado-Reyes, J.A., Salazar-Torres, J.A., Juárez-Campos, B., & González-Hernández J.C. (2022). Chlorella vulgaris, a microalgae important to be used in biotechnology: a review. Food Science and Technology, 42, https://doi.org/10.1590/fst.37320
  • Derakhshandeh, M., Atıcı, T., & Un, U.T. (2019). Lipid extraction from microalgae Chlorella and Synechocystis sp. using glass microparticles as disruption enhancer. Energy & Environment, 30, 8, 1341-1355. https://doi.org/10.1177/0958305X19837463
  • Derakhshandeh, M., Atici, T., & Un, U.T. (2021). Evaluation of Wild-Type Microalgae Species Biomass as Carbon Dioxide Sink and Renewable Energy Resource. Waste and Biomass Valorization, 12, 1, 105-121. https://doi.org/10.1007/s12649-020-00969-8
  • Durrett, T.P., Benning, C., & Ohlrogge J. (2008). Plant triacylglycerols as feedstocks for the production of biofuels. Plant J, 54, 593-607. https://doi.org/10.1111/j.1365-313X.2008.03442.x
  • El-Sheekh, M.M., Bedaiwy, M.Y., Osman, M.E., & Ismail, M.M. (2014). Influence of molasses on growth, biochemical composition and ethanol production of the green algae Chlorella vulgaris and Scenedesmus obliquus. Journal of Agricultural Engineering and Biotechnology, 2, 20–28. https://doi.org/10.18005/JAEB0202002
  • Garrido-Cardenas, J.A., Manzano-Agugliaro, F., Acien-Fernandez, F.G., & Molina-Grima, E. (2018). Microalgae research worldwide. Algal Research, 35:50–60. https://doi.org/10.1016/j.algal.2018.08.005
  • Ghosh, A., Khanra, S., Mondal, M., Halder, G., Tiwari, O.N., Saini, S., Bhowmick, T.K., & Gayen, K. (2016). Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: A review. Energy Conversion and Management, 113, 104 118. https://doi.org/10.1016/j.enconman.2016.01.050
  • Goh, B.H.H., Ong, H.C., Cheah, M.Y., Chen, W.H., Yu, K.L., & Mahlia, T.M.I. (2019). Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renewable & Sustainable Energy Reviews, 107, 59–74. https://doi.org/10.1016/j.rser.2019.02.012
  • Gonzalez, D., & Lorenzo, M.D. (2019). Self-powered photosynthetic biosensor for pesticide detection in water. ECS Meeting Abstracts, MA2019-04: 402. https://doi.org/10.1149/MA2019-04/8/402
  • Guldhe, A., Singh, B., Rawat, I., Permaul, K., & Bux, F. (2015). Biocatalytic conversion of lipids from microalgae Scenedesmus obliquus to biodiesel using Pseudomonas fluorescens lipase. Fuel, 147, 117–124. https://doi.org/10.1016/j.fuel.2015.01.049
  • Ip, P.F., & Chen, F. (2005). Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochemistry, 40, 733-738. https://doi.org/10.1016/j.procbio.2004.01.039
  • Jacob-Lopes, E., Maroneze, M.M., Depra, M.C., Sartori, R.B., Dias, R.R., & Zepka, L.Q. (2019). Bioactive food compounds from microalgae: an innovative framework on industrial biorefineries. Current Opinion in Food Science, 25, 1-7. https://doi.org/10.1016/j.cofs.2018.12.003
  • Kenney, J.F., & Keeping, E.S. (1951). Standard Error of the Mean in Mathematics of Statistics. Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, 110, 132-133.
  • Li, Z., Gao, X.X., Bao, J.F., Li, S.X., Wang, X., Li, Z.H., & Zhu, L.D. (2023). Evaluation of growth and antioxidant responses of freshwater microalgae Chlorella sorokiniana and Scenedesmus dimorphus under exposure of moxifloxacin. Science of The Total Environment, 858, 159788. https://doi.org/10.1016/j.scitotenv.2022.159788
  • Liu, D., Yang, W., Lv, Y., Li, S., Qv, M., Dai, D., & Zhu, L. (2023). Pollutant removal and toxic response mechanisms of freshwater microalgae Chlorella sorokiniana under exposure of tetrabromobisphenol A and cadmium. Chemical Engineering Journal, 461, 142065. https://doi.org/10.1016/j.cej.2023.142065
  • López-Pacheco, I.Y., Castillo-Vagas, E.I., & Castaneda-Hernandez, L. (2021). CO2 biocapture by Scenedesmus sp. grown in industrial wastewater. Science of the Total Environment, 790, 148222. https://doi.org/10.1016/j.scitotenv.2021.148222
  • Lu, W., Wang, Z., Wang, X., & Yuan, Z. (2015). Cultivation of Chlorella sp. using raw diary wastewater for nutrient removal and biodiesel production: characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresource Technology, 1, 1 31. https://doi.org/10.1016/j.biortech.2015.05.094
  • Malakar, B., Das, D., & Mohanty, K. (2023). Utilization of Chlorella biomass grown in waste peels-based substrate for simultaneous production of biofuel and value-added products under microalgal biorefinery approach. Waste Biomass Valor. https://doi.org/10.1007/s12649-023-02058-y
  • Mata, T.M., Martins, A.A., & Caetano N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217 232. https://doi.org/10.1016/j.rser.2009.07.020
  • Mutaf, T., Bilgin, G.Ç., Öncel, S., & Elibol, M. (2023). Green synthesis of metal nanoparticles by microalgae. Ege Journal of Fisheries and Aquatic Sciences, 40, 1, 81–89. (in Turkish with English abstract). https://doi.org/10.12714/egejfas.40.1.12
  • Singab, A.N.B, Ibrahim, N.A., El-Sayed, A.E.K.B., El- Senousy, W.M., Aly, H., Elsamiaei, A.S.A., & Matloub, A.A. (2018). Antiviral, cytotoxic, antioxidant and anticholinesterase activities of polysaccharides isolated from microalgae Spirulina platensis, Scenedesmus obliquus, and Dunaliella salina. Archives of Pharmaceutical Sciences Ain Shams University, 2: 121–137. https://doi.org/10.21608/aps.2018.18740
  • Oliveira, C.Y., Oliveira, C.D., Prasad, R., Ong, H., Araujo, E., Shabnam, N., & Galvez, A. (2021). A multidisciplinary review of Tetradesmus obliquus: a microalga suitable for large-scale biomass production and emerging environmental applications. Reviews in Aquaculture, 13, 1594-1618. https://doi.org/10.1111/raq.12536
  • Ozturk, B.Y., Aşikkutlu, B.,Akköz C., & Atici, T. (2019). Molecular and Morphological Characterization of Several Cyanobacteria and Chlorophyta Species Isolated from Lakes in Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 19, 8, 635-643. https://doi.org/10.4194/1303-2712-v19_8_01
  • Özçiçek, E., Can, E., Yılmaz, K., & Can, Ş.S. (2017). Usage of microalgae as a sustainable food source in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 34, 3, 347 – 354 (in Turkish with English abstract). https://doi.org/10.12714/egejfas.2017.34.3.15
  • Pegallapati, A.K., & Nirmalakhandan, N. (2013). Internally illuminated photobioreactor for algal cultivation under carbon dioxide-supplementation: performance evaluation. Renewable Energy, 56, 129-135. https://doi.org/10.1016/j.renene.2012.09.052
  • Perendeci, N.A., Yilmaz, V., & Tastan, B.E., et al. (2019). Correlations between biochemical composition and biogas production during anaerobic digestion of microalgae and cyanobacteria isolated from different sources of Turkey‎. Bioresource Technology, 281, 209-216. https://doi.org/10.1016/j.biortech.2019.02.086
  • Porra, R.J., Thompson, W.A., & Kreidemann, P.E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta, 975, 384-394. https://doi.org/10.1016/S0005-2728(89)80347-0
  • Qin, Y., Wang, X.W., Lian, J., Zhao, Q.F., & Jiang, H.B. (2023). Combination of non-sterilized wastewater purification and high-level CO2 bio-capture with substantial biomass yield of an indigenous Chlorella strain. Science of The Total Environment, 873, 162442. https://doi.org/10.1016/j.scitotenv.2023.162442
  • Rippka, R. (1988). Recognition and identification of cyanobacteria. Methods in Enzymology, 167, 28-67. https://doi.org/10.1016/0076-6879(88)67005-4
  • Safi, C., Zebib, B., Merah, O., Pontalier, P.Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renewable & Sustainable Energy Reviews, 35, 265–278. https://doi.org/10.1016/j.rser.2014.04.007
  • Sawayama, S., Inoue, S., Dote, Y., & Yokoyama, S.Y. (1995). CO2 fixation and oil production through microalga. Energy Conversion and Management, 36, 729-731. https://doi.org/10.1016/0196-8904(95)00108-P
  • Schenk, P., Thomas-Hall, S., Stephens, E., Marx, U., Mussgnug, J., & Posten, C. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Research, 1, 20–43. https://doi.org/10.1007/s12155-008-9008-8
  • Selvan, S.T., Chandrasekaran, R., Muthusamy, S., & Ramamurthy, D. (2023). Eco-friendly approach for tannery effluent treatment and CO2 sequestration using unicellular green oleaginous microalga Tetradesmus obliquus TS03. Environmental Science and Pollution Research, 30, 48138–48156. https://doi.org/10.1007/s11356-023-25703-4
  • Sherwood, A.R., & Presting, G.G. (2007). Universal primers amplify A 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. Journal of Phycology, 43, 605 608. https://doi.org/10.1111/j.1529 8817.2007.00341.x
  • Shihira, I., & Krauss, R.W. (1965). Chlorella. Physiology and taxonomy of forty-one isolates. pp. 1-97. Maryland: University of Maryland, College Park.
  • Singh, N., Roy, K., Goyal, A., & Moholkar, V.S. (2019). Investigations in ultrasonic enhancement of beta-carotene production by isolated microalgal strain Tetradesmus obliquus SGM19. Ultrasonics Sonochemistry, 58, 104697. https://doi.org/10.1016/j.ultsonch.2019.104697
  • Skjanes, K., Rebours, C., & Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews in Biotechnology, 33(2): 172–215. https://doi.org/10.3109/07388551.2012.681625
  • Somogyi, B., Felföldi, T., Solymosi, K., Flieger, K., Márialigeti, K., Böddi, B., & Vörös L. (2013). One step closer to eliminating the nomenclatural problems of minute coccoid green algae: Pseudochloris wilhelmii, gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). European Journal of Phycology, 48(4), 427 436. https://doi.org/10.1080/09670262.2013.854411
  • Tafti, E.N., Shabani, A.M.H., Dadfarnia, S., Ameri, M., & Seyedabadi, M. (2023). Magnetized microalgae: An efficient tool for Pb and Cd removal from aqueous media. Journal of Applied Phycology. https://doi.org/10.1007/s10811-023-02924-1
  • Taştan, B.E., Duygu, E., & Dönmez, G. (2012a). Boron bioremoval by a newly isolated Chlorella sp. and its stimulation by growth stimulators. Water Research, 46, 167–175. https://doi.org/10.1016/j.watres.2011.10.045
  • Taştan, B.E., Duygu, E., Atakol, O., & Dönmez, G. (2012b). SO2 and NO2 tolerance of microalgae with the help of some growth stimulators. Energy Conversion and Management, 64, 28 34. https://doi.org/10.1016/j.enconman.2012.05.019
  • Taştan, B.E., Duygu, E., Ilbas, M., & Donmez, G. (2016). Enhancement of microalgal biomass production and dissolved inorganic C fixation from actual coal flue gas by exogenous salicylic acid and 1-triacontanol growth promoters. Energy, 103(C), 598 604. https://doi.org/10.1016/j.energy.2016.03.020
  • Yadav, G., Karemore, A., Dash, S.K., & Sen, R. (2015). Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ. Bioresource Technology, 191, 399-406. https://doi.org/10.1016/j.biortech.2015.04.040
  • Xia, L., Tan, J.Q., Huang, R., Zhang, Z.J., Zhou, K.Q., Hu, Y.X., Song, S.X., Xu, L., Farias, M.E., & Sanchez, R.M.T. (2023). Enhanced Cd(II) biomineralization induced by microalgae after cultivating modification in high-phosphorus culture. Journal of Hazardous Materials, 443, 130243. https://doi.org/10.1016/j.jhazmat.2022.130243
  • Vadrale, A.P., Dong, C.D., Haldar, D., Wu, C.H., Chen, C.W., Singhania, R.R., & Patel, A.K. (2023). Bioprocess development to enhance biomass and lutein production from Chlorella sorokiniana Kh12. Bioresource Technology, 370, 128583. https://doi.org/10.1016/j.biortech.2023.128583
  • von Alvensleben, N., Stookey, K., Magnusson, M., & Heimann, K. (2013). Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica. PloS One, 8, 63569. https://doi.org/10.1371/journal.pone.0063569
  • Wynne, M.J., & Hallan, J.K. (2016). Reinstatement of Tetradesmus G. M. Smith (Sphaeropleales, Chlorophyta). Feddes Repertorium, 126, 83-86. https://doi.org/10.1002/fedr.201500021
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hidrobiyoloji, Tatlı Su Ekolojisi
Bölüm Makaleler
Yazarlar

Eyüp Polat 0009-0007-5363-5009

Burcu Taştan 0000-0003-4644-8305

Proje Numarası TUBITAK 2209-A 1919B012105092
Erken Görünüm Tarihi 9 Haziran 2024
Yayımlanma Tarihi 14 Haziran 2024
Gönderilme Tarihi 22 Eylül 2023
Yayımlandığı Sayı Yıl 2024Cilt: 41 Sayı: 2

Kaynak Göster

APA Polat, E., & Taştan, B. (2024). Investigation of microalgae isolated from different water resources of Türkiye for their biotechnological utilization. Ege Journal of Fisheries and Aquatic Sciences, 41(2), 97-104. https://doi.org/10.12714/egejfas.41.2.03