Araştırma Makalesi
BibTex RIS Kaynak Göster

Extraction of protein from fresh rainbow trout (Onchorhynchus mykiss) viscera and smoked trout trimmings using commercial enzymes

Yıl 2022, Cilt: 39 Sayı: 1, 71 - 80, 15.03.2022

Öz



In the current investigation, fresh trout viscera and smoked trout trimmings were enzymatically extracted using papain, alcalase, protamex, and flavourzyme. Protein extraction was performed at different concentrations (0.5%, 1%, 1.5% and 2%) and times (30 minute, 1 hour and 4 hours). The moisture, crude protein, lipid and crude ash contents of trout viscera used as raw materials, in the study, were respectively found as 60.26±0.78%, 12.18±0.21%, 31.18±0.36% and 1.33±0.07%, while these values in smoked trout trimmings were determined as 54.53±0.93%, 18.39±0.13%, 17.71 ± 1.06% and 8.50±0.13%, respectively. Following the conclusion of the study, protein content (g protein/100 g waste) and Protein Recovery Rate (PRR, %) in liquid protein hydrolysate extracted from trout viscera and smoked trout trimmings were found to be significantly affected by enzyme type, enzyme concentration, and extraction time. The results showed that the flavourzyme, followed by the protamex, produced the highest protein content (g protein/100 g waste) and PRR (%) in the liquid protein hydrolysate extracted from trout viscera. Furthermore, the protamex, followed by the flavourzyme, was shown to have the highest protein content (g protein /100 g waste) and PRR (%) in the liquid protein hydrolysate extracted from smoked trout trimmings.


Destekleyen Kurum

Çukurova University BAP Coordination Unit

Proje Numarası

FLY-2014-3163

Kaynakça

  • Adler‐Nissen, J. (1984). Control of the proteolytic reaction and of the level of bitterness in protein hydrolysis processes. Journal of Chemical Technology and Biotechnology. Biotechnology, 34(3), 215-222. DOI: 10.1002/jctb.280340311
  • Ananey-Obiri, D., Matthews, L. G. & Tahergorabi, R. (2019). Proteins From Fish Processing By-Products. In C. M. Galanakis (Ed.), Proteins: Sustainable Source, Processing and Applications (pp. 163–191). Elsevier. DOI: 10.1016/b978-0-12-816695-6.00006-4
  • AOAC, (1998). Official Methods of Analysis, 16 th Ed., Chapter 39. (D.L., Soderberg 402 Chapter editor) In P. Cunniff (Ed.) Official Methods of Analysis of AOAC International. Gaithersburg, MD.
  • Aspmo, S. I., Horn, S. J. & Eijsink, V. G. (2005). Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry, 40(5), 1957-1966. DOI:10.1016/j.procbio.2004.07.011
  • Batista, I., Ramos, C., Coutinho, J., Bandarra, N. M. & Nunes, M. L. (2010). Characterization of protein hydrolysates and lipids obtained from black scabbardfish (Aphanopus carbo) by-products and antioxidative activity of the hydrolysates produced. Process Biochemistry, 45(1), 18-24. DOI: 10.1016/j.procbio.2009.07.019
  • Benjakul, S. & Morrissey, M. T. (1997). Protein hydrolysates from Pacific whiting solid wastes. Journal of Agricultural and Food Chemistry, 45(9), 3423-3430. DOI:10.1021/jf970294g
  • Bjørnevik, M., Cardinal, M., Vallet, J.L., Nicolaisen, O. & Arnarson, G.O. (2018). Effect of salting and cold-smoking procedures on Atlantic salmon originating from pre-or post rigor filleted raw material. Based on the measurement of physiochemical characteristics. LWT, 91, 431-438. DOI: 10.1016/j.lwt.2018.01.047
  • Bligh, E.G. & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. DOI: 10.1139/o59-099
  • Chalamaiah, M., Hemalatha, R. & Jyothirmayi, T. (2012). Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chemistry, 135(4), 3020-3038. DOI: 10.1016/j.foodchem.2012.06.100
  • Diniz, F.M. & Martin, A.M. (1997). Optimization of nitrogen recovery in the enzymatic hydrolysis of dogfish (Squalus acanthias) protein. Composition of the hydrolysates. International Journal of Food Sciences and Nutrition, 48(3), 191-200. DOI: 10.3109/09637489709012592
  • Dong, F.M., Fairgrieve, W.T., Skonberg, D.I. & Rasco, B.A. (1993). Preparation and nutrient analyses of lactic acid bacterial ensiled salmon viscera. Aquaculture, 109(3-4), 351-366. DOI: 10.1016/0044-8486(93)90174-W
  • Dong, Y.L., Sheng, G.Y., Fu, J.M. & Wen, K.W. (2005). Chemical characterization and anti‐anaemia activity of fish protein hydrolysate from Saurida elongata. Journal of the Science of Food and Agriculture, 85 (12), 2033-2039. DOI: 10.1002/jsfa.2219
  • Fan, W., Tan, X., Tu, M., Jin, F., Wang, Z., Yu, C. & Du, M. (2018). Preparation of the rainbow trout bone peptides directed by nutritional properties and flavor analyses. Food Science & Nutrition, 6(4), 925-933. DOI: 10.1002/fsn3.631
  • Fitzgerald, A.J., Rai, P.S., Marchbank, T., Taylor, G.W., Ghosh, S., Ritz, B.W. & Playford, R.J. (2005). Reparative properties of a commercial fish protein hydrolysate preparation. Gut, 54(6), 775-781. DOI: 10.1136/gut.2004.060608
  • Fuentes, A., Fernández‐Segovia, I., Barat, J.M. & Serra, J.A. (2010). Physicochemical characterization of some smoked and marinated fish products. Journal of Food Processing and Preservation, 34(1), 83-103. DOI: 10.1111/j.1745-4549.2008.00350.x
  • Ghaly, A.E., Ramakrishnan, V. V., Brooks, M.S., Budge, S.M. & Dave, D. (2013). Fish Processing Wastes as a Potential Source of Proteins. Amino Acids and Oils: A Critical Review. Journal of Microbial & Biochemical Technology, 5(4), 107-129. DOI: 10.4172/1948-5948.1000110
  • Guérard, F. (2007). Enzymatic methods for marine by-products recovery. In F. Shahidi, Maximising The Value of Marine By-Products (pp. 107-143). Woodhead Publishing. DOI:10.1533/9781845692087.1.107
  • He, S., Franco, C. & Zhang, W. (2013). Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Research International, 50(1), 289-297. DOI: 10.1016/j.foodres.2012.10.031
  • Hoyle, N.T. & Merrltt, J.H. (1994). Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of Food Science, 59(1), 76-79. DOI: 10.1111/j.1365-2621.1994.tb06901.x
  • Jittinandana, S., Kenney, P.B., Slider, S.D. & Kiser, R.A. (2002). Effect of brine concentration and brining time on quality of smoked rainbow trout fillets. Journal of Food Science, 67(6), 2095-2099. DOI: 10.1111/j.1365-2621.2002.tb09507.x
  • Klomklao, S. & Benjakul, S. (2017). Utilization of tuna processing byproducts: Protein hydrolysate from skipjack tuna (Katsuwonus pelamis) viscera. Journal of Food Processing and Preservation, 41(3), e12970. DOI: 10.1111/jfpp.12970
  • Kołakowska, A., Domiszewski, Z., Kozłowski, D. & Gajowniczek, M. (2006). Effects of rainbow trout freshness on n‐3 polyunsaturated fatty acids in fish offal. European Journal of Lipid Science and Technology, 108(9), 723-729. DOI: 10.1002/ejlt.200600054
  • Korkmaz, K. & Tokur, B. (2019). Proximate composition of three different fish (trout, anchovy and whiting) waste during catching season. Türk Denizcilik ve Deniz Bilimleri Dergisi, 5(2), 133-140.
  • Kotzamanis, Y. P., Alexis, M. N., Andriopoulou, A., Castritsi‐Cathariou, I. & Fotis, G. (2001). Utilization of waste material resulting from trout processing in gilthead bream (Sparus aurata L.) diets. Aquaculture Research, 32, 288-295. DOI: 10.1046/j.1355-557x.2001.00042.x
  • Kristinsson, H.G. & Rasco, B.A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40(1), 43-81. DOI: 10.1080/10408690091189266
  • Kristinsson, H. G. (2007). Aquatic food protein hydrolysates. In F. Shadidi, Maximising The Value of Marine By-Products (pp. 229-248). Woodhead Publishing. DOI:10.1533/9781845692087.2.229
  • Lee, C.M. (2007). Seafood flavor from processing by-products. In F. Shadidi (Ed.), Maximising The Value of Marine By-Products (pp. 304-327). Woodhead Publishing. DOI:10.1533/9781845692087.2.304
  • Liaset, B. & Espe, M. (2008). Nutritional composition of soluble and insoluble fractions obtained by enzymatic hydrolysis of fish-raw materials. Process Biochemistry, 43(1), 42-48. DOI: 10.1016/j.procbio.2007.10.007
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275. DOI:10.1016/S0021-9258(19)52451-6
  • Mamboya, E.A.F. (2012). Papain, a plant enzyme of biological importance: a review. American Journal of Biochemistry and Biotechnology, 8(2), 99-104. DOI:10.3844/ajbbsp.2012.99.104
  • Mohr, V. (1980). Enzymes technology in the meat and fish industries. Process Biochemistry, 15(6): 18-21.
  • Molla, A.E. & Hovannisyan, H.G. (2011). Optimization of enzymatic hydrolysis of visceral waste proteins of beluga Huso huso using Protamex. International Aquatic Research (Islamic Azad University, Tonekabon Branch), 3(2).
  • Mutilangi, W.A.M., Panyam, D. & Kilara, A. (1996). Functional properties of hydrolysates from proteolysis of heat‐denatured whey protein isolate. Journal of Food Science, 61(2), 270-275. DOI: 10.1111/j.1365-2621.1996.tb14174.x
  • Nasri, R., Younes, I., Jridi, M., Trigui, M., Bougatef, A., Nedjar-Arroume, N., Dhulster, P., Nasri, M., Karra-Châabouni, M. (2013). ACE inhibitory and antioxidative activities of Goby (Zosterissessor ophiocephalus) fish protein hydrolysates: Effect on meat lipid oxidation. Food Research International, 54(1), 552–561. DOI: 10.1016/j.foodres.2013.07.001
  • Nemati, M., Javadian, S.R., Ovissipour, M. & Keshavarz, M. (2012). A study on the properties of Alosa (Alosa caspia) by-products protein hydrolysates using commercial enzymes. World Applied Sciences Journal, 18(7), 950-956. DOI: 10.5829/idosi.wasj.2012.18.07.1092
  • Noman, A., Xu, Y., AL-Bukhaiti, W.Q., Abed, S.M., Ali, A.H., Ramadhan, A.H. & Xia, W. (2018). Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochemistry, 67, 19-28. DOI: 10.1016/j.procbio.2018.01.009
  • Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R. & Shahiri, H. (2009). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115(1), 238-242. DOI: 10.1016/j.foodchem.2008.12.013
  • Pasupuleti, V.K. & Braun, S. (2008). State of the art manufacturing of protein hydrolysates. Protein Hydrolysates in Biotechnology, 11-32. DOI:10.1007/978-1-4020-6674-0_2
  • Pigott, G.M. & Tucker, B.W. (1990). Utility fish flesh effectively while maintaining nutritional qualities. Seafood Effects of Technology and Nutrition. Marcel Decker, Inc., New York.
  • Ramakrishnan, V.V., Ghaly, A.E., Brooks, M.S. & Budge, S.M. (2013). Extraction of proteins from mackerel fish processing waste using alcalase enzyme. Bioprocess Biotech, 3, 2. Quaglia, G.B. & Orban, E. (1987). Enzymic solubilisation of proteins of sardine (Sardina pilchardus) by commercial proteases. Journal of the Science of Food and Agriculture, 38(3), 263-269. DOI: 10.1002/jsfa.2740380310
  • Shahidi, F., Han, X.Q. & Synowiecki, J. (1995). Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chemistry, 53(3), 285-293. DOI:10.1016/0308-8146(95)93934-J
  • Siddik, M.A., Howieson, J., Fotedar, R. & Partridge, G.J. (2021). Enzymatic fish protein hydrolysates in finfish aquaculture: a review. Reviews in Aquaculture, 13(1), 406-430. DOI:10.1111/raq.12481
  • Soufi-Kechaou, E., Jaouen, P., Ben Amar, R. & Berge, J.P. (2012). Influence of hydrolysis time on protein recovery and amino acid composition of hydrolysates from Sepia officinalis viscera. Science Research Reporter, 2(2), 115-129.
  • Taheri, A., Anvar, S.A.A., Ahari, H. & Fogliano, V. (2013). Comparison the functional properties of protein hydrolysates from poultry by-products and rainbow trout (Onchorhynchus mykiss) viscera. Iranian Journal of Fisheries Sciences, 12(1), 154-169.
  • TEBGE, 2020. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü (TEPGE) Ürün Raporu Su Ürünleri 2020. TEPGE YAYIN NO: 317 ISBN: 978-605-7599-43-8., 29 sayfa. Thammapat, P., Raviyan, P. & Siriamornpun, S. (2010). Proximate and fatty acids composition of the muscles and viscera of Asian catfish (Pangasius bocourti). Food Chemistry, 122(1), 223-227. DOI: 10.1016/j.foodchem.2010.02.065
  • Theodore, A.E., Raghavan, S. & Kristinsson, H.G. (2008). Antioxidative activity of protein hydrolysates prepared from alkaline-aided channel catfish protein isolates. Journal of Agricultural and Food Chemistry, 56(16), 7459-7466. DOI: 10.1021/jf800185f
  • Tokur, B. (2007). The effect of different cooking methods on proximate composition and lipid quality of rainbow trout (Oncorhynchus mykiss). International Journal of Food Science & Technology, 42(7), 874-879. DOI: 10.1111/j.1365-2621.2006.01298.x
  • Tolasa, S., Cakli, S., Kisla, D. & Dincer, T. (2012). Quality and Shelf-Life Assessment of Pasteurized Trout Soup During Refrigerated Storage. Journal of Aquatic Food Product Technology, 21(4), 321-329. DOI:10.1080/10498850.2011.595054
  • Tosun, Ş.Y. & Özden, Ö. (2014). Survey of inhibition of Listeria monocytogenes in hot‐smoked rainbow trout fillets for food safety. Journal of Food Processing and Preservation, 38(1), 338-346. DOI: 10.1111/j.1745-4549.2012.00781.x
  • Uhlig, H., 1998. Industrial Enzymes and their Applications. 1st Edn., John Wiley and Sons, New York, ISBN-10: 0471196606, p. 454.
  • Undeland, I., Linquist, H., Chen-Yun, Y., Falch, E., Ramel, A., Cooper, M., Gildberg, A., Luten, J.B., Stenberg, E., Nielsen, H.H. & Elvevoll, E. (2009). Seafood and health: What is the full story? In J. B. Luten (Ed.), Marine functional food (pp. 17–87). Wageningen, The Netherlands: Wageningen Academic Publisher.
  • Utomo, B.S.B., Suryanigrum, T.D. & Harianto, H.R. (2014). Optimization of enzymatic hydrolysis of fish protein hydrolysate (FPH) processing from waste of catfish fillet production. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 9(3), 115-126. DOI:10.15578/squalen.v9i3.79
  • Vieira, G.H., Martin, A.M., Saker‐Sampaiao, S., Omar, S. & Goncalves, R.C. (1995). Studies on the enzymatic hydrolysis of Brazilian lobster (Panulirus spp) processing wastes. Journal of the Science of Food and Agriculture, 69(1), 61-65. DOI: 10.1002/jsfa.2740690110
  • Villamil, O., Váquiro, H. & Solanilla, J.F. (2017). Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chemistry, 224, 160-171. DOI: 10.1016/j.foodchem.2016.12.057
  • Wu, R., Wu, C., Liu, D., Yang, X., Huang, J., Zhang, J. & Li, H. (2015). Overview of antioxidant peptides derived from marine resources: The sources, characteristic, purification, and evaluation methods. Applied Biochemistry and Biotechnology, 176(7), 1815-1833. DOI: 10.1007/s12010-015-1689-9
  • Zamora-Sillero, J., Gharsallaoui, A. & Prentice, C. (2018). Peptides from fish by-product protein hydrolysates and its functional properties: An overview. Marine Biotechnology, 20(2), 118-130.

Ticari enzimler kullanılarak taze alabalık (Onchorhynchus mykiss) iç organlarından ve tütsülenmiş alabalık kırpıntılarından protein ekstraksiyonu

Yıl 2022, Cilt: 39 Sayı: 1, 71 - 80, 15.03.2022

Öz



Bu çalışmada, alabalık iç organları ve tütsülenmiş alabalık kırpıntıları papain, alkalaz, protameks ve flavourzyme kullanılarak enzimatik olarak ekstrakte edilmiştir. Protein ekstraksiyonu, farklı konsantrasyonlarda (%0,5, %1, %1,5 ve %2) ve sürede (30 dakika, 1 saat ve 4 saat) gerçekleştirilmiştir. Çalışmada, hammadde olarak kullanılan alabalık iç organlarının nem, ham protein, lipid ve ham kül içerikleri sırasıyla %60,26±0,78, %12,18±0,21, %31,18±0,36 ve %1,33±0,07 olarak bulunurken, bu değerler tütsülenmiş alabalık kırpıntılarında sırasıyla %54,53±0,93, %18,39±0,13, %17,71±1,06 ve %8,50±0,13 olarak belirlenmiştir. Çalışmanın sonuçlanmasının ardından, alabalık iç organlarından ve tütsülenmiş alabalık kırpıntılarından ekstrakte edilen sıvı protein hidrolizatlarının protein içeriği (g protein / 100 g atık) ve Protein Geri Kazanım Oranlarının (PRR, %), enzim tipi, enzim konsantrasyonu ve ekstraksiyon süresinden önemli ölçüde etkilendiği bulunmuştur. Sonuçlar, alabalık iç organlarından ekstarkte edilen sıvı protein hidrolizatlarda en yüksek protein içeriği (g protein/100 g atık) ve PRR' nin (%) flavourzyme ile elde edildiğini bunu protameksin takip ettiğini göstermiştir. Ayrıca, tütsülenmiş alabalık kırpıntılarından ekstakte edilen sıvı protein hidrolizatlarında, protameks, ardından flavourzyme ile en yüksek protein içeriğine (g protein / 100 g atık) ve PRR'ye (%) sahip olduğu gösterilmiştir.


Proje Numarası

FLY-2014-3163

Kaynakça

  • Adler‐Nissen, J. (1984). Control of the proteolytic reaction and of the level of bitterness in protein hydrolysis processes. Journal of Chemical Technology and Biotechnology. Biotechnology, 34(3), 215-222. DOI: 10.1002/jctb.280340311
  • Ananey-Obiri, D., Matthews, L. G. & Tahergorabi, R. (2019). Proteins From Fish Processing By-Products. In C. M. Galanakis (Ed.), Proteins: Sustainable Source, Processing and Applications (pp. 163–191). Elsevier. DOI: 10.1016/b978-0-12-816695-6.00006-4
  • AOAC, (1998). Official Methods of Analysis, 16 th Ed., Chapter 39. (D.L., Soderberg 402 Chapter editor) In P. Cunniff (Ed.) Official Methods of Analysis of AOAC International. Gaithersburg, MD.
  • Aspmo, S. I., Horn, S. J. & Eijsink, V. G. (2005). Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry, 40(5), 1957-1966. DOI:10.1016/j.procbio.2004.07.011
  • Batista, I., Ramos, C., Coutinho, J., Bandarra, N. M. & Nunes, M. L. (2010). Characterization of protein hydrolysates and lipids obtained from black scabbardfish (Aphanopus carbo) by-products and antioxidative activity of the hydrolysates produced. Process Biochemistry, 45(1), 18-24. DOI: 10.1016/j.procbio.2009.07.019
  • Benjakul, S. & Morrissey, M. T. (1997). Protein hydrolysates from Pacific whiting solid wastes. Journal of Agricultural and Food Chemistry, 45(9), 3423-3430. DOI:10.1021/jf970294g
  • Bjørnevik, M., Cardinal, M., Vallet, J.L., Nicolaisen, O. & Arnarson, G.O. (2018). Effect of salting and cold-smoking procedures on Atlantic salmon originating from pre-or post rigor filleted raw material. Based on the measurement of physiochemical characteristics. LWT, 91, 431-438. DOI: 10.1016/j.lwt.2018.01.047
  • Bligh, E.G. & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. DOI: 10.1139/o59-099
  • Chalamaiah, M., Hemalatha, R. & Jyothirmayi, T. (2012). Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chemistry, 135(4), 3020-3038. DOI: 10.1016/j.foodchem.2012.06.100
  • Diniz, F.M. & Martin, A.M. (1997). Optimization of nitrogen recovery in the enzymatic hydrolysis of dogfish (Squalus acanthias) protein. Composition of the hydrolysates. International Journal of Food Sciences and Nutrition, 48(3), 191-200. DOI: 10.3109/09637489709012592
  • Dong, F.M., Fairgrieve, W.T., Skonberg, D.I. & Rasco, B.A. (1993). Preparation and nutrient analyses of lactic acid bacterial ensiled salmon viscera. Aquaculture, 109(3-4), 351-366. DOI: 10.1016/0044-8486(93)90174-W
  • Dong, Y.L., Sheng, G.Y., Fu, J.M. & Wen, K.W. (2005). Chemical characterization and anti‐anaemia activity of fish protein hydrolysate from Saurida elongata. Journal of the Science of Food and Agriculture, 85 (12), 2033-2039. DOI: 10.1002/jsfa.2219
  • Fan, W., Tan, X., Tu, M., Jin, F., Wang, Z., Yu, C. & Du, M. (2018). Preparation of the rainbow trout bone peptides directed by nutritional properties and flavor analyses. Food Science & Nutrition, 6(4), 925-933. DOI: 10.1002/fsn3.631
  • Fitzgerald, A.J., Rai, P.S., Marchbank, T., Taylor, G.W., Ghosh, S., Ritz, B.W. & Playford, R.J. (2005). Reparative properties of a commercial fish protein hydrolysate preparation. Gut, 54(6), 775-781. DOI: 10.1136/gut.2004.060608
  • Fuentes, A., Fernández‐Segovia, I., Barat, J.M. & Serra, J.A. (2010). Physicochemical characterization of some smoked and marinated fish products. Journal of Food Processing and Preservation, 34(1), 83-103. DOI: 10.1111/j.1745-4549.2008.00350.x
  • Ghaly, A.E., Ramakrishnan, V. V., Brooks, M.S., Budge, S.M. & Dave, D. (2013). Fish Processing Wastes as a Potential Source of Proteins. Amino Acids and Oils: A Critical Review. Journal of Microbial & Biochemical Technology, 5(4), 107-129. DOI: 10.4172/1948-5948.1000110
  • Guérard, F. (2007). Enzymatic methods for marine by-products recovery. In F. Shahidi, Maximising The Value of Marine By-Products (pp. 107-143). Woodhead Publishing. DOI:10.1533/9781845692087.1.107
  • He, S., Franco, C. & Zhang, W. (2013). Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Research International, 50(1), 289-297. DOI: 10.1016/j.foodres.2012.10.031
  • Hoyle, N.T. & Merrltt, J.H. (1994). Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of Food Science, 59(1), 76-79. DOI: 10.1111/j.1365-2621.1994.tb06901.x
  • Jittinandana, S., Kenney, P.B., Slider, S.D. & Kiser, R.A. (2002). Effect of brine concentration and brining time on quality of smoked rainbow trout fillets. Journal of Food Science, 67(6), 2095-2099. DOI: 10.1111/j.1365-2621.2002.tb09507.x
  • Klomklao, S. & Benjakul, S. (2017). Utilization of tuna processing byproducts: Protein hydrolysate from skipjack tuna (Katsuwonus pelamis) viscera. Journal of Food Processing and Preservation, 41(3), e12970. DOI: 10.1111/jfpp.12970
  • Kołakowska, A., Domiszewski, Z., Kozłowski, D. & Gajowniczek, M. (2006). Effects of rainbow trout freshness on n‐3 polyunsaturated fatty acids in fish offal. European Journal of Lipid Science and Technology, 108(9), 723-729. DOI: 10.1002/ejlt.200600054
  • Korkmaz, K. & Tokur, B. (2019). Proximate composition of three different fish (trout, anchovy and whiting) waste during catching season. Türk Denizcilik ve Deniz Bilimleri Dergisi, 5(2), 133-140.
  • Kotzamanis, Y. P., Alexis, M. N., Andriopoulou, A., Castritsi‐Cathariou, I. & Fotis, G. (2001). Utilization of waste material resulting from trout processing in gilthead bream (Sparus aurata L.) diets. Aquaculture Research, 32, 288-295. DOI: 10.1046/j.1355-557x.2001.00042.x
  • Kristinsson, H.G. & Rasco, B.A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40(1), 43-81. DOI: 10.1080/10408690091189266
  • Kristinsson, H. G. (2007). Aquatic food protein hydrolysates. In F. Shadidi, Maximising The Value of Marine By-Products (pp. 229-248). Woodhead Publishing. DOI:10.1533/9781845692087.2.229
  • Lee, C.M. (2007). Seafood flavor from processing by-products. In F. Shadidi (Ed.), Maximising The Value of Marine By-Products (pp. 304-327). Woodhead Publishing. DOI:10.1533/9781845692087.2.304
  • Liaset, B. & Espe, M. (2008). Nutritional composition of soluble and insoluble fractions obtained by enzymatic hydrolysis of fish-raw materials. Process Biochemistry, 43(1), 42-48. DOI: 10.1016/j.procbio.2007.10.007
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275. DOI:10.1016/S0021-9258(19)52451-6
  • Mamboya, E.A.F. (2012). Papain, a plant enzyme of biological importance: a review. American Journal of Biochemistry and Biotechnology, 8(2), 99-104. DOI:10.3844/ajbbsp.2012.99.104
  • Mohr, V. (1980). Enzymes technology in the meat and fish industries. Process Biochemistry, 15(6): 18-21.
  • Molla, A.E. & Hovannisyan, H.G. (2011). Optimization of enzymatic hydrolysis of visceral waste proteins of beluga Huso huso using Protamex. International Aquatic Research (Islamic Azad University, Tonekabon Branch), 3(2).
  • Mutilangi, W.A.M., Panyam, D. & Kilara, A. (1996). Functional properties of hydrolysates from proteolysis of heat‐denatured whey protein isolate. Journal of Food Science, 61(2), 270-275. DOI: 10.1111/j.1365-2621.1996.tb14174.x
  • Nasri, R., Younes, I., Jridi, M., Trigui, M., Bougatef, A., Nedjar-Arroume, N., Dhulster, P., Nasri, M., Karra-Châabouni, M. (2013). ACE inhibitory and antioxidative activities of Goby (Zosterissessor ophiocephalus) fish protein hydrolysates: Effect on meat lipid oxidation. Food Research International, 54(1), 552–561. DOI: 10.1016/j.foodres.2013.07.001
  • Nemati, M., Javadian, S.R., Ovissipour, M. & Keshavarz, M. (2012). A study on the properties of Alosa (Alosa caspia) by-products protein hydrolysates using commercial enzymes. World Applied Sciences Journal, 18(7), 950-956. DOI: 10.5829/idosi.wasj.2012.18.07.1092
  • Noman, A., Xu, Y., AL-Bukhaiti, W.Q., Abed, S.M., Ali, A.H., Ramadhan, A.H. & Xia, W. (2018). Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochemistry, 67, 19-28. DOI: 10.1016/j.procbio.2018.01.009
  • Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R. & Shahiri, H. (2009). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115(1), 238-242. DOI: 10.1016/j.foodchem.2008.12.013
  • Pasupuleti, V.K. & Braun, S. (2008). State of the art manufacturing of protein hydrolysates. Protein Hydrolysates in Biotechnology, 11-32. DOI:10.1007/978-1-4020-6674-0_2
  • Pigott, G.M. & Tucker, B.W. (1990). Utility fish flesh effectively while maintaining nutritional qualities. Seafood Effects of Technology and Nutrition. Marcel Decker, Inc., New York.
  • Ramakrishnan, V.V., Ghaly, A.E., Brooks, M.S. & Budge, S.M. (2013). Extraction of proteins from mackerel fish processing waste using alcalase enzyme. Bioprocess Biotech, 3, 2. Quaglia, G.B. & Orban, E. (1987). Enzymic solubilisation of proteins of sardine (Sardina pilchardus) by commercial proteases. Journal of the Science of Food and Agriculture, 38(3), 263-269. DOI: 10.1002/jsfa.2740380310
  • Shahidi, F., Han, X.Q. & Synowiecki, J. (1995). Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chemistry, 53(3), 285-293. DOI:10.1016/0308-8146(95)93934-J
  • Siddik, M.A., Howieson, J., Fotedar, R. & Partridge, G.J. (2021). Enzymatic fish protein hydrolysates in finfish aquaculture: a review. Reviews in Aquaculture, 13(1), 406-430. DOI:10.1111/raq.12481
  • Soufi-Kechaou, E., Jaouen, P., Ben Amar, R. & Berge, J.P. (2012). Influence of hydrolysis time on protein recovery and amino acid composition of hydrolysates from Sepia officinalis viscera. Science Research Reporter, 2(2), 115-129.
  • Taheri, A., Anvar, S.A.A., Ahari, H. & Fogliano, V. (2013). Comparison the functional properties of protein hydrolysates from poultry by-products and rainbow trout (Onchorhynchus mykiss) viscera. Iranian Journal of Fisheries Sciences, 12(1), 154-169.
  • TEBGE, 2020. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü (TEPGE) Ürün Raporu Su Ürünleri 2020. TEPGE YAYIN NO: 317 ISBN: 978-605-7599-43-8., 29 sayfa. Thammapat, P., Raviyan, P. & Siriamornpun, S. (2010). Proximate and fatty acids composition of the muscles and viscera of Asian catfish (Pangasius bocourti). Food Chemistry, 122(1), 223-227. DOI: 10.1016/j.foodchem.2010.02.065
  • Theodore, A.E., Raghavan, S. & Kristinsson, H.G. (2008). Antioxidative activity of protein hydrolysates prepared from alkaline-aided channel catfish protein isolates. Journal of Agricultural and Food Chemistry, 56(16), 7459-7466. DOI: 10.1021/jf800185f
  • Tokur, B. (2007). The effect of different cooking methods on proximate composition and lipid quality of rainbow trout (Oncorhynchus mykiss). International Journal of Food Science & Technology, 42(7), 874-879. DOI: 10.1111/j.1365-2621.2006.01298.x
  • Tolasa, S., Cakli, S., Kisla, D. & Dincer, T. (2012). Quality and Shelf-Life Assessment of Pasteurized Trout Soup During Refrigerated Storage. Journal of Aquatic Food Product Technology, 21(4), 321-329. DOI:10.1080/10498850.2011.595054
  • Tosun, Ş.Y. & Özden, Ö. (2014). Survey of inhibition of Listeria monocytogenes in hot‐smoked rainbow trout fillets for food safety. Journal of Food Processing and Preservation, 38(1), 338-346. DOI: 10.1111/j.1745-4549.2012.00781.x
  • Uhlig, H., 1998. Industrial Enzymes and their Applications. 1st Edn., John Wiley and Sons, New York, ISBN-10: 0471196606, p. 454.
  • Undeland, I., Linquist, H., Chen-Yun, Y., Falch, E., Ramel, A., Cooper, M., Gildberg, A., Luten, J.B., Stenberg, E., Nielsen, H.H. & Elvevoll, E. (2009). Seafood and health: What is the full story? In J. B. Luten (Ed.), Marine functional food (pp. 17–87). Wageningen, The Netherlands: Wageningen Academic Publisher.
  • Utomo, B.S.B., Suryanigrum, T.D. & Harianto, H.R. (2014). Optimization of enzymatic hydrolysis of fish protein hydrolysate (FPH) processing from waste of catfish fillet production. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 9(3), 115-126. DOI:10.15578/squalen.v9i3.79
  • Vieira, G.H., Martin, A.M., Saker‐Sampaiao, S., Omar, S. & Goncalves, R.C. (1995). Studies on the enzymatic hydrolysis of Brazilian lobster (Panulirus spp) processing wastes. Journal of the Science of Food and Agriculture, 69(1), 61-65. DOI: 10.1002/jsfa.2740690110
  • Villamil, O., Váquiro, H. & Solanilla, J.F. (2017). Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chemistry, 224, 160-171. DOI: 10.1016/j.foodchem.2016.12.057
  • Wu, R., Wu, C., Liu, D., Yang, X., Huang, J., Zhang, J. & Li, H. (2015). Overview of antioxidant peptides derived from marine resources: The sources, characteristic, purification, and evaluation methods. Applied Biochemistry and Biotechnology, 176(7), 1815-1833. DOI: 10.1007/s12010-015-1689-9
  • Zamora-Sillero, J., Gharsallaoui, A. & Prentice, C. (2018). Peptides from fish by-product protein hydrolysates and its functional properties: An overview. Marine Biotechnology, 20(2), 118-130.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Abdurrahman Polat 0000-0002-7381-2507

Bahar Tokur 0000-0002-7087-5801

Hakan Buga 0000-0001-9130-4285

Proje Numarası FLY-2014-3163
Yayımlanma Tarihi 15 Mart 2022
Gönderilme Tarihi 24 Haziran 2021
Yayımlandığı Sayı Yıl 2022Cilt: 39 Sayı: 1

Kaynak Göster

APA Polat, A., Tokur, B., & Buga, H. (2022). Extraction of protein from fresh rainbow trout (Onchorhynchus mykiss) viscera and smoked trout trimmings using commercial enzymes. Ege Journal of Fisheries and Aquatic Sciences, 39(1), 71-80.