Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı alıştırma sıcaklıklarında kılıçkuyruk (Xiphophorus helleri) ve plati balıklarının (X. maculatus) termal tolerans parametrelerinin belirlenmesi

Yıl 2021, Cilt: 38 Sayı: 2, 223 - 228, 15.06.2021
https://doi.org/10.12714/egejfas.38.2.12

Öz



Çalışmada üç alıştırma sıcaklığında kılıçkuyruk (Xiphophorus helleri) ve platinin (X. maculatus) termal tolerans parametreleri belirlenmiştir. 20, 24 ve 28 °C alıştırma sıcaklıklarında platinin kritik termal minimum (CTMin) değerleri sırasıyla 9,41, 10,42 ve 11,95°C iken, kılıçkuyruğun 9,38, 11,53 ve 13,23 °C platinin kritik termal maksimum (CTMax) değerleri 37,41, 39,19 ve 40,52 °C iken, kılıçkuyruğun 36,94, 38,89 ve 40,07 °C olarak gerçekleşmiştir. Buna göre alıştırma sıcaklıkları balıkların alt ve üst sıcaklık toleranslarını 3-4 °C etkilemiştir. CTMin alıştırma tepki oranı (ARR) değerleri alıştırma sıcaklıklarına bağlı olarak kılıçkuyrukta 0,42-0,42, platide 0,20-0,34 arasında değişirken, CTMax ARR değerleri kılıçkuyrukta 0,29-0,48, platide ise 0,33-0,44 arasında değişmiştir. Platinin termal tolerans poligon alanı (232 °C2) kılıçkuyruktan (217,3 °C2) biraz daha geniş bulunmuştur. İki balık türünün alt sıcaklık toleranslarının düşük olması, kışın su sıcaklığının 10 °C’ye düştüğü subtropikal iklimlerde bu balıkların coğrafik dağılımlarını ve yetiştiriciliklerini sınırlar. 


Destekleyen Kurum

Çukurova Üniversitesi Bilimsel Araştırmalar Projeleri Koordinasyon Birimi

Proje Numarası

FYL-2019-11433 nolu proje

Teşekkür

Bu tez çalışmasına FYL-2019-11433 nolu projeyle finansal destek sağlayan Çukurova Üniversitesi Bilimsel Araştırmalar Projeleri Koordinasyon Birimine teşekkür ederiz.

Kaynakça

  • Becker, C.D. & Genoway, R.G. (1979). Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environmental Biology of Fishes, 4(3), 245–256. DOI:10.1007/BF00005481
  • Beitinger, T.L., Bennett, W.A. & McCauley, R.W. (2000). Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental biology of fishes, 58(3), 237-275. DOI:10.1023/A:1007676325825
  • Bennett, W.A. & Beitinger, T.L. (1997). Temperature Tolerance of the Sheepshead Minnow, Cyprinodon variegatus. Copeia, 77-87. DOI:10.2307/1447842
  • Bierbach, D., Schleucher, E., Hildenbrand, P., Köhler, A., Rodriguez, L.A., Riesch R. & Plath, M. (2010). Thermal tolerances in mollies (Poecilia spp.): reduced physiological flexibility in stable environments? Bulletin of Fish Biology, 12(1/2), 83-89.
  • Claussen, D.L. (1977). Thermal acclimation in ambystomatid salamenders. Comparative Biochemistry and Physiology - Part A: 58, 333–340. DOI: 10.1016/0300-9629(77)90150-5
  • Cowles, R.B. & Bogert, C.M. (1944). A preliminary study of the thermal requirements a desert reptiles. Iguana, 83, 265-296.
  • Cox, D.K. (1974). Effects of three heating rates on the critical thermal maximum of bluegill. Thermal ecology, 158-163.
  • Crossman, E.J. (1991). Introduced freshwater fishes: a review of the North American perspective with emphasis on Canada. Canadian Journal of Fisheries and Aquatic Sciences, 48(S1), 46-57. DOI:10.1139/f91-303
  • Eme, J. & Bennett, W.A. (2009). Critical Thermal Tolerance Polygons of Tropical Marine Fishes from Sulawesi, Indonesia. Journal of Thermal Biology, 34, 220-225. DOI:10.1016/j.jtherbio.2009.02.005
  • Ford, T. & Beitinger, T.L. (2005). Temperature tolerance in the goldfish, Carassius auratus. Journal of Thermal Biology, 30(2), 147-152. DOI:10.1016/j.jtherbio.2004.09.004
  • Gouveia, L., Rema, P., Pereira, O. & Empis, J. (2003). Colouring ornamental fish (Cyprinus carpio and Carassius auratus) with microalgal biomass. Aquaculture Nutrition, 9(2), 123-129. DOI:10.1046/j.1365-2095.2003.00233.x
  • Hensen, R.R., Ploeg, A. & Fossa, S.A. (2010). Standard Names for Freshwater Fishes in the Ornamental Aquatic Industry. The Netherlands: OFI Education Publication.
  • Hernández, R.M. & Bückle R, L.F. (2002). Temperature Tolerance Polygon of Poecilia sphenops Valenciennes (Pisces: Poeciliidae). Journal of Thermal Biology, 27(1), 1-5. DOI: 10.1016/S0306-4565(01)00008-0
  • Herrera, D.F., Uribe, S.E., Ramirez, B.L.F. & Mora, G.A. (1998). Critical Thermal Maxima and Minima of Macrobrachium rosenbergii (Decapoda: Palemonidae). Journal of Thermal Biology, 23(6), 381-385. DOI:10.1016/S0306-4565(98)00029-1
  • Lever, C. (1996). Naturalized fishes of the world. New York: Academic Press.
  • Lovell, R.T. (2000). Nutrition of ornamental fish. In: Bonagura, J. (Ed.), Kirk's Current Veterinary Therapy XIII-Small Animal Practice (pp. 1191–1196). Philadelphia: W.B. Saunder.
  • Lutterschmidt, W.I. & Hutchison, V.H. (1997). The critical thermal maximum: history and critique. Canadian Journal of Zoology, 75(10), 1561-1574. DOI: 10.1139/z97-783
  • Penning, M., Reid, G. McG., Koldewey, H., Dick, G., Andrews, B., Arai, K., Garrat, P., Gendson, S., Lange, J., Tanner, K., Tonge, S., Van den Sande, P., Warmolts, D. & Gibson, C. (2009). Turning the Tide: A Global Aquarium Strategy for Conservation and Sustainability. World Association of Zoos and Aquariums, Bern, Switzerland.
  • Prodocimo, V. & Freire, C.A. (2001). Critical Thermal Maxima and Minima of The Platyfish Xiphophorus maculatus Günther (Poecillidae, Cyprinodontiformes)-A Tropical Species of Ornamental Freshwater Fish. Revista Brasileira de Zoologia, 18(1), 97-106. DOI: 10.1590/S0101-81752001000500007
  • Raghavan, R., Dahanukar, N., Tlusty, M., Rhyne, A., Kumar, K., Molur, S. & Rosser, A. (2013). Uncovering an Obscure Trade: Threatened Freshwater Fishes and the Aquarium Pet Markets. Biological Conservation, 164, 158-169. DOI: 10.1016/j.biocon.2013.04.019
  • Re, A.D., Diaz, F., Sierra, E., Rodriguez, J. & Perez, E. (2005). Effect of salinity and temperature on thermal tolerance of brown shrimp Farfantepenaeus aztecus (Ives) (Crustacea,Penaeidae). Journal of Thermal Biology, 30(8), 618-622. DOI: 10.1016/j.jtherbio.2005.09.004
  • Rhyne, A.L., Tlusty, M.F., Schofield, P.J., Kaufman, L. & Morris Jr, J.A. (2012). Revealing the Appetite of the Marine Aquarium Fish Trade: The Volume and Biodiversity of Fish Imported into the United States. PLoS One, 7(5), e35808. DOI: 10.1371/journal.pone.0035808
  • Ross, S.T. (1991). Mechanisms structuring stream fish assemblages: are there lessons from introduced species? Environmental Biology of Fishes, 30(4), 359-368. DOI: 10.1007/BF02027979
  • Spotila, J.R., Terpin, K.M., Koons, R.R. & Bonati, R.L. (1979). Temperature requirements of fishes from eastern Lake Erie and the upper Niagara River: a review of the literature. Environmental Biology of Fishes, 4(3), 281-307. DOI: 10.1007/BF00005485
  • Tuckett, Q.M., Ritch, J.L., Lawson, K. M., Lawson, L. L. & Hill, J. E. (2016). Variation in cold tolerance in escaped and farmed non-native green swordtails (Xiphophorus hellerii) revealed by laboratory trials and field introductions. Biological invasions, 18(1), 45-56. . DOI: 10.1007/s10530-015-0988-y
  • USGS (U. S. Geological Survey), (2004). Nonindigenous aquatic species database, Gainesville, Florida. Alıntılanma adresi: http://nas.er.usgs.gov (14.09.2020).
  • Yanar, M., Erdogan, E. & Kumlu, M. (2019). Thermal tolerance of thirteen popular ornamental fish Species. Aquaculture, 501, 382-386. DOI: 10.1016/j.aquaculture.2018.11.041

Determination of thermal tolerance parameters of swordtail (Xiphophorus helleri) and platy fish (X. maculatus) acclimated to different temperature levels

Yıl 2021, Cilt: 38 Sayı: 2, 223 - 228, 15.06.2021
https://doi.org/10.12714/egejfas.38.2.12

Öz



Thermal tolerance parameters of swordtail (Xiphophorus maculatus) and platy (X. helleri) at three acclimation temperatures were determined in the study. The CTMin values at 20, 24 28°C acclimation temperature were 9.41,10.42 and 11.95 °C respectively for platy and 9.38,11.5 and 13.23 °C for swordtail, while CTMax values were 37.41, 39.19 and 40.52 °C for platy and 36.94, 38.89 and 40.07 °C for swordtail. Accordingly, acclimation temperature affected the lower and upper temperature tolerances of fish by 3-4 °C. The CTMin ARR values varied between 0.42-0.42 in swordtail and 0.20-0.34 in platy, while CTMax ARR ranged between 0.29-0.48 in swordtail and 0.33-0.44 in platy depending on acclimation temperature. Thermal tolerance polygon area of platy (232 °C2) was slightly higher than that of swordtail (217.3 °C). The fact that both fish species have lower temperature tolerances is limits their geographic distribution and aquaculture in subtropical climates where the water temperature drops to 10 °C in winter. 


Proje Numarası

FYL-2019-11433 nolu proje

Kaynakça

  • Becker, C.D. & Genoway, R.G. (1979). Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environmental Biology of Fishes, 4(3), 245–256. DOI:10.1007/BF00005481
  • Beitinger, T.L., Bennett, W.A. & McCauley, R.W. (2000). Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental biology of fishes, 58(3), 237-275. DOI:10.1023/A:1007676325825
  • Bennett, W.A. & Beitinger, T.L. (1997). Temperature Tolerance of the Sheepshead Minnow, Cyprinodon variegatus. Copeia, 77-87. DOI:10.2307/1447842
  • Bierbach, D., Schleucher, E., Hildenbrand, P., Köhler, A., Rodriguez, L.A., Riesch R. & Plath, M. (2010). Thermal tolerances in mollies (Poecilia spp.): reduced physiological flexibility in stable environments? Bulletin of Fish Biology, 12(1/2), 83-89.
  • Claussen, D.L. (1977). Thermal acclimation in ambystomatid salamenders. Comparative Biochemistry and Physiology - Part A: 58, 333–340. DOI: 10.1016/0300-9629(77)90150-5
  • Cowles, R.B. & Bogert, C.M. (1944). A preliminary study of the thermal requirements a desert reptiles. Iguana, 83, 265-296.
  • Cox, D.K. (1974). Effects of three heating rates on the critical thermal maximum of bluegill. Thermal ecology, 158-163.
  • Crossman, E.J. (1991). Introduced freshwater fishes: a review of the North American perspective with emphasis on Canada. Canadian Journal of Fisheries and Aquatic Sciences, 48(S1), 46-57. DOI:10.1139/f91-303
  • Eme, J. & Bennett, W.A. (2009). Critical Thermal Tolerance Polygons of Tropical Marine Fishes from Sulawesi, Indonesia. Journal of Thermal Biology, 34, 220-225. DOI:10.1016/j.jtherbio.2009.02.005
  • Ford, T. & Beitinger, T.L. (2005). Temperature tolerance in the goldfish, Carassius auratus. Journal of Thermal Biology, 30(2), 147-152. DOI:10.1016/j.jtherbio.2004.09.004
  • Gouveia, L., Rema, P., Pereira, O. & Empis, J. (2003). Colouring ornamental fish (Cyprinus carpio and Carassius auratus) with microalgal biomass. Aquaculture Nutrition, 9(2), 123-129. DOI:10.1046/j.1365-2095.2003.00233.x
  • Hensen, R.R., Ploeg, A. & Fossa, S.A. (2010). Standard Names for Freshwater Fishes in the Ornamental Aquatic Industry. The Netherlands: OFI Education Publication.
  • Hernández, R.M. & Bückle R, L.F. (2002). Temperature Tolerance Polygon of Poecilia sphenops Valenciennes (Pisces: Poeciliidae). Journal of Thermal Biology, 27(1), 1-5. DOI: 10.1016/S0306-4565(01)00008-0
  • Herrera, D.F., Uribe, S.E., Ramirez, B.L.F. & Mora, G.A. (1998). Critical Thermal Maxima and Minima of Macrobrachium rosenbergii (Decapoda: Palemonidae). Journal of Thermal Biology, 23(6), 381-385. DOI:10.1016/S0306-4565(98)00029-1
  • Lever, C. (1996). Naturalized fishes of the world. New York: Academic Press.
  • Lovell, R.T. (2000). Nutrition of ornamental fish. In: Bonagura, J. (Ed.), Kirk's Current Veterinary Therapy XIII-Small Animal Practice (pp. 1191–1196). Philadelphia: W.B. Saunder.
  • Lutterschmidt, W.I. & Hutchison, V.H. (1997). The critical thermal maximum: history and critique. Canadian Journal of Zoology, 75(10), 1561-1574. DOI: 10.1139/z97-783
  • Penning, M., Reid, G. McG., Koldewey, H., Dick, G., Andrews, B., Arai, K., Garrat, P., Gendson, S., Lange, J., Tanner, K., Tonge, S., Van den Sande, P., Warmolts, D. & Gibson, C. (2009). Turning the Tide: A Global Aquarium Strategy for Conservation and Sustainability. World Association of Zoos and Aquariums, Bern, Switzerland.
  • Prodocimo, V. & Freire, C.A. (2001). Critical Thermal Maxima and Minima of The Platyfish Xiphophorus maculatus Günther (Poecillidae, Cyprinodontiformes)-A Tropical Species of Ornamental Freshwater Fish. Revista Brasileira de Zoologia, 18(1), 97-106. DOI: 10.1590/S0101-81752001000500007
  • Raghavan, R., Dahanukar, N., Tlusty, M., Rhyne, A., Kumar, K., Molur, S. & Rosser, A. (2013). Uncovering an Obscure Trade: Threatened Freshwater Fishes and the Aquarium Pet Markets. Biological Conservation, 164, 158-169. DOI: 10.1016/j.biocon.2013.04.019
  • Re, A.D., Diaz, F., Sierra, E., Rodriguez, J. & Perez, E. (2005). Effect of salinity and temperature on thermal tolerance of brown shrimp Farfantepenaeus aztecus (Ives) (Crustacea,Penaeidae). Journal of Thermal Biology, 30(8), 618-622. DOI: 10.1016/j.jtherbio.2005.09.004
  • Rhyne, A.L., Tlusty, M.F., Schofield, P.J., Kaufman, L. & Morris Jr, J.A. (2012). Revealing the Appetite of the Marine Aquarium Fish Trade: The Volume and Biodiversity of Fish Imported into the United States. PLoS One, 7(5), e35808. DOI: 10.1371/journal.pone.0035808
  • Ross, S.T. (1991). Mechanisms structuring stream fish assemblages: are there lessons from introduced species? Environmental Biology of Fishes, 30(4), 359-368. DOI: 10.1007/BF02027979
  • Spotila, J.R., Terpin, K.M., Koons, R.R. & Bonati, R.L. (1979). Temperature requirements of fishes from eastern Lake Erie and the upper Niagara River: a review of the literature. Environmental Biology of Fishes, 4(3), 281-307. DOI: 10.1007/BF00005485
  • Tuckett, Q.M., Ritch, J.L., Lawson, K. M., Lawson, L. L. & Hill, J. E. (2016). Variation in cold tolerance in escaped and farmed non-native green swordtails (Xiphophorus hellerii) revealed by laboratory trials and field introductions. Biological invasions, 18(1), 45-56. . DOI: 10.1007/s10530-015-0988-y
  • USGS (U. S. Geological Survey), (2004). Nonindigenous aquatic species database, Gainesville, Florida. Alıntılanma adresi: http://nas.er.usgs.gov (14.09.2020).
  • Yanar, M., Erdogan, E. & Kumlu, M. (2019). Thermal tolerance of thirteen popular ornamental fish Species. Aquaculture, 501, 382-386. DOI: 10.1016/j.aquaculture.2018.11.041
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Balıkçılık Yönetimi
Bölüm Makaleler
Yazarlar

Mahmut Yanar 0000-0002-4445-0228

Ali Özdeş 0000-0002-0271-2445

Erhan Erdoğan 0000-0002-3013-3045

Ece Evliyaoğlu 0000-0003-3578-7336

Proje Numarası FYL-2019-11433 nolu proje
Yayımlanma Tarihi 15 Haziran 2021
Gönderilme Tarihi 14 Ekim 2020
Yayımlandığı Sayı Yıl 2021Cilt: 38 Sayı: 2

Kaynak Göster

APA Yanar, M., Özdeş, A., Erdoğan, E., Evliyaoğlu, E. (2021). Farklı alıştırma sıcaklıklarında kılıçkuyruk (Xiphophorus helleri) ve plati balıklarının (X. maculatus) termal tolerans parametrelerinin belirlenmesi. Ege Journal of Fisheries and Aquatic Sciences, 38(2), 223-228. https://doi.org/10.12714/egejfas.38.2.12