Derleme
BibTex RIS Kaynak Göster

Sürdürülebilir su ürünleri yetiştiriciliğinde yemlerin çevreye etkisinin azaltılması

Yıl 2019, Cilt: 36 Sayı: 1, 87 - 97, 15.03.2019
https://doi.org/10.12714/egejfas.2019.36.1.12

Öz



Sürdürülebilir yetiştiricilik çevresel, sosyal,
ekonomik ve estetik faktörlerin bütünleşmesi ile meydana gelmektedir.
Yetiştiriciliğin çevreye olan etkisinde beslemenin etkileri yadsınamaz. Çevresel
etkilerin başında sisteme verilen yem ve yemin oluşturduğu besin maddelerinin yükü
gelmektedir. Bu besinlerin yükünü yem içeriğinde bulunan azot ve fosfor
oluşturmaktadır. Azot ve fosforun yetiştiricilik yapılan ortamda normal
değerlerin üzerinde birikmesi ötrofikasyon ve algal patlamalar gibi olaylara
neden olabilmekte ve bu durum yetiştiricilik ortamındaki yaşamı olumsuz
etkileyebilmektedir. Balık yemlerinden kaynaklı çevresel etkilerin azaltılması sürdürülebilir
yetiştiriciliğe önemli katkı sağlamaktadır. Yemden en verimli şekilde
yararlanıp   çevre dostu yem formülasyonların
geliştirilmesi çevreye salınan azot ve fosfor miktarını azalarak yetiştiriciliğin
yem kaynaklı çevresel etkilerini azaltmaya yardımcı olabilir. Yemin daha
verimli kullanılarak sindirilebilirliğinin arttırılması ile ilgili çeşitli
çalışmalar bulunmaktadır. Bu amaca hizmet etmek üzere son yıllarda yemlere
enzim eklenmesinin başarılı olduğu birçok çalışmada görülmüştür. Özellikle fitaz
enzimi ilavesi ile fosfor sindirilebilirliği artmakta suya salınan fosfor
miktarları da düşmektedir. Bu konuda entegre multi trofik akuakültür sistemler,
akuaponik sistemler gibi alternatif üretim formülleri ve izleme sistemlerinin
geliştirilmesi ile bu yükün faydalı bir şekilde kullanılması ve izlenilmesi
sağlanabilir. Bu derlemede sürdürülebilir yetiştiricilikte yemlerin çevresel
etkileri ve bu çevresel etkilerin azaltılması için neler yapılabileceği konusu
ele alınmaktadır.




Kaynakça

  • KaynaklarAbdou, K., Aubin, J., Romdhane, M.S., Loch, F., Lasram, F.B.R. (2017). Enviromental assessment of seabass (Dicentrarchus labrax) and seabream (Sparus aurata) farming from a life cycle perspective: A case study of a Tunisian aquaculture farm. Aquaculture, 471, 204-212. DOİ: https://doi.org/10.1016/j.aquaculture.2017.01.019
  • Alston, D.E., Cabarcas, A., Capella, J., Benetti., D.D., Keene- Meltzoff, S., Bonilla, J., Cortes, R. (2005) Environmental and social impacts of sustainable offshore cage culture production in Puerto Rican waters. Final report to the National Oceanic and Atmospheric Administration, Contract NA16RG1611.
  • Amos, K. H. A,. Appleby, J., Thomas, and Seiler, D. (2001). Atlantic Salmon (Salmo salar) in the Pacific Northwest: assessing the risk of impact on wild Pacific salmon. Pages 193–201 in C. J. Rodgers, editor. Proceedings of an international conference on risk analysis in aquatic animal health. World Organization for Animal Health, Paris.
  • Ayhan, V. ve Diler, İ. (2008). Enzyme supplementation to soybean based Diet in Gilthead Sea Bream (Sparus aurata): Effects on Growth Parameters and Nitrogen and Phosphorus, Excretion. The Journal of The Faculty of Veterinary Medicine University of Kafkas. 14(2), 161-168.
  • Barnes, M.E, Brown, M.L., Rosentrater, K.A. (2012). Juvenile rainbow trout responses to diets containing distillers dried grain withsolubles, phytase, and amino acid supplements. Open Journal of Animal Sciences. 2(2), 69-77. DOI: 10.4236/ojas.2012.22011
  • Belle, S.M., Nash, C.E. (2008). Better management practices fornet-pen aquaculture. In: Tucker CS, Hargreaves JA (eds) Environmental best management practices for aquaculture. Blackwell Publishing, Ames, IA, p 261−330.
  • Beveridge, M. (2004). Cage aquaculture. Blackwell Publishing,Oxford
  • Biswas, A.K., Kaku, H., Ji, S.C., Seoka, M. ve Takii, K. (2007). Use of Soybean Meal and Phytase for Partial Replacement of Fish Meal in theDiet of Red Sea Bream, Pagrus major. Aquaculture. 267, 284-291. Doi: 10.1016/j.aquaculture.2007.01.014
  • Bouwman, L., Beusen, A., Glibert, P.M., Overbeek, C. (2013). Mariculture: significant and expanding cause of coastal nutrient enrichment. Environ Res Lett. 8: 044026
  • Boyd, C.E. (2003). Guidelines for aquaculture effluent management at the farm-level. Aquaculture. 226, 101–112. Doi: 10.1016/S0044-8486(03)00471-X
  • Breaten, B.R. (2007). Cage aquaculture and enviromental impacts. Aquacultural engineering and enviroment. 49-91
  • Bureau, D.P., Gunther, S.J., and Cho, C.Y. (2003). Chemical composition and preliminary theoretical estimates of waste outputs of rainbow trout reared in commercial cage culture operations in Ontario. North American Journal of Aquaculture. 65, 33–38. Doi: 10.1577/1548-8454(2003)065<0033:CCAPTE>2.0.CO;2
  • Cao, L., Wang, W., Yang, Y., Yang, C., Yuan, C., Xiong, Z., Diana, J. (2007). Enviromental Impact of aquaculture and countermeasures to aquaculture pollution in China. Env Sci Pollut, Res. 14(7), 452-462. DOI: http://dx.doi.org/10.1065/espr2007.05.426
  • Cho, C.Y,, Bureau, D.P. (2001). A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture. Aquaculture Research 32 (1), 349–360. Doi: 10.1046/j.1355-557x.2001.00027.x
  • Cole, R. (2002). Impacts of marine farming on wild fish populations. Final Research Report for Ministry of Fisheries Research Project ENV2000/08, Objective One. National Institute of Water and Atmospheric Research. Auckland.
  • Cranford, P., Reid, G., Robinson, S. (2013). Open water integrated multi-trophic aquaculture: constraints on the effectiveness of mussels as an organic extractive component. Aquacult Env Interac. 4, 163-173. Doi: 10.3354/aei00081
  • Çantaş, İ.B., Yıldırım, Ö. (2015). Farklı Oranlarda Aspir Küspesi ve Mikrobiyal Fitaz Eklenen Yemlerin Gökkuşağı Alabalığı Balıklarının Büyüme Performansı Üzerine Etkileri. 18. Ulusal Su Ürünleri Sempozyumu
  • De Silva, S.S., Ingram, B.A., Nguyen, P.T., Bui, M.T., Gooley, G.J., Turchini. G.M. (2010). Estimation of nitrogen and phosphorus in effluent from the striped catfish farming sector in the Mekong Delta, Vietnam. AMBIO. 39, 504-514
  • Diana, J.S. (2009). Aquaculture production and biodiversity conservation. Bioscience. 59(1), 27-3. Doi:10.1525/bio.2009.59.1.7
  • Diler, İ., Sevgılı. H., Arabacı, M., Emre, Y. (2012) Soya İçerikli Gökkuşağı Alabalığı (Oncorhynchus mykiss) Yemlerine İlave Edilen Enzimlerin Büyüme Performansı, Sindirilebilirlik ve Azot-Fosfora İlişkin Çevresel Etkilerinin Belirlenmesi. Ekoloji. 85, 89-97.
  • FAO, 2018. Fishery and Aquaculture Statistics. Food and Agriculture Organization, Roma.
  • FAO, 2015. Agriculture Statistics. Food and Agriculture Organization, Roma.
  • Fernandesa, M., Lauera, P., Cheshirea, A., and Angovec, M. (2007) Preliminary model of nitrogen loads from southern bluefin tuna aquaculture. Marine Pollution Bulletin. 54, 1321–1332. Doi: 10.1016/j.marpolbul.2007.06.005
  • George, E., Parrish, C. (2013) Invertebrate uptake of lipids in the vicinity of Atlantic salmon (Salmo salar) aquaculture sites in British Columbia. Aquaculture Research. 46, 1044–1065 DOI: 10.1111/are.12259.
  • Green, J.A., Hardy, R.W., Brannon, E.L. (2002). Effects of dietary phosphorus and lipid levels on utilization and excretion of phosphorus and nitrogen by rainbow trout (Oncorhynchus mykiss), 1: Laboratory-scale study. Aquaculture Nutrition. 8, 279–290. Doi:10.1046/j.1365-2095.2002.00217.x
  • Gooley, G.J., De Silva, S.S., Ingram, B.A., McKinnon, L.J., Gavine, F.M. and Dalton. W. (2001). Cage culture of finfish in Australian lakes and reservoirs—A pilot scale case study of biological, environmental and economic viability. In Reservoir and culture-based fisheries; biology and management. Proceedings of the international workshop held in Bangkok, Thailand from 15–18 February 2000.
  • Guo, L. and Li, Z. (2003). Effects of nitrogen and phosphorus from fish cage-culture on the communities of a shallow lake in middle Yangtze River basin of China. Aquaculture. 226, 201–212. Doi:10.1016/S0044-8486(03)00478-2
  • Guo, L., Li, Z., Xie, P. and Ni. L. (2009). Assessment effects of cage culture on nitrogen and phosphorus dynamics in relation to fallowing in a shallow lake in China. Aquaculture International. 17, 229–241. DOI: https://doi.org/10.1007/s10499-008-9195-5
  • Hargrave, B.T. (2003). Far-field environmental effects of marine finfish aquaculture. Can Tech Rep Fish Aquat Sci. 2450, Vol 1. DFO, Ottawa.
  • Harrison, W.G., Perry, T., Li, W.K.W. (2005). Ecosystem indicators of water quality, Part I. Plankton biomass, primary production and nutrient demand. In: Hargrave BT (ed) Environmental effects of marine finfish aquaculture. Handbook of environmental chemistry. Vol 5M. Springer- Verlag, Berlin, p 59−82
  • Hixson, S.M. (2014). Fish nutrition and curren issues in aquaculture: the balance in providing safe and nutritious seafood, in an enviromentally sustainable manner. J Aquaculture Research and development. 5,3. DOI: 10.4172/2155-9546.1000234
  • Holmer, M., Hansen, P.K., Karakassis, I., Borg, J.A., Schembri, P. (2008). Monitoring of environmental impacts of marine aquaculture. Aquaculture in the ecosystem. 47−85.
  • Holmer, M. (2010). Environmental issues of fish farming in offshore waters: perspectives, concerns, and researchneeds. Aquacult Environ Interact. 1, 57−70. doi: 10.3354/aei00007
  • Huntington, T.C., Roberts, H., Cousins, N., Pitta, V. (2006). Some aspects of the environmental impact of aquaculture in sensitive areas. Final report to the Directorate- General Fish and Maritime Affairs of the European Commission. Poseidon Aquatic Resource Management Ltd., Lymington.
  • Husa, V., Kutti, T., Ervik, A., Sjøtun, K., Hansen, P.K., Aure, J. (2014). Regional impact from fin-fish farming in an intensive production area (Hardangerfjord, Norway). Mar Biol Res. 10, 241−252. https://doi.org/10.1080/17451000.2013.810754
  • Ingram, B.A. (1999). A phosphorus model for trout farming in the Goulburn-Broken catchment. In Towards best practice in landbased salmonid farming: Options for treatment, re-use and disposal of effluent. Alexandra, VIC, Australia: Marine and Freshwater Resources Institute. 26–41.
  • Islam, M.S. (2005). Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Marine Pollution Bulletin. 50, 48–61. Doi: https://doi.org/10.1016/j.marpolbul.2004.08.008
  • IUCN (International Union for Conservation of Nature). (2007). Guide for the sustainable development of Mediterranean aquaculture. Interaction between aquaculture and the environment. IUCN, Gland.
  • Jahan, P., Watanabe, T., Satoh, S. and Kiron, V. (2002). A laboratory based assessment of phosphorus and nitrogen loading from currently available commercial carp feeds. Fisheries Science. 68, 579–586. Doi: https://doi.org/10.1046/j.1444-2906.2002.00464.x
  • Jones, S. R. M. and Beamish, R. J. (2011). Lepeophtheirus salmonis on salmonids in the northeast Pacific Ocean. Pages 307–329 in Salmon lice: an integrated approach to understanding parasite abundance and distribution. John Wiley & Sons, Chichester, UK.
  • Kaspar, H. F., Gillespie, P. A., Boyer, I. C. (1985). Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound, Marlborough Sound, New Zealand. Mar. Biol. 85, 127- 136.
  • Koca, S.B., Terzioğlu, S., Didinen, B.I., Yiğit, N.Ö. (2011). Sürdürülebilir Su Ürünleri Yetiştiriciliğinde Çevre Dostu Üretimi. Ankara Üniversitesi Çevre bilimleri Dergisi. 3:1, 107-113
  • Lanari, D., Dagaro, E. and Ballestrazzi, R. (1995). Dietary N and P levels, effluent water characteristics and performance in rainbow trout. Water Science and Technology. 31, 157–165. Doi: https://doi.org/10.1016/0273-1223(95)00435-P
  • Leung, K.M.Y., Chu, J.C.W. and Wu, R.S.S. (1999). Nitrogen budget for the areolated grouper Epinephelus areolatus cultured under laboratory conditions and in open-sea cages. Marine Ecology Progress Series. 186, 271–281.
  • Liu, L., Luo, Y., Liang, X.F., Wang, W., and Wu J., 2013. Effects of Neutral Phytase Supplementation on Biochemical Parameters in Grass Carp,Ctenopharyngodon idellus, and Gibel Carp, Carassius auratus gibelio,Fed Different Levels of Monocalcium Phosphate. Journal Of The World Aquaculture Socıety. Vol. 44, No. 1 February, 2013. Doi: https://doi.org/10.1111/jwas.12002
  • Lupatsch, I., and G.W. Kissil. (1998). Predicting aquaculture waste from gilthead seabream (Sparus aurata) culture using a nutritional approach. Aquatic Living Resources. 11, 265–268. Doi: https://doi.org/10.1016/S0990-7440(98)80010-7
  • Machias, A., Karakassis, I., Labropoulou, M., Somarakis, S., Papadopoulou, K.N., Papaconstantinou. C. (2004). Changes in wild fish assemblages after the establishment of a fish farming zone in an oligotrophic marine eco system. Estuarine, Coastal and Shelf Science. 60, 771–779. Doi: https://doi.org/10.1016/j.ecss.2004.03.014
  • Machias, A., Karakassis, I., Giannoulaki, M., Papadopoulou, K.N., Smith, C.J., Somarakis, S. (2005). Response of demersal fish communities to the presence of fish farms. Marine Ecology Progress Series. 288, 241–250.
  • Marine Harvest. (2015). Salmon Farming Industry Handbook 2015. June 29, 2015. http://hugin.info/209/R/1934071/696335.pdf
  • McVicar, A. H. (1997). Disease and parasite implications of the coexistence of wild andcultured Atlantic Salmon populations. ICES Journal of Marine Science. 54, 1093–1103.
  • McKinnon, D., Trott, L., Duggan, S., Brinkman, R., Alongi, D., Castine, S., Patel, F. (2008) Environmental impacts of sea cage aquaculture in a Queensland context—Hinchinbrook Channel case study (SD576/06) final report. Australian Institute of Marine Science, Townsville.
  • Mente, E., Graham, J.P., Maria, B.S., Christos, N. (2006). Effect of feed and feding in the culture of salmonids on the marine aquatic environment: A synthesis for European aquaculture. Aquacult Int. 14, 499–522.
  • Moffitt, C. M., Stewart, B., Lapatra, S., Brunson, R., Bartholomew, J., Peterson, J. and Amos, K. H. (1998). Pathogens and diseases of fish in aquatic ecosystems: implications in fisheries management. Journal of Aquatic Animal Health. 10, 95–100.
  • Nash, C.E., Burbridge, P.R., Volkman, J.K. (2005). Guidelines for ecological risk assessment of marine fish aquaculture. NOAA Tech Memo NMFS-NWFSC-71. US Dept of Commerce, NOAA, Seattle, WA.
  • Newell, R.I.E., Cornwell, J.C. and Owens, M.S. (2004). Influence of simulated bivalve deposition and microphytobenthos on sediment nitrogen dynamics: A laboratory study. Limnology and Oceanography. 47, 1367-1379. Doi: https://doi.org/10.4319/lo.2002.47.5.1367
  • N Hlophe-Ginindza, S., Moyo, N.A.G., W Ngambi, J., Ncube, I. (2015). The effect of exogenous enzyme supplementation on growth performance and digestive enzyme activities in Oreochromis mossambicus fed kikuyu-based diets. Aquaculture Research. (2015). 1–11. Doi: https://doi.org/10.1111/are.12828
  • Olsen, L., Holmer, M., Olsen, Y. (2008). Perspectives of nutrient emission from fish aquaculture in coastal waters: literatüre review with evaluated state of knowledge. Final report FHF project no. 542014. The Fishery and Aquaculture Industry Research Fund, Oslo
  • Pearson, T.H., Black, K.D. (2001). The environmental impacts of marine fish cage culture. In: Black KD (ed) Environmental impacts of aquaculture. CRC Press, Boca Raton, FL, p 1−31
  • Pergent, G., Mendez, S., Pergent-Martini, C., Pasqualini, V. (1999). Preliminary data on the impact of fish farming facilities on Posidonia oceanica meadows in the Mediterranean. Oceanol Acta. 22, 95−107. Doi: https://doi.org/10.1016/S0399-1784(99)80036-X
  • Porchas, M.M., Martinez-Cordova, L.R. (2012). World aquaculture: environmental impacts and troubleshooting alternatives. The Scientific World Journal. Article ID: 389623 doi:10.1100/2012/389623
  • Price, C., Black, K.D., Hargrave, B.T., Morris, J.R. J.A. (2015). Marine cage culture and the enviroment: effects on water quality and primary production. Aquaculture enviroment interactions. 6, 151-174. doi: 10.3354/aei00122
  • Pulatsü, S., Doğukan, K., Topçu, A. (2017). Effect of Rainbow Trout Cage Culture on Sediment Phosphorus Release in Almus Dam Lake (Tokat). DOI: 10.21597/jist.2017.141
  • Rice, M.A. (2013). Environmental Effects of Shellfish Aquaculture in the Northeast. NRAC Publication No. 105-2008
  • Rust, M.B., Amos, K.H., Bagwill, A.L., Dickhoff, W.W., Juarez, L.M., Price, C.S., Morris Jr, J.A., Rubino, M.C. (2014). Enviromental Performance of marine net-pen aquaculture in the united states. American Fisheries Society. 39:11, 508-524. https://doi.org/10.1080/03632415.2014.966818
  • Scott, M.C., Helfman, G.S. (2001). Native invasions, homogenization, and the mismeasure of integrity of fish assemblages. Fisheries. 26, 6–15.
  • Sharawy, Z.., Hassaan, S.M., Ashraf, M., Goda, A.S. (2016). Integrating Multi-Trophic Species to Improve Nutrient Retention Using Closed Aquaculture System. World Journal of Fish and Marine Sciences 8 (4), 164-169, 2016 DOI: 10.5829/idosi.wjfms.2016.164.169
  • Soto, D., Norambuena, F. (2004). Evaluation of salmon farming effects on marine systems in the inner seas of southern Chile: A large-scale mensurative experiment. Journal of Applied Ichthyology. 20, 493–501. https://doi.org/10.1111/j.1439-0426.2004.00602.x
  • Strain, P., Hargrave, B. (2005). Salmon aquaculture, nutrient fluxes and ecosystem processes in southwestern New Brunswick. In: Hargrave BT (ed) Environmental effects of marine finfish aquaculture. Handbook of environmental chemistry. Vol 5M. Springer-Verlag, Berlin, p 29−57
  • Tanaka, K., Kodama, M. (2007). Effects of resuspended sediments on the environmental changes in the inner part of Ariake Bay, Japan. Bull Fish Res Agency. 19, 9−15.
  • Taylor, J. F., Preston, A. C., Gut, D. and Migaud, H. (2011). Ploidy effects on hatchery survival deformities and performance in Atlantic Salmon (Salmo salar). Aquaculture. 315, 61–68. https://doi.org/10.1016/j.aquaculture.2010.11.029.
  • Topçu, A., Pulatsü, S. (2017). Evaluation Of Some Management Strategies In Eutrophic Mogan Lake, Turkey: Phosphorus Mobility In The Sediment-Water Interface. Applied Ecology And Environmental Research. 15(4), 705-717. Doı: Http://Dx.Doi.Org/10.15666/Aeer/1504_705717
  • Thresher, R., Grewe, P., Patil, J. G., Whyard, S., Templeton, C. M., Chaimongol, A., Hardy, C. M., Hinds, L. A. and Dunham. R. (2009). Development of repressible sterility to prevent the establishment of feral populations of exotic and genetically modified animals. Aquaculture. 290,104–109. https://doi.org/10.1016/j.aquaculture.2009.02.025
  • Troell, M., Rönnbäck, P., Halling, C., Kautsky, N., Buschmann, A. (1999). Ecological engineering in aquaculture: use of seaweeds for removing nutrients from intensive mariculture. Journal of Applied Phycology. 11, 89–97.
  • Tsagaraki, T.M., Petihakis, G., Tsiaras, K., Triantafyllou, G. (2011) Beyond the cage: ecosystem modelling for impact evaluation in aquaculture. Ecol Modell. 222, 2512−2523. DOI: 10.1016/j.ecolmodel.2010.11.027
  • TÜİK, (2018). Türkiye Su Ürünleri İstatistikleri, 2018.
  • Ustaoğlu Tiril, S. ve Kerim, M. (2015). Evaluation of safflower meal as a protein source in diets of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792). Journal of Applied Ichthyology. 31, 895-899. https://doi.org/10.1111/jai.12807
  • Wang, F., Yang, Y., Han, Z., Dong, H., Yang, C. and Zou, Z. (2009). Effects of Phytase Pretreatment of Soybean Meal and Phytase-Sprayed in Diets on Growth, Apparent Digesitbility Coefficient and Nutrient Excretion of Rainbow Trout (Oncorhynchus mykiss Walbaum). Aquaculture International. 17, 143-157.
  • Watanabe, T., Jahan, P., Satoh, S. and Kiron, V. (1999). Total phosphorus loading onto the water environment from common carp fed commercial diets. Fisheries Science. 65, 712–716. DOI: 10.2331/fishsci.65.712
  • White, P. (2013). Enviromental consequences of poor feed quality and feed management. FAO Fisheries and Aquaculture Technical Paper No. 583. Rome,FAO pp. 553-564
  • Wu R.S.S. (1995). The environmental impact of marine fish culture: towards a sustainable future. Mar Pollut Bull. 31, 159−166
  • Yavuzcan, H., Pulatsü, S., Demir, N., Kırkağaç, M., Bekcan, S., Topçu, A., Doğankaya, L., Başçınar, N. (2010). Türkiye’de Sürdürülebilir Su Ürünleri Yetiştiriciliği. TMMOB Ziraat Mühendisliği VII. Teknik Kongresi, Bildiriler Kitabı-2, 767-789.

Reducing the impact of feeds on the environment in sustainable aquaculture

Yıl 2019, Cilt: 36 Sayı: 1, 87 - 97, 15.03.2019
https://doi.org/10.12714/egejfas.2019.36.1.12

Öz



Sustainable aquaculture consists of environmental, social, economic and aesthetic factors. The most important environmental impacts are the feed given to the system, and the nutrient load arising from the feed and undeniable impact of aquculture. This nutrient load consists of nitrogen and phosphorus, which are basically found in feeds. Nitrogen and phosphorus accumulation in the system can cause events such as eutrophication and algal blooms in the environment and this may be negatively affecting the life in the environment. Sustainable aquaculture can be achieved by reducing the environmental impacts arising from the feeding. The environmental impacts of the aquaculture arising from the feeding can be reduced by using the feed in the most efficient way and by reducing the amount of nitrogen and phosphorus release to the environment together with the development of environmentally friendly feed formulations. Many studies have shown that the addition of enzymes to feeds has been successful for more efficient use of the feeds and increasing digestibility. Especially thanks to the addition of phytase enzyme, the phosphorus digestibility increases and the amount of phosphorus released into the water decreases. In addition, this load arising from the feed can be advantageously used and monitored with alternative production formulas for example, with integrated multi-trophic aquaculture systems and aquaponic systems. In this compilation, environmental effects of the feeds in sustainable aquaculture and what can be done to reduce these environmental effects are discussed.




Kaynakça

  • KaynaklarAbdou, K., Aubin, J., Romdhane, M.S., Loch, F., Lasram, F.B.R. (2017). Enviromental assessment of seabass (Dicentrarchus labrax) and seabream (Sparus aurata) farming from a life cycle perspective: A case study of a Tunisian aquaculture farm. Aquaculture, 471, 204-212. DOİ: https://doi.org/10.1016/j.aquaculture.2017.01.019
  • Alston, D.E., Cabarcas, A., Capella, J., Benetti., D.D., Keene- Meltzoff, S., Bonilla, J., Cortes, R. (2005) Environmental and social impacts of sustainable offshore cage culture production in Puerto Rican waters. Final report to the National Oceanic and Atmospheric Administration, Contract NA16RG1611.
  • Amos, K. H. A,. Appleby, J., Thomas, and Seiler, D. (2001). Atlantic Salmon (Salmo salar) in the Pacific Northwest: assessing the risk of impact on wild Pacific salmon. Pages 193–201 in C. J. Rodgers, editor. Proceedings of an international conference on risk analysis in aquatic animal health. World Organization for Animal Health, Paris.
  • Ayhan, V. ve Diler, İ. (2008). Enzyme supplementation to soybean based Diet in Gilthead Sea Bream (Sparus aurata): Effects on Growth Parameters and Nitrogen and Phosphorus, Excretion. The Journal of The Faculty of Veterinary Medicine University of Kafkas. 14(2), 161-168.
  • Barnes, M.E, Brown, M.L., Rosentrater, K.A. (2012). Juvenile rainbow trout responses to diets containing distillers dried grain withsolubles, phytase, and amino acid supplements. Open Journal of Animal Sciences. 2(2), 69-77. DOI: 10.4236/ojas.2012.22011
  • Belle, S.M., Nash, C.E. (2008). Better management practices fornet-pen aquaculture. In: Tucker CS, Hargreaves JA (eds) Environmental best management practices for aquaculture. Blackwell Publishing, Ames, IA, p 261−330.
  • Beveridge, M. (2004). Cage aquaculture. Blackwell Publishing,Oxford
  • Biswas, A.K., Kaku, H., Ji, S.C., Seoka, M. ve Takii, K. (2007). Use of Soybean Meal and Phytase for Partial Replacement of Fish Meal in theDiet of Red Sea Bream, Pagrus major. Aquaculture. 267, 284-291. Doi: 10.1016/j.aquaculture.2007.01.014
  • Bouwman, L., Beusen, A., Glibert, P.M., Overbeek, C. (2013). Mariculture: significant and expanding cause of coastal nutrient enrichment. Environ Res Lett. 8: 044026
  • Boyd, C.E. (2003). Guidelines for aquaculture effluent management at the farm-level. Aquaculture. 226, 101–112. Doi: 10.1016/S0044-8486(03)00471-X
  • Breaten, B.R. (2007). Cage aquaculture and enviromental impacts. Aquacultural engineering and enviroment. 49-91
  • Bureau, D.P., Gunther, S.J., and Cho, C.Y. (2003). Chemical composition and preliminary theoretical estimates of waste outputs of rainbow trout reared in commercial cage culture operations in Ontario. North American Journal of Aquaculture. 65, 33–38. Doi: 10.1577/1548-8454(2003)065<0033:CCAPTE>2.0.CO;2
  • Cao, L., Wang, W., Yang, Y., Yang, C., Yuan, C., Xiong, Z., Diana, J. (2007). Enviromental Impact of aquaculture and countermeasures to aquaculture pollution in China. Env Sci Pollut, Res. 14(7), 452-462. DOI: http://dx.doi.org/10.1065/espr2007.05.426
  • Cho, C.Y,, Bureau, D.P. (2001). A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture. Aquaculture Research 32 (1), 349–360. Doi: 10.1046/j.1355-557x.2001.00027.x
  • Cole, R. (2002). Impacts of marine farming on wild fish populations. Final Research Report for Ministry of Fisheries Research Project ENV2000/08, Objective One. National Institute of Water and Atmospheric Research. Auckland.
  • Cranford, P., Reid, G., Robinson, S. (2013). Open water integrated multi-trophic aquaculture: constraints on the effectiveness of mussels as an organic extractive component. Aquacult Env Interac. 4, 163-173. Doi: 10.3354/aei00081
  • Çantaş, İ.B., Yıldırım, Ö. (2015). Farklı Oranlarda Aspir Küspesi ve Mikrobiyal Fitaz Eklenen Yemlerin Gökkuşağı Alabalığı Balıklarının Büyüme Performansı Üzerine Etkileri. 18. Ulusal Su Ürünleri Sempozyumu
  • De Silva, S.S., Ingram, B.A., Nguyen, P.T., Bui, M.T., Gooley, G.J., Turchini. G.M. (2010). Estimation of nitrogen and phosphorus in effluent from the striped catfish farming sector in the Mekong Delta, Vietnam. AMBIO. 39, 504-514
  • Diana, J.S. (2009). Aquaculture production and biodiversity conservation. Bioscience. 59(1), 27-3. Doi:10.1525/bio.2009.59.1.7
  • Diler, İ., Sevgılı. H., Arabacı, M., Emre, Y. (2012) Soya İçerikli Gökkuşağı Alabalığı (Oncorhynchus mykiss) Yemlerine İlave Edilen Enzimlerin Büyüme Performansı, Sindirilebilirlik ve Azot-Fosfora İlişkin Çevresel Etkilerinin Belirlenmesi. Ekoloji. 85, 89-97.
  • FAO, 2018. Fishery and Aquaculture Statistics. Food and Agriculture Organization, Roma.
  • FAO, 2015. Agriculture Statistics. Food and Agriculture Organization, Roma.
  • Fernandesa, M., Lauera, P., Cheshirea, A., and Angovec, M. (2007) Preliminary model of nitrogen loads from southern bluefin tuna aquaculture. Marine Pollution Bulletin. 54, 1321–1332. Doi: 10.1016/j.marpolbul.2007.06.005
  • George, E., Parrish, C. (2013) Invertebrate uptake of lipids in the vicinity of Atlantic salmon (Salmo salar) aquaculture sites in British Columbia. Aquaculture Research. 46, 1044–1065 DOI: 10.1111/are.12259.
  • Green, J.A., Hardy, R.W., Brannon, E.L. (2002). Effects of dietary phosphorus and lipid levels on utilization and excretion of phosphorus and nitrogen by rainbow trout (Oncorhynchus mykiss), 1: Laboratory-scale study. Aquaculture Nutrition. 8, 279–290. Doi:10.1046/j.1365-2095.2002.00217.x
  • Gooley, G.J., De Silva, S.S., Ingram, B.A., McKinnon, L.J., Gavine, F.M. and Dalton. W. (2001). Cage culture of finfish in Australian lakes and reservoirs—A pilot scale case study of biological, environmental and economic viability. In Reservoir and culture-based fisheries; biology and management. Proceedings of the international workshop held in Bangkok, Thailand from 15–18 February 2000.
  • Guo, L. and Li, Z. (2003). Effects of nitrogen and phosphorus from fish cage-culture on the communities of a shallow lake in middle Yangtze River basin of China. Aquaculture. 226, 201–212. Doi:10.1016/S0044-8486(03)00478-2
  • Guo, L., Li, Z., Xie, P. and Ni. L. (2009). Assessment effects of cage culture on nitrogen and phosphorus dynamics in relation to fallowing in a shallow lake in China. Aquaculture International. 17, 229–241. DOI: https://doi.org/10.1007/s10499-008-9195-5
  • Hargrave, B.T. (2003). Far-field environmental effects of marine finfish aquaculture. Can Tech Rep Fish Aquat Sci. 2450, Vol 1. DFO, Ottawa.
  • Harrison, W.G., Perry, T., Li, W.K.W. (2005). Ecosystem indicators of water quality, Part I. Plankton biomass, primary production and nutrient demand. In: Hargrave BT (ed) Environmental effects of marine finfish aquaculture. Handbook of environmental chemistry. Vol 5M. Springer- Verlag, Berlin, p 59−82
  • Hixson, S.M. (2014). Fish nutrition and curren issues in aquaculture: the balance in providing safe and nutritious seafood, in an enviromentally sustainable manner. J Aquaculture Research and development. 5,3. DOI: 10.4172/2155-9546.1000234
  • Holmer, M., Hansen, P.K., Karakassis, I., Borg, J.A., Schembri, P. (2008). Monitoring of environmental impacts of marine aquaculture. Aquaculture in the ecosystem. 47−85.
  • Holmer, M. (2010). Environmental issues of fish farming in offshore waters: perspectives, concerns, and researchneeds. Aquacult Environ Interact. 1, 57−70. doi: 10.3354/aei00007
  • Huntington, T.C., Roberts, H., Cousins, N., Pitta, V. (2006). Some aspects of the environmental impact of aquaculture in sensitive areas. Final report to the Directorate- General Fish and Maritime Affairs of the European Commission. Poseidon Aquatic Resource Management Ltd., Lymington.
  • Husa, V., Kutti, T., Ervik, A., Sjøtun, K., Hansen, P.K., Aure, J. (2014). Regional impact from fin-fish farming in an intensive production area (Hardangerfjord, Norway). Mar Biol Res. 10, 241−252. https://doi.org/10.1080/17451000.2013.810754
  • Ingram, B.A. (1999). A phosphorus model for trout farming in the Goulburn-Broken catchment. In Towards best practice in landbased salmonid farming: Options for treatment, re-use and disposal of effluent. Alexandra, VIC, Australia: Marine and Freshwater Resources Institute. 26–41.
  • Islam, M.S. (2005). Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Marine Pollution Bulletin. 50, 48–61. Doi: https://doi.org/10.1016/j.marpolbul.2004.08.008
  • IUCN (International Union for Conservation of Nature). (2007). Guide for the sustainable development of Mediterranean aquaculture. Interaction between aquaculture and the environment. IUCN, Gland.
  • Jahan, P., Watanabe, T., Satoh, S. and Kiron, V. (2002). A laboratory based assessment of phosphorus and nitrogen loading from currently available commercial carp feeds. Fisheries Science. 68, 579–586. Doi: https://doi.org/10.1046/j.1444-2906.2002.00464.x
  • Jones, S. R. M. and Beamish, R. J. (2011). Lepeophtheirus salmonis on salmonids in the northeast Pacific Ocean. Pages 307–329 in Salmon lice: an integrated approach to understanding parasite abundance and distribution. John Wiley & Sons, Chichester, UK.
  • Kaspar, H. F., Gillespie, P. A., Boyer, I. C. (1985). Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound, Marlborough Sound, New Zealand. Mar. Biol. 85, 127- 136.
  • Koca, S.B., Terzioğlu, S., Didinen, B.I., Yiğit, N.Ö. (2011). Sürdürülebilir Su Ürünleri Yetiştiriciliğinde Çevre Dostu Üretimi. Ankara Üniversitesi Çevre bilimleri Dergisi. 3:1, 107-113
  • Lanari, D., Dagaro, E. and Ballestrazzi, R. (1995). Dietary N and P levels, effluent water characteristics and performance in rainbow trout. Water Science and Technology. 31, 157–165. Doi: https://doi.org/10.1016/0273-1223(95)00435-P
  • Leung, K.M.Y., Chu, J.C.W. and Wu, R.S.S. (1999). Nitrogen budget for the areolated grouper Epinephelus areolatus cultured under laboratory conditions and in open-sea cages. Marine Ecology Progress Series. 186, 271–281.
  • Liu, L., Luo, Y., Liang, X.F., Wang, W., and Wu J., 2013. Effects of Neutral Phytase Supplementation on Biochemical Parameters in Grass Carp,Ctenopharyngodon idellus, and Gibel Carp, Carassius auratus gibelio,Fed Different Levels of Monocalcium Phosphate. Journal Of The World Aquaculture Socıety. Vol. 44, No. 1 February, 2013. Doi: https://doi.org/10.1111/jwas.12002
  • Lupatsch, I., and G.W. Kissil. (1998). Predicting aquaculture waste from gilthead seabream (Sparus aurata) culture using a nutritional approach. Aquatic Living Resources. 11, 265–268. Doi: https://doi.org/10.1016/S0990-7440(98)80010-7
  • Machias, A., Karakassis, I., Labropoulou, M., Somarakis, S., Papadopoulou, K.N., Papaconstantinou. C. (2004). Changes in wild fish assemblages after the establishment of a fish farming zone in an oligotrophic marine eco system. Estuarine, Coastal and Shelf Science. 60, 771–779. Doi: https://doi.org/10.1016/j.ecss.2004.03.014
  • Machias, A., Karakassis, I., Giannoulaki, M., Papadopoulou, K.N., Smith, C.J., Somarakis, S. (2005). Response of demersal fish communities to the presence of fish farms. Marine Ecology Progress Series. 288, 241–250.
  • Marine Harvest. (2015). Salmon Farming Industry Handbook 2015. June 29, 2015. http://hugin.info/209/R/1934071/696335.pdf
  • McVicar, A. H. (1997). Disease and parasite implications of the coexistence of wild andcultured Atlantic Salmon populations. ICES Journal of Marine Science. 54, 1093–1103.
  • McKinnon, D., Trott, L., Duggan, S., Brinkman, R., Alongi, D., Castine, S., Patel, F. (2008) Environmental impacts of sea cage aquaculture in a Queensland context—Hinchinbrook Channel case study (SD576/06) final report. Australian Institute of Marine Science, Townsville.
  • Mente, E., Graham, J.P., Maria, B.S., Christos, N. (2006). Effect of feed and feding in the culture of salmonids on the marine aquatic environment: A synthesis for European aquaculture. Aquacult Int. 14, 499–522.
  • Moffitt, C. M., Stewart, B., Lapatra, S., Brunson, R., Bartholomew, J., Peterson, J. and Amos, K. H. (1998). Pathogens and diseases of fish in aquatic ecosystems: implications in fisheries management. Journal of Aquatic Animal Health. 10, 95–100.
  • Nash, C.E., Burbridge, P.R., Volkman, J.K. (2005). Guidelines for ecological risk assessment of marine fish aquaculture. NOAA Tech Memo NMFS-NWFSC-71. US Dept of Commerce, NOAA, Seattle, WA.
  • Newell, R.I.E., Cornwell, J.C. and Owens, M.S. (2004). Influence of simulated bivalve deposition and microphytobenthos on sediment nitrogen dynamics: A laboratory study. Limnology and Oceanography. 47, 1367-1379. Doi: https://doi.org/10.4319/lo.2002.47.5.1367
  • N Hlophe-Ginindza, S., Moyo, N.A.G., W Ngambi, J., Ncube, I. (2015). The effect of exogenous enzyme supplementation on growth performance and digestive enzyme activities in Oreochromis mossambicus fed kikuyu-based diets. Aquaculture Research. (2015). 1–11. Doi: https://doi.org/10.1111/are.12828
  • Olsen, L., Holmer, M., Olsen, Y. (2008). Perspectives of nutrient emission from fish aquaculture in coastal waters: literatüre review with evaluated state of knowledge. Final report FHF project no. 542014. The Fishery and Aquaculture Industry Research Fund, Oslo
  • Pearson, T.H., Black, K.D. (2001). The environmental impacts of marine fish cage culture. In: Black KD (ed) Environmental impacts of aquaculture. CRC Press, Boca Raton, FL, p 1−31
  • Pergent, G., Mendez, S., Pergent-Martini, C., Pasqualini, V. (1999). Preliminary data on the impact of fish farming facilities on Posidonia oceanica meadows in the Mediterranean. Oceanol Acta. 22, 95−107. Doi: https://doi.org/10.1016/S0399-1784(99)80036-X
  • Porchas, M.M., Martinez-Cordova, L.R. (2012). World aquaculture: environmental impacts and troubleshooting alternatives. The Scientific World Journal. Article ID: 389623 doi:10.1100/2012/389623
  • Price, C., Black, K.D., Hargrave, B.T., Morris, J.R. J.A. (2015). Marine cage culture and the enviroment: effects on water quality and primary production. Aquaculture enviroment interactions. 6, 151-174. doi: 10.3354/aei00122
  • Pulatsü, S., Doğukan, K., Topçu, A. (2017). Effect of Rainbow Trout Cage Culture on Sediment Phosphorus Release in Almus Dam Lake (Tokat). DOI: 10.21597/jist.2017.141
  • Rice, M.A. (2013). Environmental Effects of Shellfish Aquaculture in the Northeast. NRAC Publication No. 105-2008
  • Rust, M.B., Amos, K.H., Bagwill, A.L., Dickhoff, W.W., Juarez, L.M., Price, C.S., Morris Jr, J.A., Rubino, M.C. (2014). Enviromental Performance of marine net-pen aquaculture in the united states. American Fisheries Society. 39:11, 508-524. https://doi.org/10.1080/03632415.2014.966818
  • Scott, M.C., Helfman, G.S. (2001). Native invasions, homogenization, and the mismeasure of integrity of fish assemblages. Fisheries. 26, 6–15.
  • Sharawy, Z.., Hassaan, S.M., Ashraf, M., Goda, A.S. (2016). Integrating Multi-Trophic Species to Improve Nutrient Retention Using Closed Aquaculture System. World Journal of Fish and Marine Sciences 8 (4), 164-169, 2016 DOI: 10.5829/idosi.wjfms.2016.164.169
  • Soto, D., Norambuena, F. (2004). Evaluation of salmon farming effects on marine systems in the inner seas of southern Chile: A large-scale mensurative experiment. Journal of Applied Ichthyology. 20, 493–501. https://doi.org/10.1111/j.1439-0426.2004.00602.x
  • Strain, P., Hargrave, B. (2005). Salmon aquaculture, nutrient fluxes and ecosystem processes in southwestern New Brunswick. In: Hargrave BT (ed) Environmental effects of marine finfish aquaculture. Handbook of environmental chemistry. Vol 5M. Springer-Verlag, Berlin, p 29−57
  • Tanaka, K., Kodama, M. (2007). Effects of resuspended sediments on the environmental changes in the inner part of Ariake Bay, Japan. Bull Fish Res Agency. 19, 9−15.
  • Taylor, J. F., Preston, A. C., Gut, D. and Migaud, H. (2011). Ploidy effects on hatchery survival deformities and performance in Atlantic Salmon (Salmo salar). Aquaculture. 315, 61–68. https://doi.org/10.1016/j.aquaculture.2010.11.029.
  • Topçu, A., Pulatsü, S. (2017). Evaluation Of Some Management Strategies In Eutrophic Mogan Lake, Turkey: Phosphorus Mobility In The Sediment-Water Interface. Applied Ecology And Environmental Research. 15(4), 705-717. Doı: Http://Dx.Doi.Org/10.15666/Aeer/1504_705717
  • Thresher, R., Grewe, P., Patil, J. G., Whyard, S., Templeton, C. M., Chaimongol, A., Hardy, C. M., Hinds, L. A. and Dunham. R. (2009). Development of repressible sterility to prevent the establishment of feral populations of exotic and genetically modified animals. Aquaculture. 290,104–109. https://doi.org/10.1016/j.aquaculture.2009.02.025
  • Troell, M., Rönnbäck, P., Halling, C., Kautsky, N., Buschmann, A. (1999). Ecological engineering in aquaculture: use of seaweeds for removing nutrients from intensive mariculture. Journal of Applied Phycology. 11, 89–97.
  • Tsagaraki, T.M., Petihakis, G., Tsiaras, K., Triantafyllou, G. (2011) Beyond the cage: ecosystem modelling for impact evaluation in aquaculture. Ecol Modell. 222, 2512−2523. DOI: 10.1016/j.ecolmodel.2010.11.027
  • TÜİK, (2018). Türkiye Su Ürünleri İstatistikleri, 2018.
  • Ustaoğlu Tiril, S. ve Kerim, M. (2015). Evaluation of safflower meal as a protein source in diets of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792). Journal of Applied Ichthyology. 31, 895-899. https://doi.org/10.1111/jai.12807
  • Wang, F., Yang, Y., Han, Z., Dong, H., Yang, C. and Zou, Z. (2009). Effects of Phytase Pretreatment of Soybean Meal and Phytase-Sprayed in Diets on Growth, Apparent Digesitbility Coefficient and Nutrient Excretion of Rainbow Trout (Oncorhynchus mykiss Walbaum). Aquaculture International. 17, 143-157.
  • Watanabe, T., Jahan, P., Satoh, S. and Kiron, V. (1999). Total phosphorus loading onto the water environment from common carp fed commercial diets. Fisheries Science. 65, 712–716. DOI: 10.2331/fishsci.65.712
  • White, P. (2013). Enviromental consequences of poor feed quality and feed management. FAO Fisheries and Aquaculture Technical Paper No. 583. Rome,FAO pp. 553-564
  • Wu R.S.S. (1995). The environmental impact of marine fish culture: towards a sustainable future. Mar Pollut Bull. 31, 159−166
  • Yavuzcan, H., Pulatsü, S., Demir, N., Kırkağaç, M., Bekcan, S., Topçu, A., Doğankaya, L., Başçınar, N. (2010). Türkiye’de Sürdürülebilir Su Ürünleri Yetiştiriciliği. TMMOB Ziraat Mühendisliği VII. Teknik Kongresi, Bildiriler Kitabı-2, 767-789.
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

İsmail Berat Çantaş 0000-0002-2074-4985

Önder Yıldırım 0000-0003-2591-0310

Yayımlanma Tarihi 15 Mart 2019
Gönderilme Tarihi 10 Temmuz 2018
Yayımlandığı Sayı Yıl 2019Cilt: 36 Sayı: 1

Kaynak Göster

APA Çantaş, İ. B., & Yıldırım, Ö. (2019). Sürdürülebilir su ürünleri yetiştiriciliğinde yemlerin çevreye etkisinin azaltılması. Ege Journal of Fisheries and Aquatic Sciences, 36(1), 87-97. https://doi.org/10.12714/egejfas.2019.36.1.12