Research Article
BibTex RIS Cite

Optical characterization of chromophoric dissolved organic matter at eutrophic and oligotrophic parts of a semi-enclosed bay (İzmir, Aegean Sea)

Year 2021, Volume: 38 Issue: 2, 199 - 210, 15.06.2021
https://doi.org/10.12714/egejfas.38.2.09

Abstract



Optical characterization of chromophoric dissolved organic matter (CDOM) from İzmir Bay (Aegean Sea) waters was investigated. For sampling, surface and subsurface seawater from 7 stations were collected in summer 2015. Excitation-emission matrix (EEM) spectra of each sample were recorded on a fluorescence spectrophotometer. The results showed that dissolved organic carbon (DOC) concentrations and EEM peaks were increased from the outer bay to inner bay stations. EEM peaks indicated the presence of both humic-like and protein-like components which were higher at middle-inner bays than outer bay. Spearman’s rank correlation coefficients for EEM peak intensities and DOC concentrations were highly positive (p<0.05). HIX found between 0.73-3.51, whereas BIX ranged from 0.31 to 0.96 in the bay. Humification degree of CDOM in the middle-inner bays were higher compared to outer bay stations. High HIX values in the middle-inner bays could be linked to the presence of Melez stream (heavily polluted), other streams, rain run-offs and maritime activities at İzmir Bay. High BIX values in the middle-inner bays indicated presence of freshly produced DOM from bacterial origin. Optical characterization of CDOM could be used for tracing fluorescent DOM components and determining different DOM sources (autochthonous or allochthonous) in further studies.




Project Number

TUBITAK 113Y447

Thanks

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The samples in this study were collected during the cruise of a national research project (TUBITAK 113Y447) and the authors thank to TUBITAK.

References

  • Anderson, D.M., Glibert, P.M. & Burkholder, J.M. (2002). Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries, 25(4), 704-726. DOI:10.1007/BF02804901
  • Aparicio, F.L., Nieto-Cid, M., Borrull, E., Calvo, E., Pelejero, C., Sala, M.M., Pinhassi, J., Gasol, J.M. & Marrasé, C. (2016). Eutrophication and acidification: Do they induce changes in the dissolved organic matter dynamics in the coastal Mediterranean Sea? Science of the Total Environment, 563-564, 179-189. DOI:10.1016/j.scitotenv.2016.04.108
  • Bai, Y., Su, R. & Shi. X. (2014). Assessing the dynamics of chromophoric dissolved organic matter in the southern Yellow Sea by excitation–emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Continental Shelf Research, 88, 103-116. DOI:10.1016/j.csr.2014.07.011
  • Boyd, T.J. & Osburn, C.L. (2004). Changes in CDOM fluorescence from allochthonous and autochthonous sources during tidal mixing and bacterial degradation in two coastal estuaries. Marine Chemistry, 89(1–4), 189-210. DOI:10.1016/j.marchem.2004.02.012
  • Brussaard, C.P.D. (2004). Algae, mortality rates, photosynthetic protists, Phycodnaviridae, virus. Journal of Eukaryotic Microbiology, 51(2), 125-138. DOI:10.1111/j.1550-7408.2004.tb00537.x
  • Carlson, C.A. & Hansell, D.A. (2015). DOM Sources, Sinks, Reactivity, and Budgets. In D.A. Hansell & C.A. Carlson (Eds.), Biogeochemistry of Marine Dissolved Organic Matter (pp. 65–126). Florida, USA, Academic Press, 712 pp. DOI:10.1016/B978-0-12-405940-5.00003-0
  • Cauwet, G. (2002). DOM in the Coastal Zone. In D.A. Hansell & C.A. Carlson (Eds.), Biogeochemistry of Marine Dissolved Organic Matter (pp. 579–609). Florida, USA, Academic Press, 774 pp. DOI:10.1016/B978-012323841-2/50014-2
  • Chari, N.V.H.K., Sarma, N.S., Pandi, S.R. & Murthy, K.N. (2012). Seasonal and spatial constraints of fluorophores in the midwestern Bay of Bengal by PARAFAC analysis of excitation emission matrix spectra. Estuarine Coastal and Shelf Science, 100, 162–171. DOI:10.1016/j.ecss.2012.01.012
  • Chen, H., Zheng, B., Song, Y. & Qin, Y. (2011). Correlation between molecular absorption spectral slope ratios and fluorescence humification indices in characterizing CDOM. Aquatic Sciences 73(1), 103-112. DOI:10.1007/s00027-010-0164-5
  • Cloern, J.E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223-253. DOI:10.3354/meps210223
  • Coble, P.G., Green, S.A., Blough, N.V. & Gagosian, R.B. (1990). Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature, 348(6300), 432-435. DOI:10.1038/348432a0
  • Coble, P.G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51(4), 325–346. DOI:10.1016/0304-4203(95)00062-3
  • Conley, D.J., Carstensen, J., Vaquer-Sunyer, R. & Duarte, C.M. (2009). Ecosystem thresholds with hypoxia. In J.H. Andersen & D.J. Conley (Eds.), Eutrophication in Coastal Ecosystems, Towards better understanding and management strategies (pp. 21-29). Dordrecht, Netherlands, Springer, 264 pp. DOI: 10.1007/978-90-481-3385-7_3
  • Couturier, M., Nozais, C. & Chaillou, G. (2016). Microtidal subterranean estuaries as a source of fresh terrestrial dissolved organic matter to the coastal ocean. Marine Chemistry, 186, 46-57. DOI:10.1016/j.marchem.2016.08.001
  • Davidson, K., Gowen, R.J., Tett, P., Bresnan, E., Harrison, P.J., McKinney, A., Milligan, S., Mills, D.K., Silke, J. & Crooks, A.M. (2012). Harmful algal blooms: How strong is the evidence that nutrient ratios and forms influence their occurrence? Estuarine Coastal and Shelf Science, 115, 399-413. DOI:10.1016/j.ecss.2012.09.019
  • Davidson, K., Gowen, R.J., Harrison, P.J., Fleming, L.E., Hoagland, P. & Moschonas, G. (2014). Anthropogenic nutrients and harmful algae in coastal waters. Journal of Environmental Management, 146, 206-216. DOI:10.1016/j.jenvman.2014.07.002
  • Dixon, J.L., Osburn, C.L., Paerl, H.W. & Peierls, B.L. (2014). Seasonal changes in estuarine dissolved organic matter due to variable flushing time and wind-driven mixing events. Estuarine Coastal and Shelf Science, 151, 210-220. DOI:10.1016/j.ecss.2014.10.013
  • Fellman, J.B., Hood, E. & Spencer, R.G.M. (2010). Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnology and Oceanography, 55(6), 2452-2462. DOI:10.4319/lo.2010.55.6.2452
  • Gershey, R.M., Mackinnon, M.D., Williams, P.J. & Moore, R.M. (1979). Comparison of three oxidation methods used for the analysis of dissolved organic carbon in seawater. Marine Chemistry, 7, 289-306. DOI:10.1016/0304-4203(79)90017-3
  • Guo, W., Stedmon, C.A., Han, Y., Wu, F., Yu, X. & Hu, M. (2007). The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters. Marine Chemistry, 107(3), 357-366. DOI:10.1016/j.marchem.2007.03.006
  • Hansell, D.A., Carlson, C.A., Repeta, D.J. & Schlitzer, R. (2009). Dissolved Organic Matter in the Ocean: A Controversy Stimulates New Insights. Oceanography, 22, 202-211. DOI:10.5670/oceanog.2009.109
  • Hedges, J.I. (2002). Why Dissolved Organics Matter. In D.A. Hansell & C.A. Carlson (Eds.), Biogeochemistry of Marine Dissolved Organic Matter (pp. 1–33). Florida, USA, Academic Press, 774 pp. DOI: 10.1016/B978-012323841-2/50003-8
  • Heisler, J., Glibert, P.M., Burkholder, J.M., Anderson, D.M., Cochlan, W., Dennison, W.C., Dortch, Q., Gobler, C.J., Heil, C.A., Humphries, E., Lewitus, A., Magnien, R., Marshall, H.G., Sellner, K., Stockwell, D.A., Stoecker, D.K. & Suddleson, M. (2008). Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8(1), 3-13. DOI:10.1016/j.hal.2008.08.006
  • Hong, H., Wu, J., Shang, S. & Hu, C. (2005). Absorption and fluorescence of chromophoric dissolved organic matter in the Pearl River Estuary, South China. Marine Chemistry, 97(1-2), 78-89. DOI:10.1016/j.marchem.2005.01.008
  • Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J.M. & Parlanti, E. (2009). Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry, 40(6), 706–719. DOI:10.1016/j.orggeochem.2009.03.002
  • Jessen, C., Bednarz, V.N., Rix, L., Teichberg, M. & Wild, C. (2015). Marine Eutrophication. In H.R. Armon & O. Hänninen (Eds.), Environmental Indicators (pp. 177-203). Dordrecht, Netherlands, Springer, 1068 pp. DOI: 10.1007/978-94-017-9499-2_11
  • Jiang, F., Lee, F.S.C., Wang, X. & Dai, D. (2008). The application of Excitation/Emission Matrix spectroscopy combined with multivariate analysis for the characterization and source identification of dissolved organic matter in seawater of Bohai Sea, China. Marine Chemistry, 110(1-2), 109-119. DOI:10.1016/j.marchem.2008.02.010
  • Kontas, A., Kucuksezgin, F., Altay, O. & Uluturhan, E. (2004). Monitoring of eutrophication and nutrient limitation in the Izmir Bay (Turkey) before and after Wastewater Treatment Plant. Environment International, 29(8), 1057–1062. DOI:10.1016/S0160-4120(03)00098-9
  • Korak, J.A., Dotson, A.D., Summers, R.S. & Rosario-Ortiz, F.L. (2014). Critical analysis of commonly used fluorescence metrics to characterize dissolved organic matter. Water Research, 49, 327–338. DOI:10.1016/j.watres.2013.11.025
  • Korpinen, S. & Bonsdorff, E. (2015). Eutrophication and hypoxia: impacts of nutrient and organic enrichment. In T.P. Crowe & C.L.J. Fridin (Eds.), Marine Ecosystems: Human Impacts on Biodiversity, Functioning and Services (pp. 202–243). Cambridge, UK, Cambridge University Press, 416 pp. DOI: 10.1017/CBO9781139794763.008
  • Kowalczuk, P., Cooper, W.J., Whitehead, R.F., Durako, M.J. & Sheldon, W. (2003). Characterization of CDOM in an organic-rich river and surrounding coastal ocean in the South Atlantic Bight. Aquatic Sciences, 65(4), 384-401. DOI:10.1007/s00027-003-0678-1
  • Kowalczuk, P., Cooper, W.J., Durako, M.J., Kahn, A.E., Gonsior, M. & Young, H. (2010). Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Relationships between fluorescence and its components, absorption coefficients and organic carbon concentrations. Marine Chemistry, 118(1-2), 22-36. DOI:10.1016/j.marchem.2009.10.002
  • Kowalczuk, P., Sagan, S., Zabłocka, M. & Borzycka, K. (2015). Mixing anomaly in deoxygenated Baltic Sea deeps indicates benthic flux and microbial transformation of chromophoric and fluorescent dissolved organic matter. Estuarine Coastal and Shelf Science, 163(B), 206-217. DOI:10.1016/j.ecss.2015.06.027
  • Kucuksezgin, F., Kontas, A., Altay, O. & Uluturhan, E. (2005). Elemental composition of particulate matter and nutrient dynamics in the Izmir Bay (Eastern Aegean). Journal of Marine Systems, 56(1), 67–84. DOI:10.1016/j.jmarsys.2005.01.002
  • Lapworth, D.J. & Kinniburgh, D.G. (2009). An R script for visualising and analysing fluorescence excitation–emission matrices (EEMs). Computers and Geosciences, 35(10), 2160–2163. DOI:10.1016/j.cageo.2008.10.013
  • Libes, S.M. (2009). Introduction to Marine Biogeochemistry. California, USA, Academic Press, 928 pp.
  • Lønborg, C., Yokokawa, T., Herndl, G.J. & Álvarez-Salgado, X.A. (2015). Production and degradation of fluorescent dissolved organic matter in surface waters of the eastern north Atlantic ocean. Deep Sea Research Part I, 96, 28-37. DOI:10.1016/j.dsr.2014.11.001
  • Lu, Y.H., Edmonds, J.W., Yamashita, Y., Zhou, B., Jaegge, A. & Baxley, M. (2015). Spatial variation in the origin and reactivity of dissolved organic matter in Oregon-Washington coastal waters. Ocean Dynamics, 65(1), 17-32. DOI:10.1007/s10236-014-0793-7
  • Lüttig, G. (1986). Plants to peat: the process of humification. In C.H. Fuchsman (Eds.), Peat and Water, Aspects of water retention and dewatering in peat (pp. 9-19). Amsterdam, Netherlands, Springer, 374 pp.
  • Mopper, K., Zhou, X., Kieber, R.J., Kieber, D.J., Sikorski, R.J. & Jones, R.D. (1991). Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature, 353(6339), 60-62. DOI:10.1038/353060a0
  • Motegi, C., Nagata, T., Miki, T., Weinbauer, M.G., Legendre, L. & Rassoulzadegand, F. (2009). Viral control of bacterial growth efficiency in marine pelagic environments. Limnology and Oceanography, 54(6), 1901-1910. DOI:10.4319/lo.2009.54.6.1901
  • Murphy, K.R., Stedmon, C.A., Waite, T.D. & Ruiz, G.M. (2008). Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Marine Chemistry, 108(1-2), 40-58. DOI:10.1016/j.marchem.2007.10.003
  • Murphy, K.R., Butler, K.D., Spencer, R.G.M., Stedmon, C.A., Boehme, J.R. & Aiken, G.R. (2010). Measurement of Dissolved Organic Matter Fluorescence in Aquatic Environments: An Interlaboratory Comparison. Environmental Science and Technology, 44(24), 9405-9412. DOI:10.1021/es102362t
  • Murphy, K.R., Stedmon, C.A., Graeber, D. & Bro, R. (2013). Fluorescence spectroscopy and multi-way techniques. PARAFAC. Analytical Methods, 5(23), 6557-6566. DOI:10.1039/C3AY41160E
  • Nelson, N.B., Carlson, C.A. & Steinberg, D.K. (2004). Production of chromophoric dissolved organic matter by Sargasso Sea microbes. Marine Chemistry, 89(1-4), 273-287. DOI:10.1016/j.marchem.2004.02.017
  • Nieto-Cid, M., Álvarez-Salgado, X.A. & Pérez, F.F. (2006). Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnology and Oceanography, 51(3), 1391-1400. DOI:10.4319/lo.2006.51.3.1391
  • Ortega-Retuerta, E., Frazer, T.K., Duarte, C.M., Ruiz-Halpern, S., Tovar-Sánchez, A., Arrieta, J.M. & Rechea, I. (2009). Biogeneration of chromophoric dissolved organic matter by bacteria and krill in the Southern Ocean. Limnology and Oceanography, 54(6), 1941-1950. DOI:10.4319/lo.2009.54.6.1941
  • Ozkan, E.Y., Kocatas, A. & Buyukisik, B. (2008). Nutrient dynamics between sediment and overlying water in the inner part of Izmir Bay, Eastern Aegean. Environmental Monitoring and Assessment, 143(1), 313–325. DOI:10.1007/s10661-007-9984-8
  • Penru, Y., Simon, F.X., Guastalli, A.R., Esplugas, S., Uorens, J. & Balg, S. (2013). Characterization of natural organic matter from Mediterranean coastal seawater. Journal of Water Supply: Research and Technology – AQUA, 62(1), 42–51. DOI:10.2166/aqua.2013.113
  • R Core Team. (2016). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.r-project.org.
  • Retelletti Brogi, S., Gonnelli, M., Vestri, S. & Santinelli, C. (2015). Biophysical processes affecting DOM dynamics at the Arno river mouth (Tyrrhenian Sea). Biophysical Chemistry, 197, 1–9. DOI:10.1016/j.bpc.2014.10.004
  • Ridgwell, A. & Arndt, S. (2015). Why Dissolved Organics Matter: DOC in Ancient Oceans and Past Climate Change. In D.A. Hansell & C.A. Carlson (Eds.), Biogeochemistry of Marine Dissolved Organic Matter (pp. 1–33). Florida, USA, Academic Press, 712 pp. DOI: 10.1016/B978-0-12-405940-5.00001-7
  • Romera-Castillo, C., Sarmento, H., Álvarez-Salgado, X.A., Gasol, J.M. & Marrasé, C. (2011a). Net Production and Consumption of Fluorescent Colored Dissolved Organic Matter by Natural Bacterial Assemblages Growing on Marine Phytoplankton Exudates. Applied and Environmental Microbiology, 77(21), 7490–7498. DOI:10.1128/AEM.00200-11
  • Romera-Castillo, C., Nieto-Cid, M., Castro, C.G., Marrasé, C., Largier, J., Barton, E.D. & Álvarez-Salgado, X.A. (2011b). Fluorescence: Absorption coefficient ratio — Tracing photochemical and microbial degradation processes affecting coloured dissolved organic matter in a coastal system. Marine Chemistry, 125,(1-4), 26-38. DOI:10.1016/j.marchem.2011.02.001
  • Romera-Castillo, C., Álvarez-Salgado, X.A., Galí, M., Gasol, J.M. & Marrasé, C. (2013). Combined effect of light exposure and microbial activity on distinct dissolved organic matter pools. A seasonal field study in an oligotrophic coastal system (Blanes Bay, NW Mediterranean). Marine Chemistry, 148, 44-51. DOI:10.1016/j.marchem.2012.10.004
  • Sala, M.M. & Güde, H. (2004). Ectoenzymatic activities and heterotrophic bacteria decomposing detritus. Archives of Hydrobiology, 160(3), 289-303. DOI:10.1127/0003-9136/2004/0160-0289
  • Santos, L., Santos, E.B.H., Dias, J.M., Cunha, A. & Almeida, A. (2014). Photochemical and microbial alterations of DOM spectroscopic properties in the estuarine system Ria de Aveiro. Photochemical and Photobiological Sciences, 13(8), 1146-1159. DOI:10.1039/C4PP00005F
  • Sarmento, H., Romera-Castillo, C., Lindh, M., Pinhassi, J., Sala, M.M., Gasol, J.M., Marrase, C. & Taylor, G.T. (2013). Phytoplankton species-specific release of dissolved free amino acids and their selective consumption by bacteria. Limnology and Oceanography, 58(3), 1123–1135. DOI:10.4319/lo.2013.58.3.1123
  • Sayin, E. (2003). Physical features of the Izmir Bay. Continental Shelf Research, 23(10), 957–970. DOI:10.1016/S0278-4343(03)00083-9
  • Schreurs, W. (1978). An automated colorimetric method for the determination of disolved organic carbon in seawater by U.V. destruction. Hydrobiological Bulletin Amsterdam, 12, 137–142. DOI:10.1007/BF02260715
  • Sellner, K.G., Doucette, G.J. & Kirkpatrick, G.J. (2003). Harmful algal blooms: causes, impacts and detection. Journal of Industrial Microbiology and Biotechnology, 30(7), 383-406. DOI:10.1007/s10295-003-0074-9
  • Stedmon, C.A., Markager, S. & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82(3-4), 239-254. DOI:10.1016/S0304-4203(03)00072-0
  • Stedmon, C.A. & Markager, S. (2005). Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnology and Oceanography, 50(5), 1415-1426. DOI:10.4319/lo.2005.50.5.1415
  • Stevenson, F.J. (1982). Humus Chemistry. New York, USA, Wiley, 443 pp.
  • Su, R., Bai, Y., Zhang, C. & Shi, X. (2015). The assessment of the spatial and seasonal variability of chromophoric dissolved organic matter in the Southern Yellow Sea and the East China Sea. Marine Pollution Bulletin, 100(1), 523–533. DOI:10.1016/j.marpolbul.2015.09.002
  • Sulzberger, B. & Durisch-Kaiser, E. (2009). Chemical characterization of dissolved organic matter (DOM): A prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability. Aquatic Sciences, 71(2), 104-126. DOI:10.1007/s00027-008-8082-5
  • Sun, Q., Wang, C., Wang, P., Hou, J. & Ao, Y. (2014). Absorption and fluorescence characteristics of chromophoric dissolved organic matter in the Yangtze Estuary. Environmental Science and Pollution Research, 21(5), 3460-3473. DOI:10.1007/s11356-013-2287-4
  • Sunlu, U., Buyukisik, H.B., Koray, T., Brockel, K., Sunlu, F.S., Sever, T.M., Aydın, H., Aksu, M., Aydın, A. & Orçun, E. (2007). The effects of Izmir Big Channel waste water treatment project to the lower trophic level of Izmir Bay (Aegean Sea, Turkey). The Scientific and Technical Research Council of Turkey (TUBITAK-CAYDAG), Project No:102Y116, Final Report. 253p. (in Turkish).
  • Sunlu, F.S., Sunlu, U., Buyukisik, B., Kukrer, S. & Aksu, M. (2011). Effects of Wastewater Treatment Plant on Water Column and Sediment Quality in Izmir Bay (Eastearn Aegean Sea). In F.S.G. Einschlag (Eds.), Waste Water - Evaluation and Management (pp. 253–268). InTech, 482 pp.
  • Sunlu, F.S., Sunlu, U., Buyukisik, B., Kukrer, S. & Uncumusaoglu, A. (2012). Nutrient and Chlorophyll a Trends after Wastewater Treatment Plant in Izmir Bay (Eastern Aegean Sea). Journal of Animal and Veterinary Advances, 11(1), 113–123. DOI:10.3923/javaa.2012.113.123
  • Tam, S.C. & Sposito, G. (1993). Fluorescence spectroscopy of aqueous pine litter extracts: effects of humification and aluminium complexation. Journal of Soil Science, 44(3), 513-524. DOI:10.1111/j.1365-2389.1993.tb00473.x
  • Tedetti, M., Cuet, P., Guigue, C. & Goutx, M. (2011). Characterization of dissolved organic matter in a coral reef ecosystem subjected to anthropogenic pressures (La Réunion Island, Indian Ocean) using multi-dimensional fluorescence spectroscopy. Science of the Total Environment, 409(11), 2198-2210. DOI:10.1016/j.scitotenv.2011.01.058
  • Tzortziou, M., Zeri, C., Dimitriou, E., Ding, Y., Jaffé, R., Anagnostou, E., Pitta, E. & Mentzafou, A. (2015). Colored dissolved organic matter dynamics and anthropogenic influences in a major transboundary river and its coastal wetland. Limnology and Oceanography, 60(4), 1222-1240. DOI:10.1002/lno.10092
  • Vähätalo, A.V. & Wetzel, R.G. (2004). Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months–years) exposures. Marine Chemistry, 89(1-4), 313-326. DOI:10.1016/j.marchem.2004.03.010
  • Wang, Y., Zhang, D., Shen, Z., Chen, J. & Feng, C. (2014). Characterization and spacial distribution variability of chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary. Chemosphere, 95, 353-362. DOI:10.1016/j.chemosphere.2013.09.044
  • Wilson, H.F. & Xenopoulos, M.A. (2009). Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nature Geosciences, 2(1), 37-41. DOI:10.1038/ngeo391
  • Yamashita, Y., Jaffé, R., Maie, N. & Tanoue, E. (2008). Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnology and Oceanography, 53(5), 1900-1908. DOI:10.4319/lo.2008.53.5.1900
  • Yamashita, Y. & Tanoue, E. (2003). Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters. Marine Chemistry, 82(3-4), 145-160. DOI:10.1016/S0304-4203(03)00049-5
  • Yang, L., Chen, C.T.A., Lui, H.K., Zhuang, W.E. & Wang, B.J. (2016). Effects of microbial transformation on dissolved organic matter in the east Taiwan Strait and implications for carbon and nutrient cycling. Estuarine Coastal and Shelf Science, 180, 59-68. DOI:10.1016/j.ecss.2016.06.021
  • Zeri, C., Besiktepe, S., Giannakourou, A., Krasakopoulou, E., Tzortziouc, V., Tsoliakos, D., Pavlidoua, A., Mousdis, G., Pitta, E., Scoullos, M. & Papathanassiou, E. (2014). Chemical properties and fluorescence of DOM in relation to biodegradation in the interconnected Marmara–North Aegean Seas during August 2008. Journal of Marine Systems, 135, 124–136. DOI:10.1016/j.jmarsys.2013.11.019
  • Zhang, Y., Liu, X., Osburn, C.L., Wang, M., Qin, B. & Zhou., Y. (2013). Photobleaching Response of Different Sources of Chromophoric Dissolved Organic Matter Exposed to Natural Solar Radiation Using Absorption and Excitation–Emission Matrix Spectra. PLoS ONE, 8(10), 1-14. DOI: 10.1371/journal.pone.0077515
  • Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B. & Saccomandi, F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38(1), 45–50. DOI:10.1016/S0045-6535(98)00166-0

Yarı-kapalı bir körfezin (İzmir, Ege Denizi) ötrofik ve oligotrofik kısımlarında kromoforik çözünmüş organik maddenin optik karakterizasyonu

Year 2021, Volume: 38 Issue: 2, 199 - 210, 15.06.2021
https://doi.org/10.12714/egejfas.38.2.09

Abstract



Bu çalışmada, İzmir Körfezi (Ege Denizi)’nden alınan deniz suyunda kromoforik çözünmüş organik madde (KÇOM)'nin optik karakterizasyonu araştırılmıştır. Deniz suyu örnekleri 7 istasyonda yüzey ve yüzey-altı derinliklerden 2015 yılı yaz mevsiminde toplanmıştır. Her bir örneğin uyarma-emisyon matris (UEM) spektrumu bir floresans spektrofotometresi aracılığıyla kaydedilmiştir. Sonuçlar, çözünmüş organik karbon (ÇOK) ve UEM pik şiddetlerinin dış körfezden iç körfeze doğru arttığını göstermiştir. UEM pikleri, hem hümik asit benzeri hem de protein benzeri organik madde bileşenlerinin orta-iç körfezlerde dış körfeze kıyasla daha yüksek olduğunu ortaya koymuştur. Spearman'ın sıralama korelasyonu testleri sonucunda UEM pik şiddetleri ve ÇOK konsantrasyonları arasında yüksek pozitif ilişki bulunduğu saptanmıştır (p<0.05). Körfez genelinde hümikleşme indeksi (HI) 0.73-3.51 aralığında, biyolojik indeks (BI) ise 0.31-0.96 aralığında değişim göstermiştir. KÇOM'a ait hümikleşme derecesi orta-iç körfezlerde dış körfeze kıyasla daha yüksek tespit edilmiştir. Orta-iç körfezlerde gözlenen yüksek HI değerlerinin yüksek kirlilik yükü taşıyan Melez çayının varlığı, iç körfeze ulaşan diğer yüzey sularının varlığı, yağmur ile denize sürüklenebilen karasal organik maddeler ve İzmir Körfezi'ndeki denizcilik aktiviteleri ile ilişkili olduğu düşünülmektedir. Orta-iç körfezlerde gözlenen yüksek BI değerleri ise özellikle bakteriyel kökenli ve yeni üretilmiş çözünmüş organik madde üretimi ile ilişkilendirilebilir. KÇOM'un optik karakterizasyonu, gelecek çalışmalarda çözünmüş organik madde içerisindeki floresans özellikteki bileşenlerin takip edilebilmesi ve çeşitli organik madde kaynaklarının (otokton veya allokton) belirlenmesi amacıyla kullanılabilir.





Project Number

TUBITAK 113Y447

References

  • Anderson, D.M., Glibert, P.M. & Burkholder, J.M. (2002). Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries, 25(4), 704-726. DOI:10.1007/BF02804901
  • Aparicio, F.L., Nieto-Cid, M., Borrull, E., Calvo, E., Pelejero, C., Sala, M.M., Pinhassi, J., Gasol, J.M. & Marrasé, C. (2016). Eutrophication and acidification: Do they induce changes in the dissolved organic matter dynamics in the coastal Mediterranean Sea? Science of the Total Environment, 563-564, 179-189. DOI:10.1016/j.scitotenv.2016.04.108
  • Bai, Y., Su, R. & Shi. X. (2014). Assessing the dynamics of chromophoric dissolved organic matter in the southern Yellow Sea by excitation–emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Continental Shelf Research, 88, 103-116. DOI:10.1016/j.csr.2014.07.011
  • Boyd, T.J. & Osburn, C.L. (2004). Changes in CDOM fluorescence from allochthonous and autochthonous sources during tidal mixing and bacterial degradation in two coastal estuaries. Marine Chemistry, 89(1–4), 189-210. DOI:10.1016/j.marchem.2004.02.012
  • Brussaard, C.P.D. (2004). Algae, mortality rates, photosynthetic protists, Phycodnaviridae, virus. Journal of Eukaryotic Microbiology, 51(2), 125-138. DOI:10.1111/j.1550-7408.2004.tb00537.x
  • Carlson, C.A. & Hansell, D.A. (2015). DOM Sources, Sinks, Reactivity, and Budgets. In D.A. Hansell & C.A. Carlson (Eds.), Biogeochemistry of Marine Dissolved Organic Matter (pp. 65–126). Florida, USA, Academic Press, 712 pp. DOI:10.1016/B978-0-12-405940-5.00003-0
  • Cauwet, G. (2002). DOM in the Coastal Zone. In D.A. Hansell & C.A. Carlson (Eds.), Biogeochemistry of Marine Dissolved Organic Matter (pp. 579–609). Florida, USA, Academic Press, 774 pp. DOI:10.1016/B978-012323841-2/50014-2
  • Chari, N.V.H.K., Sarma, N.S., Pandi, S.R. & Murthy, K.N. (2012). Seasonal and spatial constraints of fluorophores in the midwestern Bay of Bengal by PARAFAC analysis of excitation emission matrix spectra. Estuarine Coastal and Shelf Science, 100, 162–171. DOI:10.1016/j.ecss.2012.01.012
  • Chen, H., Zheng, B., Song, Y. & Qin, Y. (2011). Correlation between molecular absorption spectral slope ratios and fluorescence humification indices in characterizing CDOM. Aquatic Sciences 73(1), 103-112. DOI:10.1007/s00027-010-0164-5
  • Cloern, J.E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223-253. DOI:10.3354/meps210223
  • Coble, P.G., Green, S.A., Blough, N.V. & Gagosian, R.B. (1990). Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature, 348(6300), 432-435. DOI:10.1038/348432a0
  • Coble, P.G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51(4), 325–346. DOI:10.1016/0304-4203(95)00062-3
  • Conley, D.J., Carstensen, J., Vaquer-Sunyer, R. & Duarte, C.M. (2009). Ecosystem thresholds with hypoxia. In J.H. Andersen & D.J. Conley (Eds.), Eutrophication in Coastal Ecosystems, Towards better understanding and management strategies (pp. 21-29). Dordrecht, Netherlands, Springer, 264 pp. DOI: 10.1007/978-90-481-3385-7_3
  • Couturier, M., Nozais, C. & Chaillou, G. (2016). Microtidal subterranean estuaries as a source of fresh terrestrial dissolved organic matter to the coastal ocean. Marine Chemistry, 186, 46-57. DOI:10.1016/j.marchem.2016.08.001
  • Davidson, K., Gowen, R.J., Tett, P., Bresnan, E., Harrison, P.J., McKinney, A., Milligan, S., Mills, D.K., Silke, J. & Crooks, A.M. (2012). Harmful algal blooms: How strong is the evidence that nutrient ratios and forms influence their occurrence? Estuarine Coastal and Shelf Science, 115, 399-413. DOI:10.1016/j.ecss.2012.09.019
  • Davidson, K., Gowen, R.J., Harrison, P.J., Fleming, L.E., Hoagland, P. & Moschonas, G. (2014). Anthropogenic nutrients and harmful algae in coastal waters. Journal of Environmental Management, 146, 206-216. DOI:10.1016/j.jenvman.2014.07.002
  • Dixon, J.L., Osburn, C.L., Paerl, H.W. & Peierls, B.L. (2014). Seasonal changes in estuarine dissolved organic matter due to variable flushing time and wind-driven mixing events. Estuarine Coastal and Shelf Science, 151, 210-220. DOI:10.1016/j.ecss.2014.10.013
  • Fellman, J.B., Hood, E. & Spencer, R.G.M. (2010). Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnology and Oceanography, 55(6), 2452-2462. DOI:10.4319/lo.2010.55.6.2452
  • Gershey, R.M., Mackinnon, M.D., Williams, P.J. & Moore, R.M. (1979). Comparison of three oxidation methods used for the analysis of dissolved organic carbon in seawater. Marine Chemistry, 7, 289-306. DOI:10.1016/0304-4203(79)90017-3
  • Guo, W., Stedmon, C.A., Han, Y., Wu, F., Yu, X. & Hu, M. (2007). The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters. Marine Chemistry, 107(3), 357-366. DOI:10.1016/j.marchem.2007.03.006
  • Hansell, D.A., Carlson, C.A., Repeta, D.J. & Schlitzer, R. (2009). Dissolved Organic Matter in the Ocean: A Controversy Stimulates New Insights. Oceanography, 22, 202-211. DOI:10.5670/oceanog.2009.109
  • Hedges, J.I. (2002). Why Dissolved Organics Matter. In D.A. Hansell & C.A. Carlson (Eds.), Biogeochemistry of Marine Dissolved Organic Matter (pp. 1–33). Florida, USA, Academic Press, 774 pp. DOI: 10.1016/B978-012323841-2/50003-8
  • Heisler, J., Glibert, P.M., Burkholder, J.M., Anderson, D.M., Cochlan, W., Dennison, W.C., Dortch, Q., Gobler, C.J., Heil, C.A., Humphries, E., Lewitus, A., Magnien, R., Marshall, H.G., Sellner, K., Stockwell, D.A., Stoecker, D.K. & Suddleson, M. (2008). Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8(1), 3-13. DOI:10.1016/j.hal.2008.08.006
  • Hong, H., Wu, J., Shang, S. & Hu, C. (2005). Absorption and fluorescence of chromophoric dissolved organic matter in the Pearl River Estuary, South China. Marine Chemistry, 97(1-2), 78-89. DOI:10.1016/j.marchem.2005.01.008
  • Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J.M. & Parlanti, E. (2009). Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry, 40(6), 706–719. DOI:10.1016/j.orggeochem.2009.03.002
  • Jessen, C., Bednarz, V.N., Rix, L., Teichberg, M. & Wild, C. (2015). Marine Eutrophication. In H.R. Armon & O. Hänninen (Eds.), Environmental Indicators (pp. 177-203). Dordrecht, Netherlands, Springer, 1068 pp. DOI: 10.1007/978-94-017-9499-2_11
  • Jiang, F., Lee, F.S.C., Wang, X. & Dai, D. (2008). The application of Excitation/Emission Matrix spectroscopy combined with multivariate analysis for the characterization and source identification of dissolved organic matter in seawater of Bohai Sea, China. Marine Chemistry, 110(1-2), 109-119. DOI:10.1016/j.marchem.2008.02.010
  • Kontas, A., Kucuksezgin, F., Altay, O. & Uluturhan, E. (2004). Monitoring of eutrophication and nutrient limitation in the Izmir Bay (Turkey) before and after Wastewater Treatment Plant. Environment International, 29(8), 1057–1062. DOI:10.1016/S0160-4120(03)00098-9
  • Korak, J.A., Dotson, A.D., Summers, R.S. & Rosario-Ortiz, F.L. (2014). Critical analysis of commonly used fluorescence metrics to characterize dissolved organic matter. Water Research, 49, 327–338. DOI:10.1016/j.watres.2013.11.025
  • Korpinen, S. & Bonsdorff, E. (2015). Eutrophication and hypoxia: impacts of nutrient and organic enrichment. In T.P. Crowe & C.L.J. Fridin (Eds.), Marine Ecosystems: Human Impacts on Biodiversity, Functioning and Services (pp. 202–243). Cambridge, UK, Cambridge University Press, 416 pp. DOI: 10.1017/CBO9781139794763.008
  • Kowalczuk, P., Cooper, W.J., Whitehead, R.F., Durako, M.J. & Sheldon, W. (2003). Characterization of CDOM in an organic-rich river and surrounding coastal ocean in the South Atlantic Bight. Aquatic Sciences, 65(4), 384-401. DOI:10.1007/s00027-003-0678-1
  • Kowalczuk, P., Cooper, W.J., Durako, M.J., Kahn, A.E., Gonsior, M. & Young, H. (2010). Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Relationships between fluorescence and its components, absorption coefficients and organic carbon concentrations. Marine Chemistry, 118(1-2), 22-36. DOI:10.1016/j.marchem.2009.10.002
  • Kowalczuk, P., Sagan, S., Zabłocka, M. & Borzycka, K. (2015). Mixing anomaly in deoxygenated Baltic Sea deeps indicates benthic flux and microbial transformation of chromophoric and fluorescent dissolved organic matter. Estuarine Coastal and Shelf Science, 163(B), 206-217. DOI:10.1016/j.ecss.2015.06.027
  • Kucuksezgin, F., Kontas, A., Altay, O. & Uluturhan, E. (2005). Elemental composition of particulate matter and nutrient dynamics in the Izmir Bay (Eastern Aegean). Journal of Marine Systems, 56(1), 67–84. DOI:10.1016/j.jmarsys.2005.01.002
  • Lapworth, D.J. & Kinniburgh, D.G. (2009). An R script for visualising and analysing fluorescence excitation–emission matrices (EEMs). Computers and Geosciences, 35(10), 2160–2163. DOI:10.1016/j.cageo.2008.10.013
  • Libes, S.M. (2009). Introduction to Marine Biogeochemistry. California, USA, Academic Press, 928 pp.
  • Lønborg, C., Yokokawa, T., Herndl, G.J. & Álvarez-Salgado, X.A. (2015). Production and degradation of fluorescent dissolved organic matter in surface waters of the eastern north Atlantic ocean. Deep Sea Research Part I, 96, 28-37. DOI:10.1016/j.dsr.2014.11.001
  • Lu, Y.H., Edmonds, J.W., Yamashita, Y., Zhou, B., Jaegge, A. & Baxley, M. (2015). Spatial variation in the origin and reactivity of dissolved organic matter in Oregon-Washington coastal waters. Ocean Dynamics, 65(1), 17-32. DOI:10.1007/s10236-014-0793-7
  • Lüttig, G. (1986). Plants to peat: the process of humification. In C.H. Fuchsman (Eds.), Peat and Water, Aspects of water retention and dewatering in peat (pp. 9-19). Amsterdam, Netherlands, Springer, 374 pp.
  • Mopper, K., Zhou, X., Kieber, R.J., Kieber, D.J., Sikorski, R.J. & Jones, R.D. (1991). Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature, 353(6339), 60-62. DOI:10.1038/353060a0
  • Motegi, C., Nagata, T., Miki, T., Weinbauer, M.G., Legendre, L. & Rassoulzadegand, F. (2009). Viral control of bacterial growth efficiency in marine pelagic environments. Limnology and Oceanography, 54(6), 1901-1910. DOI:10.4319/lo.2009.54.6.1901
  • Murphy, K.R., Stedmon, C.A., Waite, T.D. & Ruiz, G.M. (2008). Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Marine Chemistry, 108(1-2), 40-58. DOI:10.1016/j.marchem.2007.10.003
  • Murphy, K.R., Butler, K.D., Spencer, R.G.M., Stedmon, C.A., Boehme, J.R. & Aiken, G.R. (2010). Measurement of Dissolved Organic Matter Fluorescence in Aquatic Environments: An Interlaboratory Comparison. Environmental Science and Technology, 44(24), 9405-9412. DOI:10.1021/es102362t
  • Murphy, K.R., Stedmon, C.A., Graeber, D. & Bro, R. (2013). Fluorescence spectroscopy and multi-way techniques. PARAFAC. Analytical Methods, 5(23), 6557-6566. DOI:10.1039/C3AY41160E
  • Nelson, N.B., Carlson, C.A. & Steinberg, D.K. (2004). Production of chromophoric dissolved organic matter by Sargasso Sea microbes. Marine Chemistry, 89(1-4), 273-287. DOI:10.1016/j.marchem.2004.02.017
  • Nieto-Cid, M., Álvarez-Salgado, X.A. & Pérez, F.F. (2006). Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnology and Oceanography, 51(3), 1391-1400. DOI:10.4319/lo.2006.51.3.1391
  • Ortega-Retuerta, E., Frazer, T.K., Duarte, C.M., Ruiz-Halpern, S., Tovar-Sánchez, A., Arrieta, J.M. & Rechea, I. (2009). Biogeneration of chromophoric dissolved organic matter by bacteria and krill in the Southern Ocean. Limnology and Oceanography, 54(6), 1941-1950. DOI:10.4319/lo.2009.54.6.1941
  • Ozkan, E.Y., Kocatas, A. & Buyukisik, B. (2008). Nutrient dynamics between sediment and overlying water in the inner part of Izmir Bay, Eastern Aegean. Environmental Monitoring and Assessment, 143(1), 313–325. DOI:10.1007/s10661-007-9984-8
  • Penru, Y., Simon, F.X., Guastalli, A.R., Esplugas, S., Uorens, J. & Balg, S. (2013). Characterization of natural organic matter from Mediterranean coastal seawater. Journal of Water Supply: Research and Technology – AQUA, 62(1), 42–51. DOI:10.2166/aqua.2013.113
  • R Core Team. (2016). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.r-project.org.
  • Retelletti Brogi, S., Gonnelli, M., Vestri, S. & Santinelli, C. (2015). Biophysical processes affecting DOM dynamics at the Arno river mouth (Tyrrhenian Sea). Biophysical Chemistry, 197, 1–9. DOI:10.1016/j.bpc.2014.10.004
  • Ridgwell, A. & Arndt, S. (2015). Why Dissolved Organics Matter: DOC in Ancient Oceans and Past Climate Change. In D.A. Hansell & C.A. Carlson (Eds.), Biogeochemistry of Marine Dissolved Organic Matter (pp. 1–33). Florida, USA, Academic Press, 712 pp. DOI: 10.1016/B978-0-12-405940-5.00001-7
  • Romera-Castillo, C., Sarmento, H., Álvarez-Salgado, X.A., Gasol, J.M. & Marrasé, C. (2011a). Net Production and Consumption of Fluorescent Colored Dissolved Organic Matter by Natural Bacterial Assemblages Growing on Marine Phytoplankton Exudates. Applied and Environmental Microbiology, 77(21), 7490–7498. DOI:10.1128/AEM.00200-11
  • Romera-Castillo, C., Nieto-Cid, M., Castro, C.G., Marrasé, C., Largier, J., Barton, E.D. & Álvarez-Salgado, X.A. (2011b). Fluorescence: Absorption coefficient ratio — Tracing photochemical and microbial degradation processes affecting coloured dissolved organic matter in a coastal system. Marine Chemistry, 125,(1-4), 26-38. DOI:10.1016/j.marchem.2011.02.001
  • Romera-Castillo, C., Álvarez-Salgado, X.A., Galí, M., Gasol, J.M. & Marrasé, C. (2013). Combined effect of light exposure and microbial activity on distinct dissolved organic matter pools. A seasonal field study in an oligotrophic coastal system (Blanes Bay, NW Mediterranean). Marine Chemistry, 148, 44-51. DOI:10.1016/j.marchem.2012.10.004
  • Sala, M.M. & Güde, H. (2004). Ectoenzymatic activities and heterotrophic bacteria decomposing detritus. Archives of Hydrobiology, 160(3), 289-303. DOI:10.1127/0003-9136/2004/0160-0289
  • Santos, L., Santos, E.B.H., Dias, J.M., Cunha, A. & Almeida, A. (2014). Photochemical and microbial alterations of DOM spectroscopic properties in the estuarine system Ria de Aveiro. Photochemical and Photobiological Sciences, 13(8), 1146-1159. DOI:10.1039/C4PP00005F
  • Sarmento, H., Romera-Castillo, C., Lindh, M., Pinhassi, J., Sala, M.M., Gasol, J.M., Marrase, C. & Taylor, G.T. (2013). Phytoplankton species-specific release of dissolved free amino acids and their selective consumption by bacteria. Limnology and Oceanography, 58(3), 1123–1135. DOI:10.4319/lo.2013.58.3.1123
  • Sayin, E. (2003). Physical features of the Izmir Bay. Continental Shelf Research, 23(10), 957–970. DOI:10.1016/S0278-4343(03)00083-9
  • Schreurs, W. (1978). An automated colorimetric method for the determination of disolved organic carbon in seawater by U.V. destruction. Hydrobiological Bulletin Amsterdam, 12, 137–142. DOI:10.1007/BF02260715
  • Sellner, K.G., Doucette, G.J. & Kirkpatrick, G.J. (2003). Harmful algal blooms: causes, impacts and detection. Journal of Industrial Microbiology and Biotechnology, 30(7), 383-406. DOI:10.1007/s10295-003-0074-9
  • Stedmon, C.A., Markager, S. & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82(3-4), 239-254. DOI:10.1016/S0304-4203(03)00072-0
  • Stedmon, C.A. & Markager, S. (2005). Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnology and Oceanography, 50(5), 1415-1426. DOI:10.4319/lo.2005.50.5.1415
  • Stevenson, F.J. (1982). Humus Chemistry. New York, USA, Wiley, 443 pp.
  • Su, R., Bai, Y., Zhang, C. & Shi, X. (2015). The assessment of the spatial and seasonal variability of chromophoric dissolved organic matter in the Southern Yellow Sea and the East China Sea. Marine Pollution Bulletin, 100(1), 523–533. DOI:10.1016/j.marpolbul.2015.09.002
  • Sulzberger, B. & Durisch-Kaiser, E. (2009). Chemical characterization of dissolved organic matter (DOM): A prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability. Aquatic Sciences, 71(2), 104-126. DOI:10.1007/s00027-008-8082-5
  • Sun, Q., Wang, C., Wang, P., Hou, J. & Ao, Y. (2014). Absorption and fluorescence characteristics of chromophoric dissolved organic matter in the Yangtze Estuary. Environmental Science and Pollution Research, 21(5), 3460-3473. DOI:10.1007/s11356-013-2287-4
  • Sunlu, U., Buyukisik, H.B., Koray, T., Brockel, K., Sunlu, F.S., Sever, T.M., Aydın, H., Aksu, M., Aydın, A. & Orçun, E. (2007). The effects of Izmir Big Channel waste water treatment project to the lower trophic level of Izmir Bay (Aegean Sea, Turkey). The Scientific and Technical Research Council of Turkey (TUBITAK-CAYDAG), Project No:102Y116, Final Report. 253p. (in Turkish).
  • Sunlu, F.S., Sunlu, U., Buyukisik, B., Kukrer, S. & Aksu, M. (2011). Effects of Wastewater Treatment Plant on Water Column and Sediment Quality in Izmir Bay (Eastearn Aegean Sea). In F.S.G. Einschlag (Eds.), Waste Water - Evaluation and Management (pp. 253–268). InTech, 482 pp.
  • Sunlu, F.S., Sunlu, U., Buyukisik, B., Kukrer, S. & Uncumusaoglu, A. (2012). Nutrient and Chlorophyll a Trends after Wastewater Treatment Plant in Izmir Bay (Eastern Aegean Sea). Journal of Animal and Veterinary Advances, 11(1), 113–123. DOI:10.3923/javaa.2012.113.123
  • Tam, S.C. & Sposito, G. (1993). Fluorescence spectroscopy of aqueous pine litter extracts: effects of humification and aluminium complexation. Journal of Soil Science, 44(3), 513-524. DOI:10.1111/j.1365-2389.1993.tb00473.x
  • Tedetti, M., Cuet, P., Guigue, C. & Goutx, M. (2011). Characterization of dissolved organic matter in a coral reef ecosystem subjected to anthropogenic pressures (La Réunion Island, Indian Ocean) using multi-dimensional fluorescence spectroscopy. Science of the Total Environment, 409(11), 2198-2210. DOI:10.1016/j.scitotenv.2011.01.058
  • Tzortziou, M., Zeri, C., Dimitriou, E., Ding, Y., Jaffé, R., Anagnostou, E., Pitta, E. & Mentzafou, A. (2015). Colored dissolved organic matter dynamics and anthropogenic influences in a major transboundary river and its coastal wetland. Limnology and Oceanography, 60(4), 1222-1240. DOI:10.1002/lno.10092
  • Vähätalo, A.V. & Wetzel, R.G. (2004). Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months–years) exposures. Marine Chemistry, 89(1-4), 313-326. DOI:10.1016/j.marchem.2004.03.010
  • Wang, Y., Zhang, D., Shen, Z., Chen, J. & Feng, C. (2014). Characterization and spacial distribution variability of chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary. Chemosphere, 95, 353-362. DOI:10.1016/j.chemosphere.2013.09.044
  • Wilson, H.F. & Xenopoulos, M.A. (2009). Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nature Geosciences, 2(1), 37-41. DOI:10.1038/ngeo391
  • Yamashita, Y., Jaffé, R., Maie, N. & Tanoue, E. (2008). Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnology and Oceanography, 53(5), 1900-1908. DOI:10.4319/lo.2008.53.5.1900
  • Yamashita, Y. & Tanoue, E. (2003). Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters. Marine Chemistry, 82(3-4), 145-160. DOI:10.1016/S0304-4203(03)00049-5
  • Yang, L., Chen, C.T.A., Lui, H.K., Zhuang, W.E. & Wang, B.J. (2016). Effects of microbial transformation on dissolved organic matter in the east Taiwan Strait and implications for carbon and nutrient cycling. Estuarine Coastal and Shelf Science, 180, 59-68. DOI:10.1016/j.ecss.2016.06.021
  • Zeri, C., Besiktepe, S., Giannakourou, A., Krasakopoulou, E., Tzortziouc, V., Tsoliakos, D., Pavlidoua, A., Mousdis, G., Pitta, E., Scoullos, M. & Papathanassiou, E. (2014). Chemical properties and fluorescence of DOM in relation to biodegradation in the interconnected Marmara–North Aegean Seas during August 2008. Journal of Marine Systems, 135, 124–136. DOI:10.1016/j.jmarsys.2013.11.019
  • Zhang, Y., Liu, X., Osburn, C.L., Wang, M., Qin, B. & Zhou., Y. (2013). Photobleaching Response of Different Sources of Chromophoric Dissolved Organic Matter Exposed to Natural Solar Radiation Using Absorption and Excitation–Emission Matrix Spectra. PLoS ONE, 8(10), 1-14. DOI: 10.1371/journal.pone.0077515
  • Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B. & Saccomandi, F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38(1), 45–50. DOI:10.1016/S0045-6535(98)00166-0
There are 82 citations in total.

Details

Primary Language English
Subjects Oceanography
Journal Section Articles
Authors

Hakan Alyürük 0000-0001-8632-4281

Aynur Kontaş 0000-0002-6273-1568

Project Number TUBITAK 113Y447
Publication Date June 15, 2021
Submission Date October 6, 2020
Published in Issue Year 2021Volume: 38 Issue: 2

Cite

APA Alyürük, H., & Kontaş, A. (2021). Optical characterization of chromophoric dissolved organic matter at eutrophic and oligotrophic parts of a semi-enclosed bay (İzmir, Aegean Sea). Ege Journal of Fisheries and Aquatic Sciences, 38(2), 199-210. https://doi.org/10.12714/egejfas.38.2.09