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Abstract: Optical characterization of chromophoric dissolved organic matter (CDOM) from İzmir Bay (Aegean Sea) waters was investigated. For sampling, 
surface and subsurface seawater from 7 stations were collected in summer 2015. Excitation-emission matrix (EEM) spectra of each sample were recorded 
on a fluorescence spectrophotometer. The results showed that dissolved organic carbon (DOC) concentrations and EEM peaks were increased from the outer 
bay to inner bay stations. EEM peaks indicated the presence of both humic-like and protein-like components which were higher at middle-inner bays than 
outer bay. Spearman’s rank correlation coefficients for EEM peak intensities and DOC concentrations were highly positive (p<0.05). HIX found between 0.73-
3.51, whereas BIX ranged from 0.31 to 0.96 in the bay. Humification degree of CDOM in the middle-inner bays were higher compared to outer bay stations. 
High HIX values in the middle-inner bays could be linked to the presence of Melez stream (heavily polluted), other streams, rain run-offs and maritime activities 
at İzmir Bay. High BIX values in the middle-inner bays indicated presence of freshly produced DOM from bacterial origin. Optical characterization of CDOM 
could be used for tracing fluorescent DOM components and determining different DOM sources (autochthonous or allochthonous) in further studies. 
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Öz: Bu çalışmada, İzmir Körfezi (Ege Denizi)’nden alınan deniz suyunda kromoforik çözünmüş organik madde (KÇOM)'nin optik karakterizasyonu 
araştırılmıştır. Deniz suyu örnekleri 7 istasyonda yüzey ve yüzey-altı derinliklerden 2015 yılı yaz mevsiminde toplanmıştır. Her bir örneğin uyarma-emisyon 
matris (UEM) spektrumu bir floresans spektrofotometresi aracılığıyla kaydedilmiştir. Sonuçlar, çözünmüş organik karbon (ÇOK) ve UEM pik şiddetlerinin dış 
körfezden iç körfeze doğru arttığını göstermiştir. UEM pikleri, hem hümik asit benzeri hem de protein benzeri organik madde bileşenlerinin orta-iç körfezlerde 
dış körfeze kıyasla daha yüksek olduğunu ortaya koymuştur. Spearman'ın sıralama korelasyonu testleri sonucunda UEM pik şiddetleri ve ÇOK 
konsantrasyonları arasında yüksek pozitif ilişki bulunduğu saptanmıştır (p<0.05). Körfez genelinde hümikleşme indeksi (HI) 0.73-3.51 aralığında, biyolojik 
indeks (BI) ise 0.31-0.96 aralığında değişim göstermiştir. KÇOM'a ait hümikleşme derecesi orta-iç körfezlerde dış körfeze kıyasla daha yüksek tespit edilmiştir. 
Orta-iç körfezlerde gözlenen yüksek HI değerlerinin yüksek kirlilik yükü taşıyan Melez çayının varlığı, iç körfeze ulaşan diğer yüzey sularının varlığı, yağmur 
ile denize sürüklenebilen karasal organik maddeler ve İzmir Körfezi'ndeki denizcilik aktiviteleri ile ilişkili olduğu düşünülmektedir. Orta-iç körfezlerde gözlenen 
yüksek BI değerleri ise özellikle bakteriyel kökenli ve yeni üretilmiş çözünmüş organik madde üretimi ile ilişkilendirilebilir. KÇOM'un optik karakterizasyonu, 
gelecek çalışmalarda çözünmüş organik madde içerisindeki floresans özellikteki bileşenlerin takip edilebilmesi ve çeşitli organik madde kaynaklarının (otokton 
veya allokton) belirlenmesi amacıyla kullanılabilir. 

Anahtar kelimeler: Kromoforik çözünmüş organik madde, çözünmüş organik karbon, floresans, deniz suyu, İzmir Körfezi 

INTRODUCTION 

Dissolved organic matter (DOM) is a heterogeneous 
compound pool that is composed of complex organic 
molecules within seawater. DOM could be originated from 
terrestrial processes (allochthonous) or in situ marine 
(autochthonous) sources (Hedges, 2002; Libes, 2009). DOM 
pool contains vast amounts of biomolecules at different 
chemical structures and molecular sizes. Humic acids, fulvic 
acids, lignins, amino acids, carbohydrates, lipids, fatty acids, 
and sterols are such examples to most abundant biomolecules 

in DOM. Primary production and exudates of phytoplankton, 
sloppy feeding of metazoan grazers, viral cell lysis, egesta of 
protists and metezoans, and extracellular hydrolysis of POM by 
bacteria are the main sources of in situ DOM production 
(Aparicio et al., 2016; Brussaard, 2004; Motegi et al., 2009; 
Ortega-Retuerta et al., 2009; Ridgwell and Arndt, 2015; 
Romera-Castillo et al., 2011a; Sala and Güde, 2004; Sarmento 
et al., 2013; Zeri et al., 2014). Following its release to the 
marine environment, DOM is constantly circulated, transferred, 
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and subjected to transformations within the marine 
environment. The factors controlling its transformations could 
be photochemical processes (Mopper et al., 1991; Santos et 
al., 2014; Sulzberger and Durisch-Kaiser, 2009; Vähätalo and 
Wetzel, 2004; Zhang et al., 2013), sorption in sediments by 
flocculation (Cauwet, 2002), sorption by sinking particles 
(Carlson and Hansell, 2015; Hansell et al., 2009), sorption by 
metal-oxides (Couturier et al., 2016), physical processes (Boyd 
and Osburn, 2004; Cauwet, 2002; Dixon et al., 2014), and 
bacterial processes (Boyd and Osburn, 2004; Nelson et al., 
2004; Santos et al., 2014; Vähätalo and Wetzel, 2004). 
Significant contributions of anthropogenic inputs to the DOM 
pool in coastal waters were also reported (Hong et al., 2005; 
Sun et al., 2014; Tedetti et al., 2011; Tzortziou et al., 2015; 
Wang et al., 2014), which in turn, these may lead to 
eutrophication, hypoxia or harmful algal blooms (Anderson et 
al., 2002; Cloern, 2001; Conley et al., 2009; Davidson et al., 

2012; Davidson et al., 2014; Heisler et al., 2008; Jessen et al., 

2015; Korpinen and Bonsdorff 2015; Sellner et al., 2003). 
Therefore, understanding and monitoring of DOM sources and 
its transformations in coastal waters is of great importance for 
elucidating the fates of DOM components and the assessment 
of ecological status of the marine environment. 

In recent studies, optical characterization of DOM has been 
used frequently as it provides information about autochthonous 
or allochthonous sources and its transformations by applying 
rapid and inexpensive methods (Coble et al., 1990; Kowalczuk 
et al., 2010; Kowalczuk et al., 2015; Lonborg et al., 2015; Lu et 
al., 2015; Nieto-Cid et al., 2006; Romera-Castillo et al., 2011b; 
Romera-Castillo et al., 2013; Yang et al., 2016; Zeri et al., 
2014). The fraction of DOM that is able to absorb and/or emit 
light is called as chromophoric dissolved organic matter 
(CDOM). The light spectra of CDOM is recorded by applying 
simultaneous (or three dimensional) excitation-emission matrix 
(EEM) spectroscopy with a fluorometer. Parallel factor analysis 
(PARAFAC) is used to extract the characteristic peaks of 
humic-like or protein-like compounds (Murphy et al., 2013; 
Stedmon et al., 2003). Fluorometric characterization of CDOM, 
when combined with absorption measurements, not only 
provides information about its sources and transformation but 
also helps to understand its relations with bacterial and 
photochemical processes (Guo et al., 2007; Kowalczuk et al., 
2003; Lu et al., 2015; Murphy et al., 2008; Yamashita and 
Tanoue, 2003). 

İzmir Bay is located at the Eastern coast of the Aegean 
Sea. It has an L shaped structure, and its entrance is oriented 
to the north with its longer part. The hydrography of the İzmir 
Bay is influenced from several factors: exchanges between the 
atmosphere and the sea, exchange of water masses with the 
Aegean Sea, freshwater inputs with anthropogenic loads, 
topography of the bay, sea level changes, wind-driven 
circulations of water masses and winter convection (Sayin, 
2003). Under the influence of these factors, water masses in 
the İzmir Bay could be divided into three different parts: Inner 
Bay water (anthropogenically polluted), Outer Bay water (the 

water mass influenced from Gediz River and Aegean Sea, the 
upwelling water at Gülbahçe Bay, and the water mass located 
at salt production area), and Middle Bay water (connects Outer 
Bay to Inner Bay) (Sayin, 2003). Remarkable differences for 
DOC, Chl-a, dissolved inorganic nitrogen (DIN), and dissolved 
inorganic phosphorus (DIP) levels were reported at outer, 
middle and inner bay stations in the previous studies (Kontas 
et al., 2004; Kucuksezgin et al., 2005; Sunlu et al., 2012). Also, 
algal blooms and eutrophication have been observed in the 
inner bay that is under the influence of anthropogenic inputs 
(Ozkan et al., 2008; Sunlu et al., 2011). For example, 
temporarily, high abundances of Ceratium furca var. 
eugrammum, Cylindrotheca closterium, Prorocentrum micans 
and Noctiluca scintillans biomasses have been observed in the 
range of 2-5 µM C (Sunlu et al., 2007). However, there are no 
studies on the optical characterization of DOM, and its possible 
sources in the İzmir Bay. The aim of this study was to 
investigate the optical characteristics of CDOM in middle-inner 
(eutrophic) and outer (oligotrophic) parts of İzmir Bay with 
dissolved organic carbon (DOC) levels, humification index 
(HIX) and biological index (BIX). 

MATERIAL AND METHODS 

Seawater sampling 

The seawater samples were collected from surface and 
subsurface (5 m) depths at 7 stations in İzmir Bay (Figure 1) in 
summer 2015. The sampling stations were selected according 
to previous observations of physical and chemical 
characteristics of water masses in the bay (Kontas et al., 2004; 
Kucuksezgin et al., 2005; Sayin, 2003). The samples were 
collected with a 1.7 L Nansen bottle. The samples were 
immediately filtrated from 47 mm Whatman GF/F (0.7 µm) 
glass fiber filters and filtrated samples were stored frozen at 
−20 °C until the analyses in the laboratory.  

Dissolved organic carbon analysis 

The detection principle of DOC (measured as CO2) was 
based on the discoloration of buffered phenolphthalein solution 
proportionally to the CO2 concentration (Gershey et al., 1979; 
Schreurs, 1978). The analysis was performed on a continuous 
flow nutrient analyzer (San Plus, Skalar) according to 
instructions of the manufacturer (Cat.No: 311-412). First, 0.06 
N sulfuric acid was added to the sample. Then, digestion 
reagent was added, and UV digestion was applied. Following 
the digestion, hydroxylammonium chloride solution was 
introduced and the CO2 was separated from reaction mixture 
with a gas dialysis membrane. The liberated CO2 was reacted 
with the 1% phenolphthalein buffer solution. Colorimetric 
reading was performed at 550 nm. Potassium hydrogen 
phthalate was used as organic carbon standard. Accuracy of 
the method was checked using potassium hydrogen phthalate 
at every 10 sample readings. Synthetic seawater including 
NaCl, MgSO4 and Milli-Q water was used as blank. The system 
was washed with Milli-Q water until the low and stable 
instrumental blank. The detection limit of the method was 16 
µM C. 
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Figure 1. Sampling stations at İzmir Bay, Aegean Sea  

 

Characterization of CDOM 

EEM spectrums were recorded with an Agilent Cary 
Eclipse Fluorescence Spectrophotometer. EEM spectra were 
collected at excitation wavelengths of 230-500 nm and 
emission wavelengths of 250-600 nm with a spectral resolution 
of 2 nm. EEM spectra of Milli-Q water was subtracted from the 
EEM spectra of samples to remove scattering effects of water 
(Chari et al., 2012). Raman normalization was applied to 
normalize the data for comparability (Chari et al., 2012; Murphy 
et al., 2010; Stedmon et al., 2003) and fluorescence intensities 
were represented as Raman Units (RU). Raman normalization 
was performed by using Raman peak area (Eq. 1, λex=350 nm, 
λem=381-421 nm) and dividing fluorescence intensity to 
Raman peak area (Eq. 2). EEM peaks of samples were 
determined according to Coble (1996) (Table 1). Post-
processing of EEM spectrums were performed with modified 
PLOTEEM script in R (Lapworth and Kinniburgh, 2009; R Core 
Team, 2016). EEM peaks were extracted according to 
“algorithm–based approach” by selecting the peak points with 
maximum fluorescence intensities at defined emission regions 
(Korak et al., 2014). 

 

𝐴𝑅
350 = ∫ 𝐼(𝜆em)dλem

426

381
    (1) 

𝐼(RU) =
1

𝐴𝑅
350 𝐼(AU)         (2) 

where AR350 indicates area under emission spectrum 
between 381 and 421 nm at excitation wavelength of 350 nm, 
I(λem) represents fluorescence intensity as a function of 
emission wavelength, I(RU) represents fluorescence intensity 
of samples in RU, I(AU) represents raw fluorescence intensity 
of samples in Arbitrary Units (AU). 

Table 1. Determination criteria of EEM peaks according to Coble 
(1996) 

EEM peaks Peak name (Wavelength range) 

A UV humic-like (Ex:260, Em:380-460) 

B Tyrosine-like, protein-like (Ex:275, Em:310) 

C Visible humic-like (Ex:350, Em:420-480) 

M Marine humic-like (Ex:312, Em:380-420) 

T Tryptophan-like, protein-like (Ex:275, Em:340) 

Calculations of fluorescence indexes 

HIX and BIX are used to extract quantitative information on 
contributions of humic matter and autochthonous production to 
the fluorescence intensities of seawater samples. HIX was first 
introduced by Zsolnay et al. (1999) for estimating the humic 
matter content of DOM in soil samples. As a result of higher 
humification degree, C/H ratio and aromaticity was increased 
(Lüttig, 1986; Stevenson, 1982) and a shift to longer emission 
wavelengths was observed (Chen et al., 2011; Huguet et al., 
2009; Tam and Sposito, 1993; Zsolnay et al., 1999). HIX is 
defined as the ratio of spectral area under emission 
wavelengths of 435-480 nm to emission wavelengths of 300-
345 nm at excitation wavelength of 254 nm. HIX can be 
formulated as below (Eq. 3): 

HIX=
∫ 𝐼(𝜆em)dλem

480

435

∫ 𝐼(𝜆em)dλem
345

300

          (3) 

where I represents fluorescence intensity as a function of 
emission wavelength (λem). 
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BIX was introduced by Huguet et al. (2009) for 

determination of the autochthonous biological activity and 

freshly produced DOM in natural water samples. While large 

BIX values indicate diagenetically unaltered DOM, numerator 

part of the fraction corresponds to microbially produced DOM, 

and denominator part represents highly decomposed DOM 

(Fellman et al., 2010; Lu et al., 2015; Wilson and Xenopoulos, 

2009). It is calculated by dividing the fluorescence intensity at 

excitation wavelength of 310 nm and emission wavelength of 

380 nm to the maximum emission intensity in the range of 420-

480 nm at excitation wavelength of 310 nm (Eq. 4). 

 

BIX=
𝐼𝜆ex310 𝜆em380⁄

𝑚𝑎𝑥420≤𝜆em≤480𝐼𝜆ex310

    (4) 

where I represents fluorescence intensity. 

Statistical analyses 

Statistical analyses were performed with R Statistical 
Computing Software, v3.3.1 (R Core Team, 2016). The 
Spearman’s rank correlation test was performed between EEM 
peaks, HIX, BIX and DOC. Also, relationships between EEM 
peaks, HIX, BIX and DOC were investigated with linear 
regression analyses. 

RESULTS AND DISCUSSION 

The results of DOC, EEM peak intensities of CDOM 
components and fluorescence indexes (HIX and BIX) were 
given in Table 2. DOC concentrations were found in the range 
of 35.3-244.2 µM throughout the bay. DOC levels in the 
middle-inner bays (stations 1 and 2) observed higher 
compared to outer bay (stations 3-7) (Figure 2a). DOC 
concentrations found in this study were similar to the previous 
reports (56.1-121 µM) for İzmir Bay (Kucuksezgin et al., 2005) 

 

Figure 2. Distributions of DOC, HIX and BIX in the middle-inner and outer bays: a) DOC, b) HIX, and c) BIX 
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Table 2. DOC concentrations, fluorescent components of CDOM and descriptive fluorescence indexes (S: Surface, SS: Subsurface) 

Station DOC (μM) Peak M Peak A Peak C Peak T Peak B HIX BIX 

St1-S 244.2 0.13 0.18 0.11 0.11 0.05 3.51 0.94 

St1-SS 206.6 0.14 0.18 0.10 0.09 0.06 3.26 0.95 

St2-S 140.3 0.09 0.14 0.08 0.07 0.05 3.25 0.89 

St2-SS 105.6 0.11 0.14 0.09 0.09 0.05 3.07 0.96 

St3-S 58.9 0.03 0.05 0.04 0.04 0.02 1.79 0.85 

St3-SS 42.7 0.03 0.05 0.02 0.02 0.02 1.58 0.68 

St4-S 45.4 0.01 0.02 0.02 0.02 0.01 0.77 0.37 

St4-SS 42.7 0.02 0.02 0.02 0.01 0.02 0.87 0.31 

St5-S 38.6 0.03 0.04 0.02 0.03 0.02 1.08 0.60 

St5-SS 46.7 0.03 0.03 0.02 0.02 0.01 1.44 0.73 

St6-S 58.9 0.02 0.03 0.02 0.02 0.01 0.79 0.68 

St6-SS 37.7 0.03 0.03 0.02 0.03 0.04 0.73 0.51 

St7-S 38.6 0.02 0.03 0.02 0.01 0.01 0.77 0.57 

St7-SS 35.3 0.01 0.02 0.02 0.01 0.01 0.91 0.71 

 

 

Raman normalized fluorescence intensities of EEM peaks 

decreased from inner to outer bay stations (Table 2). EEM 

spectrums of the samples were given in Figures 3 and 4. 

Intensities of EEM peaks decreased in the order of A, M, C, T, 

and B at station 1 and 2. The intensities of peak A at station 3 

were slightly higher compared to other outer bay stations. On 

the other hand, EEM peak intensities were very similar to each 

other at outer bay stations. Results indicated the presence of 

higher humic-like (peaks A, C, and M) and protein-like (peaks 

T and B) components at middle-inner bays than outer bay 

stations. 

HIX and BIX indexes decreased from inner to outer bay 
stations (Figure 2b,c). HIX was between 0.73-3.51, whereas 
BIX ranged from 0.31 to 0.96 in the bay. According to scales of 
HIX defined by Huguet et al. (2009), HIX values in this study 
showed that the DOM in middle-inner bays (3.07-3.51) might 
be originated from biological or aquatic bacterial processes, but 
this character was weaker at outer bay stations (0.77-1.79). 

According to BIX values (Huguet et al., 2009), DOM has strong 
autochthonous character at middle-inner bays (0.89-0.96) 
whereas DOM showed autochthonous character from low to 
strong levels at a wide range (0.31-0.85) in outer bay. 

Observation of relatively high HIX values in the middle-
inner bays could be linked to the presence of Melez stream 
(heavily polluted), other streams, rain run-offs and maritime 
activities at İzmir Bay. High HIX values at middle-inner bays 
might be related with humic matter inputs (humification degree) 
and stabilities of CDOM components (Bai et al., 2014; Chari et 
al., 2012; Huguet et al., 2009). Also, high BIX values indicated 
presence of freshly produced DOM from bacterial origin 
(Fellman et al., 2010; Lu et al., 2015; Wilson and Xenopoulos, 
2009). According to HIX vs. BIX plot in Figure 5, it was possible 
to distinguish CDOM characteristics of middle-inner bay 
stations from outer bay. High HIX and BIX values for CDOM 
might be resulted from high anthropogenic inputs, physico-
chemical characteristics and biological processes in middle-
inner bays. 
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Figure 3. EEM plots for Station 1 to 4: a) St1-S, b) St1-SS, c) St2-S, d) St2-SS, e) St3-S, f) St3-SS, g) St4-S, and h) St4-SS (S: Surface, SS: 
Subsurface) 
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Figure 4. EEM plots for Station 5 to 7: a) St5-S, b) St5-SS, c) St6-S, d) St6-SS, e) St7-S, and f) S7-SS (S: Surface, SS: Subsurface) 

 

Spearman’s rank correlations between EEM peak 
intensities, HIX, BIX, total fluorescence intensities (ΣFL) and 
DOC concentrations were found highly positive (p<0.05, Table 
3). Linear relationships between EEM peaks, HIX, BIX and 
DOC concentrations at middle-inner and outer bays were given 
in Figure 6 and Table 3.  

According to linear regression between DOC and ΣFL, the 
fluorescent fraction of DOM in the surface and subsurface 
waters of İzmir Bay were composed of highly fluorescent and 
slightly fluorescent fractions (Figure 6c). Also, humic-like (A, C, 
M) and tryptophan-like (T) EEM peaks were able to explain 

more than 85% of variation in DOC concentrations. Linear 
relationships between HIX and DOC concentrations 
(explaining 80% variation in DOC) indicated that humic matter 
has an important contribution to DOM.  

On the other hand, correlation (ρ=0.719, p=0.004) and 

linearity (r2=0.484, p=0.005) between BIX and DOC 

represented weaker contribution of autochthonous processes 

to DOM pool. As a result, DOM composition in İzmir Bay could 

be linked to humic matter inputs and in situ marine production 

processes. 
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Figure 5. Relationships between HIX and BIX. Low, intermediate and strong indicates autochthonous character of DOM (Huguet et al. 2009) 

 

Spectral ranges of EEM peaks found in this study were 
very similar to the peaks of CDOM components previously 
reported in the literature (Penru et al., 2013; Retelletti Brogi et 
al., 2015; Su et al., 2015; Zeri et al., 2014). Excitation and 
emission wavelengths of peak regions and corresponding 
CDOM components were compared with other studies in Table 
4. In the North Aegean Sea and Marmara Sea, Zeri et al. (2014) 
have identified three PARAFAC components within CDOM 
corresponding to UV and visible humic-like (C1), marine humic-
like (C2) and tyrosine-like (C3) peaks. Similar humic-like and 
protein-like peaks were also present in studies at the 
Northwestern Mediterranean Sea (Penru et al., 2013) and 
Tyrrhenian Sea (Retelletti Brogi et al., 2015). Humic-like peaks 
have been reported at coastal environments under the 
influences of terrestrial inputs and low salinity waters (Coble, 
1996; Stedmon and Markager, 2005). Marine humic-like peaks 
have been associated with increased phytoplankton activity 

and autochthonous production (Coble, 1996; Murphy et al., 
2008). Tyrosine and tryptophan-like peaks have been shown 
to originate from bacterial degradation of organic matter and 
these components are widely distributed along coastal waters 
(Coble, 1996; Stedmon et al., 2003; Yamashita et al., 2008). 

Due to the low velocities of water masses inflowing and 
outflowing, inner part of İzmir Bay has been more heavily 
influenced from anthropogenic inputs. According to Sayin 
(2003), water mass renewal time for inner part was found as 3 
months, whereas renewal time for outer bay was around 1-1.5 
months. Similarly, Jiang et al. (2008) have reported the 
influence of water circulation on DOM transport. In middle-inner 
and outer bays, variations of EEM peak intensities, HIX and 
BIX (Figures 2-4) could be related to the influences of 
anthropogenic inputs and physico-chemical characteristics of 
water masses. 

Table 3. Results of Spearman’s rank correlation tests and linear regression analyses between EEM peaks, Σ FL, HIX, BIX and DOC 

 Correlations with DOC Linear Regression Equations 

Peak A ρ = 0.744, p = 0.002 [DOC] = 1044.9 [A] + 9.9, r2 = 0.896, p = 0.000 

Peak B ρ = 0.575, p = 0.031 [DOC] = 2968.0 [B] + 1.0, r2 = 0.654, p = 0.000 

Peak C ρ = 0.843, p = 0.000 [DOC] = 1826.9 [C] + 3.3, r2 = 0.888, p = 0.000 

Peak M ρ = 0.701, p = 0.005 [DOC] = 1382.3 [M] + 12.5, r2 = 0.873, p = 0.000 

Peak T ρ = 0.751, p = 0.002 [DOC] = 1828.4 [T] + 7.1, r2 = 0.846, p = 0.000 

Σ FL ρ = 0.727, p = 0.003 [DOC] = 332.6 [ΣFL] + 5.8, r2 = 0.877, p = 0.000 

HIX ρ = 0.774, p = 0.001 [DOC] = 56.1 [HIX] – 13.9, r2 = 0.796, p = 0.000 

BIX ρ = 0.719, p = 0.004 [DOC] = 226.1 [BIX] – 75.9, r2 = 0.484, p = 0.005 
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Figure 6. Linear relationships between DOC and a) Marine Humic-like, UV Humic-like and Visible Humic-like peaks, b) Tryptophan-like and 
Tyrosine-like peaks, and c) ΣFL, and d) HIX and BIX 

 

Table 4. Characteristics of the EEM peaks identified in this study and their comparison with those of other studies 

EEM Peaks 
(Ex/Em) 
(This Study) 

Marmara Sea; 
North Aegean Sea 
(Zeri et al., 2014) 

Northwestern 
Mediterranean Sea 
(Penru et al., 2013) 

Tyrrhenian Sea 
(Retelletti Brogi et al., 
2015) 

Southern Yellow Sea; 
East China Sea 
(Su et al., 2015) 

A (260/380–460) C1 (<260 (330)/464) III (220–250/380–580) P1 (250/400–500) C2 (335/400) 

B (275/310) C3 (270/308) I (220–250/280–332) P4 (270/315) - 

C (350/420–480) C1 (<260 (330)/464) V (250–470/380–580) P3 (350/450) C1 (360/440) 

M (312/380–420) C2 (<250, 285/364) IV (250–470/280–380) P2 (315/419) - 

T (275/340) - II (220–250/332–380) P5 (280/341) C4 (280/360) 

 

CONCLUSION 

Optical characterization of chromophoric dissolved organic 
matter in İzmir Bay was studied by excitation-emission matrix 
spectroscopy in this study. Fluorescence measurements 
indicated the presence of higher humic-like (peaks A, C, and 
M) and protein-like (peaks T and B) components at eutrophic 
middle-inner bays. DOC concentrations, EEM peak intensities 
and HIX/BIX values increased from outer to inner bay. High 
HIX and BIX values in the middle-inner bays could be 
explained by the presence of higher humification degrees and 
freshly produced DOM with bacterial origin. In middle-inner 
bays, CDOM composition might be influenced from nutrient 

and DOM rich terrestrial inputs, and water renewal times. In 
conclusion, optical characterization of CDOM could be used for 
tracing fluorescent DOM components and determining different 
DOM sources (autochthonous or allochthonous) in further 
studies. 
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