Research Article
BibTex RIS Cite

Determination of oxidative stress in common carp (Cyprinus carpio) treated with phenol

Year 2025, Volume: 42 Issue: 4, 331 - 337

Abstract

This study examined the effects of phenol exposure on oxidative stress and antioxidant defense mechanisms in common carp (Cyprinus carpio). A total of 120 common carp with an average body mass of 30 g were randomly allocated into four experimental sets, consisting of one untreated control and three groups subjected to phenol at 0.01, 0.1, and 1 ppm for 96 hours. Following the exposure period, samples of liver and gill tissues were obtained to assess oxidative stress markers, including malondialdehyde (MDA), and the enzymatic activities of catalase (CAT), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), along with reduced glutathione (GSH) levels. The analysis revealed that MDA concentrations were markedly elevated in every group exposed to phenol relative to the control fish, demonstrating enhanced lipid peroxidation and heightened oxidative stress. Antioxidant enzyme activities (CAT and GSH-Px) and GSH levels significantly decreased in liver and gill tissues, while GST activity increased in a dose-dependent manner. These findings suggest that phenol disrupts the balance between oxidation and antioxidant defences, leading to cellular stress and potential tissue damage. The changes in enzyme activity imply compensatory mechanisms or detoxification responses triggered by phenol exposure. Since even low concentrations of phenol caused notable oxidative changes, this study highlights its potential toxicity to aquatic organisms. The results emphasize the importance of cautious use of phenolic compounds in aquatic environments and contribute to a broader understanding of phenol-induced oxidative stress in fish. Further research involving different species, exposure durations, and physiological markers is recommended to confirm and expand these findings.

Ethical Statement

All experimental protocols were reviewed and approved by the Institutional Animal Ethics Committee (Approval No. 2023/05-01, March 22, 2023). Throughout the study, procedures strictly adhered to established ethical standards for the care and use of laboratory animals.

References

  • Aebi, H. (1984). Catalase in vitro. In L. Packer (Ed.), Methods in Enzymology, 105, 121–126. Academic Press. https://doi.org/10.1016/S0076-6879(84)05016-3
  • Akram, R., Iqbal, R., Hussain, R., Jabeen, F., & Ali, M. (2021). Evaluation of oxidative stress, antioxidant enzymes and genotoxic potential of bisphenol A in freshwater bighead carp (Aristichthys nobilis) fish at low concentrations. Environmental Pollution, 268(Pt A), 115896. https://doi.org/10.1016/j.envpol.2020.115896
  • Avilez, I.M., Hori, T.S.F., de Almeida, L.C., Hackbarth, A., Neto, J.C.B., Bastos, V.L.F.C., & Moraes, G. (2008). Effects of phenol in antioxidant metabolism in matrinxã, Brycon amazonicus (Teleostei; Characidae). Comparative Biochemistry and PhysiologyPart C, 148, 136 142. https://doi.org/10.1016/j.cbpc.2008.04.008
  • Beutler, E. (1975). Reduced glutathione (GSH). In H.V. Bergmeyer (Ed.), Red Blood Cell Metabolism: A Manual of Biochemical Methods (2nd ed., pp. 112–114). Grune & Stratton.
  • Das, S., Majumder, S., Gupta, S., Dutta, S., & Mukherjee, D. (2016). Effects of phenol on ovarian P450arom gene expression and aromatase activity in vivo and antioxidant metabolism in common carp Cyprinus carpio. Fish Physiology and Biochemistry, 42, 275 286. https://doi.org/10.1007/s10695-015-0135-9
  • Ellman, G.L. (1959). Tissue sulphydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77. https://doi.org/10.1016/0003-9861(59)90090-6
  • Fontagné, S., Bazin, D., Brèque, J., Vachot, C., Bernarde, C., Rouault, T., & Bergot, P. (2006). Effects of dietary oxidized lipid and vitamin A on the early development and antioxidant status of Siberian sturgeon (Acipenser baeri) larvae. Aquaculture, 257, 400 411. https://doi.org/10.1016/j.aquaculture.2006.01.025
  • Fornazier, R.F., Ferreira, R.R., Vitoria, A.P., Molina, S.M.G., Lea, P.J., & Azevedo, R.A. (2002). Effects of cadmium on antioxidant enzyme activities in sugar cane. Biologia Plantarum, 45(1), 91–97. https://doi.org/10.1023/A:1015100624229
  • Gaur, V., & Mathur, A. (2017). Evaluation of antioxidant profile of Labeo rohita in stress condition after exposure to phenolic compounds. International Journal of Scientific Research Publications, 7(6), 423–434.
  • Habig, W.H., Pabst, M.J., & Jakoby, W.B. (1974). Glutathione S‐transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130 7139. https://doi.org/10.1016/S0021-9258(19)42083-8
  • Hamed, R.R., Farid, N.M., Elowa, S.H.E., & Abdalla, A.M. (2003). Glutathione-related enzyme levels of freshwater fish as bioindicators of pollution. Environmentalist, 23, 313 322. https://doi.org/10.1023/B:ENVR.0000031409.09024.cc
  • Hayes, J.D., & McLellan, L.I. (1999). Glutathione and glutathione dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radical Research, 31, 273 300. https://doi.org/10.1080/10715769900300851
  • Homsby, P.J. (1989). Steroid and xenobiotic effects on the adrenal cortex: mediation by oxidative and other mechanisms. Free Radical Biology and Medicine, 6, 103–115. https://doi.org/10.1016/0891-5849(89)90163-9
  • İspir, U., Kirici, M., Yonar, M.E., & Mişe Yonar, S. (2017). Response of antioxidant system to formalin in the whole body of rainbow trout, Oncorhynchus mykiss. Cellular and Molecular Biology (Noisy-le-Grand), 63(1), 13–16. https://doi.org/10.14715/cmb/2017.63.1.3
  • Kono, Y., & Fridovich, I. (1982). Superoxide radical inhibits catalase. Journal of Biological Chemistry, 257(10), 5751 5754. https://doi.org/10.1016/S0021-9258(19)83842-5
  • Lou, B., Xu, D., Xu, H., Zhan, W., Mao, G., & Shi, H. (2011). Effect of high water temperature on growth, survival and antioxidant enzyme activities in the Japanese flounder Paralichthys olivaceus. African Journal of Agricultural Research, 6(12), 2875 2882. https://doi.org/10.5897/AJAR10.797
  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Mahim, S. S., Anjali, V. R., Remya, V. S., Reshmi, S., & Aruna Devi, C. (2021). Oxidative stress responses of a freshwater fish, Labeo rohita, to a xenobiotic, bisphenol S. Journal of Biochemical and Molecular Toxicology, 35(8), e22820. https://doi.org/10.1002/jbt.22820
  • Mişe Yonar, S., Sakin, F., Yonar, M.E., Ispir, Ü., & Kirici, M. (2011). Oxidative stress biomarkers of exposure to deltamethrin in rainbow trout fry (Oncorhynchus mykiss). Fresenius Environmental Bulletin, 20(8), 1931–1935.
  • Morales, A.E., Pérez Jiménez, A., Hidalgo, M.C., Abellán, E., & Gabriel, C.G. (2004). Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comparative Biochemistry and Physiology Part C, 139(1 3), 153 161. https://doi.org/10.1016/j.cca.2004.10.008
  • Murugesan, P., Balaganesh, M., Balasubramanian, K., & Arunakaran, J. (2007). Effects of polychlorinated biphenyl (Aroclor 1254) on steroidogenesis and antioxidant system in cultured adult rat Leydig cells. Journal of Endocrinology, 192, 325 338. https://doi.org/10.1677/joe.1.06874
  • Muthukumaravel, K., Kanagavalli, V., Pradhoshini, K.P., Vasanthi, N., Santhanabharathi, B., Alam, L., Musthafa, M.S., & Faggio, C. (2023). Potential biomarker of phenol toxicity in freshwater fish Cirrhinus mrigala: Serum cortisol, enzyme acetylcholine esterase and survival organ gill. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 263, 109492. https://doi.org/10.1016/j.cbpc.2023.109492
  • Niyogi, S., Biswas, S., Sarker, S., & Datta,, A.G. (2001). Seasonal variation of antioxidant and biotransformation enzymes in barnacle, Balanus balanoides, and their relation with polyaromatic hydrocarbons. Marine Environmental Research, 52, 13–26. https://doi.org/10.1016/S0141-1136(00)00257-9
  • Paris Palacios, S., Biagianti Risbourg, S., & Vernet, G. (2000). Biochemical and (ultra)structural hepatic perturbations of Brachydanio rerio (Teleostei, Cyprinidae) exposed to two sublethal concentrations of copper sulfate. Aquatic Toxicology, 50, 109–124. https://doi.org/10.1016/S0166-445X(99)00090-9
  • Peltola, V., Huhtaniemi, I., Metsa Ketela, T., & Ahotupa, M. (1996). Induction of lipid peroxidation during steroidogenesis in the rat testis. Endocrinology, 137, 105 112. https://doi.org/10.1210/endo.137.1.8536600
  • Placer, Z.A., Cushman, L.C., & Johnson, B.C. (1966). Estimation of products of lipid peroxidation (Malondialdehyde) in biological fluids. Analytical Biochemistry, 16, 359–364. https://doi.org/10.1016/0003-2697(66)90167-9
  • Roche, H., & Bogé, G. (2000). In vivo effects of phenolic compounds on blood parameters of marine fish (Dicentrarchus labrax). Comparative Biochemistry and Physiology Part C, 125, 345–353. https://doi.org/10.1016/S0742-8413(99)00119-X
  • Saha, N.C., Bhunia, F., & Kaviraj, A. (1999). Toxicity of phenol to fish and aquatic ecosystems. Bulletin of Environmental Contamination and Toxicology, 63, 195–202. https://doi.org/10.1007/s001289900966
  • Sakin, F., Ispir, Ü., Mişe Yonar, S., Yonar, M. E., & Taysi, R. (2011). Effect of short-term cypermethrin exposure on oxidant–antioxidant balance in the whole body of rainbow trout fry (Oncorhynchus mykiss). Fresenius Environmental Bulletin, 20(10a), 2806–2809.
  • Sakin, F., Mişe Yonar, S., Yonar, M. E., & Saglam, N. (2012). Changes in selected immunological parameters and oxidative stress responses in different organs of Oncorhynchus mykiss exposed to ivermectin. Revista de Chimie (Bucharest), 63(10), 989-995.
  • Seker, E., Ispir, U., Mişe Yonar, S., Yonar, M. E., & Turk, C. (2015). Antioxidant responses of rainbow trout (Oncorhynchus mykiss) gills after exposure to hydrogen peroxide. Fresenius Environmental Bulletin, 24(5a), 1837–1840.
  • Sies, H. (1997). Oxidative stress: oxidants and antioxidants. Experimental Physiology, 82(2), 291 295. https://doi.org/10.1113/expphysiol.1997.sp004024
  • Varó, I., Nunes, B., Amat, F., Torreblanca, A., Guilhermino, L., & Navarro, J.C. (2007). Effect of sublethal concentrations of copper sulphate on seabream Sparus aurata fingerlings. Aquatic Living Resources, 20, 263–270. https://doi.org/10.1051/alr:2007039
  • Vinodhini, R., & Narayana, M. (2009). Heavy metal induced histopathological alterations in selected organs of the Cyprinus carpio L. (common carp). International Journal of Environmental Research, 3, 95–100.
  • Yıldız, E., & Kaptaner, B. (2025). Effects of formaldehyde on cytotoxicity and antioxidant defense/oxidative stress biomarkers in hepatocytes isolated from rainbow trout (Oncorhynchus mykiss). Biology Bulletin, 52, 209. https://doi.org/10.1134/S1062359025600758
  • Yonar, M.E., Ispir, U., Mişe Yonar, S., & Kirici, M. (2016). Effect of copper sulphate on the antioxidant parameters in the rainbow trout fry, Oncorhynchus mykiss. Cellular and Molecular Biology, 62(6), 55–58. https://doi.org/10.14715/cmb/2016.62.6.10
  • Yonar, M.E., Mişe Yonar, S., Ispir, Ü., & Ural, M.Ş. (2019). Effects of curcumin on haematological values, immunity, antioxidant status and resistance of rainbow trout (Oncorhynchus mykiss) against Aeromonas salmonicida subsp. achromogenes. Fish & Shellfish Immunology, 89, 83–90. https://doi.org/10.1016/j.fsi.2019.03.038

Fenol uygulanan sazan (Cyprinus carpio)'da oksidatif stresin belirlenmesi

Year 2025, Volume: 42 Issue: 4, 331 - 337

Abstract

Bu çalışmada, fenolün sazanlarda (Cyprinus carpio) oksidatif stres ve antioksidan savunma mekanizmaları üzerindeki etkileri araştırılmıştır. Ortalama 30 g ağırlığındaki 120 balık, bir kontrol ve üç farklı deney grubuna ayrılmış; deney grupları 96 saat süreyle sırasıyla 0.01, 0.1 ve 1 ppm fenol konsantrasyonlarına maruz bırakılmıştır. Uygulama sonunda karaciğer ve solungaç dokuları incelenerek malondialdehit (MDA) düzeyleri ile katalaz (CAT), glutatyon peroksidaz (GSH-Px), glutatyon S-transferaz (GST) aktiviteleri ve redükte glutatyon (GSH) seviyeleri ölçülmüştür. Sonuçlar, tüm fenol uygulanan gruplarda MDA düzeylerinin kontrol grubuna göre belirgin şekilde yükseldiğini ve bunun artmış lipid peroksidasyonu ile oksidatif stresin göstergesi olduğunu ortaya koymuştur. Karaciğer ve solungaç dokularında CAT, GSH-Px aktiviteleri ve GSH düzeyleri anlamlı olarak azalırken, GST aktivitesi doza bağlı şekilde artış göstermiştir. Bu bulgular, fenolün oksidatif dengeyi bozarak hücresel stres ve potansiyel doku hasarına yol açtığını göstermektedir. Enzim aktivitelerindeki değişimler, organizmanın fenole karşı geliştirdiği telafi edici mekanizmaları veya detoksifikasyon yanıtlarını işaret etmektedir. Düşük konsantrasyonlarda dahi fenolün kayda değer oksidatif değişimlere neden olması, bu bileşiğin sucul organizmalar için yüksek toksisite potansiyeline sahip olduğunu göstermektedir. Çalışma, fenolik bileşiklerin su ortamlarında kullanımında dikkatli olunması gerektiğini vurgulamakta ve fenol kaynaklı oksidatif stresin balıklardaki etkilerinin daha kapsamlı anlaşılmasına katkı sağlamaktadır. Bu sonuçların pekiştirilmesi için farklı türler, maruziyet süreleri ve ek fizyolojik parametreleri içeren ileri araştırmalar önerilmektedir.

References

  • Aebi, H. (1984). Catalase in vitro. In L. Packer (Ed.), Methods in Enzymology, 105, 121–126. Academic Press. https://doi.org/10.1016/S0076-6879(84)05016-3
  • Akram, R., Iqbal, R., Hussain, R., Jabeen, F., & Ali, M. (2021). Evaluation of oxidative stress, antioxidant enzymes and genotoxic potential of bisphenol A in freshwater bighead carp (Aristichthys nobilis) fish at low concentrations. Environmental Pollution, 268(Pt A), 115896. https://doi.org/10.1016/j.envpol.2020.115896
  • Avilez, I.M., Hori, T.S.F., de Almeida, L.C., Hackbarth, A., Neto, J.C.B., Bastos, V.L.F.C., & Moraes, G. (2008). Effects of phenol in antioxidant metabolism in matrinxã, Brycon amazonicus (Teleostei; Characidae). Comparative Biochemistry and PhysiologyPart C, 148, 136 142. https://doi.org/10.1016/j.cbpc.2008.04.008
  • Beutler, E. (1975). Reduced glutathione (GSH). In H.V. Bergmeyer (Ed.), Red Blood Cell Metabolism: A Manual of Biochemical Methods (2nd ed., pp. 112–114). Grune & Stratton.
  • Das, S., Majumder, S., Gupta, S., Dutta, S., & Mukherjee, D. (2016). Effects of phenol on ovarian P450arom gene expression and aromatase activity in vivo and antioxidant metabolism in common carp Cyprinus carpio. Fish Physiology and Biochemistry, 42, 275 286. https://doi.org/10.1007/s10695-015-0135-9
  • Ellman, G.L. (1959). Tissue sulphydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77. https://doi.org/10.1016/0003-9861(59)90090-6
  • Fontagné, S., Bazin, D., Brèque, J., Vachot, C., Bernarde, C., Rouault, T., & Bergot, P. (2006). Effects of dietary oxidized lipid and vitamin A on the early development and antioxidant status of Siberian sturgeon (Acipenser baeri) larvae. Aquaculture, 257, 400 411. https://doi.org/10.1016/j.aquaculture.2006.01.025
  • Fornazier, R.F., Ferreira, R.R., Vitoria, A.P., Molina, S.M.G., Lea, P.J., & Azevedo, R.A. (2002). Effects of cadmium on antioxidant enzyme activities in sugar cane. Biologia Plantarum, 45(1), 91–97. https://doi.org/10.1023/A:1015100624229
  • Gaur, V., & Mathur, A. (2017). Evaluation of antioxidant profile of Labeo rohita in stress condition after exposure to phenolic compounds. International Journal of Scientific Research Publications, 7(6), 423–434.
  • Habig, W.H., Pabst, M.J., & Jakoby, W.B. (1974). Glutathione S‐transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130 7139. https://doi.org/10.1016/S0021-9258(19)42083-8
  • Hamed, R.R., Farid, N.M., Elowa, S.H.E., & Abdalla, A.M. (2003). Glutathione-related enzyme levels of freshwater fish as bioindicators of pollution. Environmentalist, 23, 313 322. https://doi.org/10.1023/B:ENVR.0000031409.09024.cc
  • Hayes, J.D., & McLellan, L.I. (1999). Glutathione and glutathione dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radical Research, 31, 273 300. https://doi.org/10.1080/10715769900300851
  • Homsby, P.J. (1989). Steroid and xenobiotic effects on the adrenal cortex: mediation by oxidative and other mechanisms. Free Radical Biology and Medicine, 6, 103–115. https://doi.org/10.1016/0891-5849(89)90163-9
  • İspir, U., Kirici, M., Yonar, M.E., & Mişe Yonar, S. (2017). Response of antioxidant system to formalin in the whole body of rainbow trout, Oncorhynchus mykiss. Cellular and Molecular Biology (Noisy-le-Grand), 63(1), 13–16. https://doi.org/10.14715/cmb/2017.63.1.3
  • Kono, Y., & Fridovich, I. (1982). Superoxide radical inhibits catalase. Journal of Biological Chemistry, 257(10), 5751 5754. https://doi.org/10.1016/S0021-9258(19)83842-5
  • Lou, B., Xu, D., Xu, H., Zhan, W., Mao, G., & Shi, H. (2011). Effect of high water temperature on growth, survival and antioxidant enzyme activities in the Japanese flounder Paralichthys olivaceus. African Journal of Agricultural Research, 6(12), 2875 2882. https://doi.org/10.5897/AJAR10.797
  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Mahim, S. S., Anjali, V. R., Remya, V. S., Reshmi, S., & Aruna Devi, C. (2021). Oxidative stress responses of a freshwater fish, Labeo rohita, to a xenobiotic, bisphenol S. Journal of Biochemical and Molecular Toxicology, 35(8), e22820. https://doi.org/10.1002/jbt.22820
  • Mişe Yonar, S., Sakin, F., Yonar, M.E., Ispir, Ü., & Kirici, M. (2011). Oxidative stress biomarkers of exposure to deltamethrin in rainbow trout fry (Oncorhynchus mykiss). Fresenius Environmental Bulletin, 20(8), 1931–1935.
  • Morales, A.E., Pérez Jiménez, A., Hidalgo, M.C., Abellán, E., & Gabriel, C.G. (2004). Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comparative Biochemistry and Physiology Part C, 139(1 3), 153 161. https://doi.org/10.1016/j.cca.2004.10.008
  • Murugesan, P., Balaganesh, M., Balasubramanian, K., & Arunakaran, J. (2007). Effects of polychlorinated biphenyl (Aroclor 1254) on steroidogenesis and antioxidant system in cultured adult rat Leydig cells. Journal of Endocrinology, 192, 325 338. https://doi.org/10.1677/joe.1.06874
  • Muthukumaravel, K., Kanagavalli, V., Pradhoshini, K.P., Vasanthi, N., Santhanabharathi, B., Alam, L., Musthafa, M.S., & Faggio, C. (2023). Potential biomarker of phenol toxicity in freshwater fish Cirrhinus mrigala: Serum cortisol, enzyme acetylcholine esterase and survival organ gill. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 263, 109492. https://doi.org/10.1016/j.cbpc.2023.109492
  • Niyogi, S., Biswas, S., Sarker, S., & Datta,, A.G. (2001). Seasonal variation of antioxidant and biotransformation enzymes in barnacle, Balanus balanoides, and their relation with polyaromatic hydrocarbons. Marine Environmental Research, 52, 13–26. https://doi.org/10.1016/S0141-1136(00)00257-9
  • Paris Palacios, S., Biagianti Risbourg, S., & Vernet, G. (2000). Biochemical and (ultra)structural hepatic perturbations of Brachydanio rerio (Teleostei, Cyprinidae) exposed to two sublethal concentrations of copper sulfate. Aquatic Toxicology, 50, 109–124. https://doi.org/10.1016/S0166-445X(99)00090-9
  • Peltola, V., Huhtaniemi, I., Metsa Ketela, T., & Ahotupa, M. (1996). Induction of lipid peroxidation during steroidogenesis in the rat testis. Endocrinology, 137, 105 112. https://doi.org/10.1210/endo.137.1.8536600
  • Placer, Z.A., Cushman, L.C., & Johnson, B.C. (1966). Estimation of products of lipid peroxidation (Malondialdehyde) in biological fluids. Analytical Biochemistry, 16, 359–364. https://doi.org/10.1016/0003-2697(66)90167-9
  • Roche, H., & Bogé, G. (2000). In vivo effects of phenolic compounds on blood parameters of marine fish (Dicentrarchus labrax). Comparative Biochemistry and Physiology Part C, 125, 345–353. https://doi.org/10.1016/S0742-8413(99)00119-X
  • Saha, N.C., Bhunia, F., & Kaviraj, A. (1999). Toxicity of phenol to fish and aquatic ecosystems. Bulletin of Environmental Contamination and Toxicology, 63, 195–202. https://doi.org/10.1007/s001289900966
  • Sakin, F., Ispir, Ü., Mişe Yonar, S., Yonar, M. E., & Taysi, R. (2011). Effect of short-term cypermethrin exposure on oxidant–antioxidant balance in the whole body of rainbow trout fry (Oncorhynchus mykiss). Fresenius Environmental Bulletin, 20(10a), 2806–2809.
  • Sakin, F., Mişe Yonar, S., Yonar, M. E., & Saglam, N. (2012). Changes in selected immunological parameters and oxidative stress responses in different organs of Oncorhynchus mykiss exposed to ivermectin. Revista de Chimie (Bucharest), 63(10), 989-995.
  • Seker, E., Ispir, U., Mişe Yonar, S., Yonar, M. E., & Turk, C. (2015). Antioxidant responses of rainbow trout (Oncorhynchus mykiss) gills after exposure to hydrogen peroxide. Fresenius Environmental Bulletin, 24(5a), 1837–1840.
  • Sies, H. (1997). Oxidative stress: oxidants and antioxidants. Experimental Physiology, 82(2), 291 295. https://doi.org/10.1113/expphysiol.1997.sp004024
  • Varó, I., Nunes, B., Amat, F., Torreblanca, A., Guilhermino, L., & Navarro, J.C. (2007). Effect of sublethal concentrations of copper sulphate on seabream Sparus aurata fingerlings. Aquatic Living Resources, 20, 263–270. https://doi.org/10.1051/alr:2007039
  • Vinodhini, R., & Narayana, M. (2009). Heavy metal induced histopathological alterations in selected organs of the Cyprinus carpio L. (common carp). International Journal of Environmental Research, 3, 95–100.
  • Yıldız, E., & Kaptaner, B. (2025). Effects of formaldehyde on cytotoxicity and antioxidant defense/oxidative stress biomarkers in hepatocytes isolated from rainbow trout (Oncorhynchus mykiss). Biology Bulletin, 52, 209. https://doi.org/10.1134/S1062359025600758
  • Yonar, M.E., Ispir, U., Mişe Yonar, S., & Kirici, M. (2016). Effect of copper sulphate on the antioxidant parameters in the rainbow trout fry, Oncorhynchus mykiss. Cellular and Molecular Biology, 62(6), 55–58. https://doi.org/10.14715/cmb/2016.62.6.10
  • Yonar, M.E., Mişe Yonar, S., Ispir, Ü., & Ural, M.Ş. (2019). Effects of curcumin on haematological values, immunity, antioxidant status and resistance of rainbow trout (Oncorhynchus mykiss) against Aeromonas salmonicida subsp. achromogenes. Fish & Shellfish Immunology, 89, 83–90. https://doi.org/10.1016/j.fsi.2019.03.038
There are 37 citations in total.

Details

Primary Language English
Subjects Fish Physiology and Genetics
Journal Section Research Article
Authors

Didem Taşçı 0000-0002-2375-4580

M. Enis Yonar 0000-0001-9519-4247

Early Pub Date December 1, 2025
Publication Date December 2, 2025
Submission Date August 30, 2025
Acceptance Date October 7, 2025
Published in Issue Year 2025 Volume: 42 Issue: 4

Cite

APA Taşçı, D., & Yonar, M. E. (2025). Determination of oxidative stress in common carp (Cyprinus carpio) treated with phenol. Ege Journal of Fisheries and Aquatic Sciences, 42(4), 331-337.