Research Article
BibTex RIS Cite

Sinop sahilinden elde edilen ağır metal toleransına sahip aktinobakteriler: Moleküler karakterizasyon yaklaşımı

Year 2025, Volume: 42 Issue: 4, 298 - 306

Abstract

Bu çalışmada, Sinop, Meydankapı sahilinden toplanan sediment örneklerinden ağır metal toleransına sahip olan deniz aktinobakterilerinin izolasyonu ve moleküler karakterizasyonu amaçlanmıştır. Sediment örnekleri üç farklı istasyondan alınmış ve beş seçici besiyerinde kültüre alınarak 54 aktinobakteri suşu izole edilmiştir. En yüksek izolasyon verimliliği R2A ve SM3 besiyerlerinde elde edilmiştir. İzolatların kurşun (Pb), bakır (Cu), çinko (Zn), cıva (Hg) ve kadmiyum (Cd) dahil olmak üzere ağır metallere toleransı test edilmiştir. Sonuçlar, tüm izolatların Hg ve Cd'ye duyarlı, ancak Pb'ye yüksek tolerans gösterdiğini ortaya koymuştur. Ağır metallere karşı en yüksek direnci gösteren on iki izolat, genomik DNA izolasyonu için seçilmiştir. 16S rRNA gen bölgesi, evrensel primerler kullanılarak çoğaltılmış ve dizilenmiştir. Dizi analizi, izolatların Streptomyces, Actinomadura, Nocardia ve Nonomuraea cinslerine ait olduğunu belirlemiştir. Yaklaşık 1500 baz çifti uzunluğundaki 16S rRNA gen dizileri, EzTaxon veri tabanıyla karşılaştırılarak en yakın türler belirlendi. Elde edilen diziler GenBank veri tabanına kaydedildi. Sonuçlar, Karadeniz'in kirliliği fazla olan sedimentlerinden izole edilen deniz aktinobakterilerinin, ağır metallere karşı direnç mekanizmaları nedeniyle biyoremediasyon ve çevresel biyoteknoloji uygulamaları için önemli bir potansiyele sahip olduğunu göstermektedir.

Project Number

SHMYO-1901-23-002

References

  • Álvarez, A., Catalano, S.A., & Amoroso, M.J. (2013). Heavy metal resistant strains are widespread along Streptomyces Phylogeny. Molecular Phylogenetics and Evolution, 66, 1083 1088. https://doi.org/10.1016/j.ympev.2012.11.025
  • Ashbolt, N. J., Amézquita, A., Backhaus, T., Borriello, P., Brandt, K. K., Collignon, P., Coors. A., Finley, R., Gaze, W. H., Heberer, T., Lawrence, J.R., Larsson, D.G.J., McEwen, S.A., Ryan, J.J., Schönfeld, J., Silley, P., Snape, J.R., den Eede, C.V., & Topp, E. (2013). Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environmental Health Perspectives, 121, 993-1001. https://doi.org/10.1289/ehp.1206316
  • Buchholz-Cleven, B.E.E., Rattunde, B., & Straub, K.L. (1997). Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Systematic and Applied Microbiology, 20, 301 309. https://doi.org/10.1016/S0723 2020(97)80077-X
  • Bull, A.T., & Stach, J.E. (2007). Marine actinobacteria: New opportunities for natural product search and discovery. Trends in Microbiology, 15(11), 491-499. https://doi.org/10.1016/j.tim.2007.10.004
  • Chun, J. (1995). Computer assisted classification and identification of actinomycetes. [Ph.D. Thesis. University of Newcastle].
  • Cimermanova, M., Pristas, P., & Piknova, M. (2021). Biodiversity of Actinomycetes from heavy metal contaminated technosols. Microorganisms, 9(8), 1635. https://doi.org/10.3390/microorganisms9081635
  • El Baz, S., Baz, M., Barakate, M., Hassani, L., El Gharmali, A., & Imziln, B. (2015). Resistance to and accumulation of heavy metals by Actinobacteria isolated from abandoned mining areas. The Scientific World Journal, 761834. https://doi.org/10.1155/2015/761834
  • El-Sayed, M.H., Abdellatif, M.M., Mostafa, H.M., Elsehemy, I.A., & Kobisi, A. E.N.A. (2024). Biodegradation and antimicrobial capability-induced heavy metal resistance of the marine-derived actinomycetes Nocardia harenae JJB5 and Amycolatopsis marina JJB11. World Journal of Microbiology and Biotechnology, 40(7), 202. https://doi.org/10.1007/s11274-024-04006-x
  • El-Sorogy, A.S., Nour, H., Essa, E., & Tawfik, M. (2013). Quaternary coral reefs of the Red Sea coast, Egypt: Diagenetic sequence, isotopes and trace metals contamination. Arabian Journal of Geosciences, 6, 4981-4991. https://doi.org/10.1007/s12517-012-0806-0
  • Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17, 368-376.
  • Felsenstein, J. (1985). Confidence limits on phylogeny: An appropriate use of the bootstrap. Evolution, 39, 783-791. https://doi.org/10.2307/2408678
  • Fernandes, L.L., & Nayak, G.N. (2012). Geochemical assessment in a creek environment in mumbai, west coast of India. Environmental Forensics, 13, 45-54. https://doi.org/10.1080/15275922.2011.643340
  • Jagannathan, S.V., Manemann, E.M., Rowe, S.E., Callender, M.C., & Soto, W. (2021). Marine actinomycetes, new sources of biotechnological products. Marine Drugs, 19(7), 365. https://doi.org/10.3390/md19070365
  • Kester, D.R., Duedall, I.W., Connors, D.N., & Pytkowicz, R.M. (1967). Preparation of artificial seawater. Limnology and Oceanography, 12, 176-179.
  • Kim, O.-S., Cho, Y.-J., Lee, K., Yoon, S.-H., Kim, M., Na, H., Park, S.-C., Jeon, J.S., Lee, J.-H., Yi, H., Won, S., & Chun, J. (2012). Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62, 716 721. https://doi.org/10.1099/ijs.0.038075-0
  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111 120. https://doi.org/10.1007/BF01731581
  • Kluge, A.G., Farris, F.S. (1969). Quantitative phyletics and the evolution of anurans. Systematic Zoology, 18, 1-32.
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096
  • Lane, D.J. (1991). 16S/23S rRNA sequencing. In: E. Stackebrandt, M. Goodfellow (Eds), Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, pp 115–175.
  • Li, H., Lin, Y., Guan, W., Chang, J., Xu, L., Guo, J., & Wei, G. (2010). Biosorption of Zn(II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14. Journal of Hazardous Materials, 179, 151-159. https://doi.org/10.1016/j.jhazmat.2010.02.072
  • Li, K., Tang, X., Zhao, J., Guo, Y., Tang, Y., & Gao, J. (2019). Streptomyces cadmiisoli sp. nov., a novel actinomycete isolated from cadmium-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 69, 1024-1029. https://doi.org/10.1099/ijsem.0.003262
  • Lin, Y., Wang, X., Wang, B., Mohamad, O., & Wei, G. (2012). Bioaccumulation characterization of zinc and cadmium by Streptomyces zinciresistens, a novel actinomycete. Ecotoxicology and Environmental Safety, 77, 7-17. https://doi.org/10.1016/j.ecoenv.2011.09.016
  • Magarvey, N.A., Keller, J.M., Bernan, V., Dworkin, M., & Sherman, D.H. (2004). Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Applied and Environmental Microbiology, 70, 7520 7529. https://doi.org/10.1128/AEM.70.12.7520-7529.2004
  • Martin, Y.E., & Johnson, E.A. (2012). Biogeosciences survey: studying interactions of the biosphere with the lithosphere, hydrosphere and atmosphere. Progress in Physical Geography, 36, 833-852. https://doi.org/10.1177/0309133312457107
  • Masindi, V., & Muedi, K.L. (2018). Environmental contamination by heavy metals. In: H.E. Saleh, R.F. Aglan (Eds), Heavy metals (pp. 115-113). IntechOpen, Rijeka. https://doi.org/10.5772/intechopen.76082
  • Mincer, T.J., Jensen, P.R., Kauffman, C.A., & Fenical, W. (2002). Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Applied and Environmental Microbiology, 68(10), 5005-5011. https://doi.org/10.1128/AEM.68.10.5005-5011.2002
  • Mo, P., Yu, Y. Z., Zhao, J.-R., & Gao, J. (2017). Streptomyces xiangtanensis sp. nov., isolated from a manganese-contaminated soil. Antonie Leeuwenhoek, 110, 297-304. https://doi.org/10.1007/s10482-016-0797-z
  • Mondal, H., & Thomas, J. (2022). Isolation and characterization of a novel actinomycete isolated from marine sediments and its antibacterial activity against fish pathogens. Antibiotics, 11, 1546. https://doi.org/10.3390/antibiotics11111546
  • Pazirandeh, M., Wells, B.M., Ryan, R.L. (1998). Development of bacterium based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal-binding motif. Applied and Environmental Microbiology, 64, 4068. https://doi.org/10.1128/AEM.64.10.4068-4072.1998
  • Polti, M.A., Amoroso, M.J., & Abate, C.M. (2007). Chromium (VI) resistance and removal by actinomycete strains isolated from sediments. Chemosphere, 67(4), 660 667. https://doi.org/10.1016/j.chemosphere.2006.11.008
  • Rahman, Z., & Singh, V.P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environmental Monitoring and Assessment, 191, 419. https://doi.org/10.1007/s10661-019-7528-7
  • Reasoner, D.J., & Geldreich, E.E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, 49(1), 1-7. https://doi.org/10.1128/aem.49.1.1-7.1985
  • Sağlam, M.T. (1978). Toprak kimyası tatbikat notları. Atatürk Üniversitesi.
  • Saitou, N., & Nei, M. (1987). The neighbour-joining method: A new method for constructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  • Sanjenbam, P., Saurav, K., & Kannabiran, K. (2012). Biosorption of mercury and lead by aqueous Streptomyces VITSVK9 sp. isolated from marine sediments from the Bay of Bengal, India. Frontiers of Chemical Science and Engineering, 6(2), 198-202. https://doi.org/10.1007/s11705-012-1285-2
  • Schmidt, A., Schmidt, A., Haferburg, G., & Kothe, E. (2007). Superoxide dismutases of heavy metal resistant Streptomycetes. The Journal of Basic Microbiology., 47, 56-62. https://doi.org/10.1002/jobm.200610213
  • Stackebrandt, E., & Ebers, J. (2006). Taxonomic parameters revisited: Tarnished gold standards. Microbiology Today, 33, 152–155.
  • Stackebrandt, E., & Goebel, B. (1994). Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology, 44(4), 846-849. https://doi.org/10.1099/00207713-44-4-846
  • Tan, G.Y.A., Ward, A.C., & Goodfellow, M. (2006). Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Systematic and Applied Microbiology, 29(7), 557-569. https://doi.org/10.1016/j.syapm.2006.01.007
  • Venkatramanan, S., Ramkumar, T., Anithamary, I., & Vasudevan, S. (2014). Heavy metal distribution in surface sediments of the tirumalairajan river estuary and the surrounding coastal area, east coast of india. The Arabian Journal of Geosciences, 7, 123-130. https://doi.org/10.1007/s12517-012-0734-z

Actinobacteria with heavy metal tolerance from the Sinop coast: A molecular characterization approach

Year 2025, Volume: 42 Issue: 4, 298 - 306

Abstract

This study aimed to isolate and molecularly characterize marine actinobacteria tolerant to heavy metals from sediment samples collected from the Meydankapı coast in Sinop, Türkiye. Sediment samples were obtained from three different stations and cultured on five selective media, leading to the isolation of 54 actinobacteria strains. The highest isolation efficiency was achieved on R2A and SM3 media. The tolerance of the isolates to heavy metals, including lead (Pb), copper (Cu), zinc (Zn), mercury (Hg), and cadmium (Cd), was tested. The results revealed that all isolates were sensitive to Hg and Cd but exhibited high tolerance to Pb. Twelve isolates, showing the highest resistance to heavy metals, were selected for genomic DNA isolation. The 16S rRNA gene region was amplified using universal primers and sequenced. Sequence analysis identified the isolates as belonging to the genera Streptomyces, Actinomadura, Nocardia and Nonomuraea. The approximately 1500-bp 16S rRNA gene sequences were compared with the EzTaxon database, and the closest species were determined. The obtained sequences were deposited in the GenBank database. The results indicate that marine actinobacteria isolated from polluted sediments of the Black Sea possess significant potential for bioremediation and environmental biotechnology applications due to their resistance mechanisms to heavy metals.

Ethical Statement

This article does not contain any studies with human participants and/or animals performed by any of the authors. Formal consent is not required in this study.

Supporting Institution

This study was supported by Sinop University Scientific Research Projects Coordination Department

Project Number

SHMYO-1901-23-002

Thanks

We would like to thank Sinop University Scientific Research Projects Coordination Unit for the support provided in this study.

References

  • Álvarez, A., Catalano, S.A., & Amoroso, M.J. (2013). Heavy metal resistant strains are widespread along Streptomyces Phylogeny. Molecular Phylogenetics and Evolution, 66, 1083 1088. https://doi.org/10.1016/j.ympev.2012.11.025
  • Ashbolt, N. J., Amézquita, A., Backhaus, T., Borriello, P., Brandt, K. K., Collignon, P., Coors. A., Finley, R., Gaze, W. H., Heberer, T., Lawrence, J.R., Larsson, D.G.J., McEwen, S.A., Ryan, J.J., Schönfeld, J., Silley, P., Snape, J.R., den Eede, C.V., & Topp, E. (2013). Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environmental Health Perspectives, 121, 993-1001. https://doi.org/10.1289/ehp.1206316
  • Buchholz-Cleven, B.E.E., Rattunde, B., & Straub, K.L. (1997). Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Systematic and Applied Microbiology, 20, 301 309. https://doi.org/10.1016/S0723 2020(97)80077-X
  • Bull, A.T., & Stach, J.E. (2007). Marine actinobacteria: New opportunities for natural product search and discovery. Trends in Microbiology, 15(11), 491-499. https://doi.org/10.1016/j.tim.2007.10.004
  • Chun, J. (1995). Computer assisted classification and identification of actinomycetes. [Ph.D. Thesis. University of Newcastle].
  • Cimermanova, M., Pristas, P., & Piknova, M. (2021). Biodiversity of Actinomycetes from heavy metal contaminated technosols. Microorganisms, 9(8), 1635. https://doi.org/10.3390/microorganisms9081635
  • El Baz, S., Baz, M., Barakate, M., Hassani, L., El Gharmali, A., & Imziln, B. (2015). Resistance to and accumulation of heavy metals by Actinobacteria isolated from abandoned mining areas. The Scientific World Journal, 761834. https://doi.org/10.1155/2015/761834
  • El-Sayed, M.H., Abdellatif, M.M., Mostafa, H.M., Elsehemy, I.A., & Kobisi, A. E.N.A. (2024). Biodegradation and antimicrobial capability-induced heavy metal resistance of the marine-derived actinomycetes Nocardia harenae JJB5 and Amycolatopsis marina JJB11. World Journal of Microbiology and Biotechnology, 40(7), 202. https://doi.org/10.1007/s11274-024-04006-x
  • El-Sorogy, A.S., Nour, H., Essa, E., & Tawfik, M. (2013). Quaternary coral reefs of the Red Sea coast, Egypt: Diagenetic sequence, isotopes and trace metals contamination. Arabian Journal of Geosciences, 6, 4981-4991. https://doi.org/10.1007/s12517-012-0806-0
  • Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17, 368-376.
  • Felsenstein, J. (1985). Confidence limits on phylogeny: An appropriate use of the bootstrap. Evolution, 39, 783-791. https://doi.org/10.2307/2408678
  • Fernandes, L.L., & Nayak, G.N. (2012). Geochemical assessment in a creek environment in mumbai, west coast of India. Environmental Forensics, 13, 45-54. https://doi.org/10.1080/15275922.2011.643340
  • Jagannathan, S.V., Manemann, E.M., Rowe, S.E., Callender, M.C., & Soto, W. (2021). Marine actinomycetes, new sources of biotechnological products. Marine Drugs, 19(7), 365. https://doi.org/10.3390/md19070365
  • Kester, D.R., Duedall, I.W., Connors, D.N., & Pytkowicz, R.M. (1967). Preparation of artificial seawater. Limnology and Oceanography, 12, 176-179.
  • Kim, O.-S., Cho, Y.-J., Lee, K., Yoon, S.-H., Kim, M., Na, H., Park, S.-C., Jeon, J.S., Lee, J.-H., Yi, H., Won, S., & Chun, J. (2012). Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62, 716 721. https://doi.org/10.1099/ijs.0.038075-0
  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111 120. https://doi.org/10.1007/BF01731581
  • Kluge, A.G., Farris, F.S. (1969). Quantitative phyletics and the evolution of anurans. Systematic Zoology, 18, 1-32.
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096
  • Lane, D.J. (1991). 16S/23S rRNA sequencing. In: E. Stackebrandt, M. Goodfellow (Eds), Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, pp 115–175.
  • Li, H., Lin, Y., Guan, W., Chang, J., Xu, L., Guo, J., & Wei, G. (2010). Biosorption of Zn(II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14. Journal of Hazardous Materials, 179, 151-159. https://doi.org/10.1016/j.jhazmat.2010.02.072
  • Li, K., Tang, X., Zhao, J., Guo, Y., Tang, Y., & Gao, J. (2019). Streptomyces cadmiisoli sp. nov., a novel actinomycete isolated from cadmium-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 69, 1024-1029. https://doi.org/10.1099/ijsem.0.003262
  • Lin, Y., Wang, X., Wang, B., Mohamad, O., & Wei, G. (2012). Bioaccumulation characterization of zinc and cadmium by Streptomyces zinciresistens, a novel actinomycete. Ecotoxicology and Environmental Safety, 77, 7-17. https://doi.org/10.1016/j.ecoenv.2011.09.016
  • Magarvey, N.A., Keller, J.M., Bernan, V., Dworkin, M., & Sherman, D.H. (2004). Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Applied and Environmental Microbiology, 70, 7520 7529. https://doi.org/10.1128/AEM.70.12.7520-7529.2004
  • Martin, Y.E., & Johnson, E.A. (2012). Biogeosciences survey: studying interactions of the biosphere with the lithosphere, hydrosphere and atmosphere. Progress in Physical Geography, 36, 833-852. https://doi.org/10.1177/0309133312457107
  • Masindi, V., & Muedi, K.L. (2018). Environmental contamination by heavy metals. In: H.E. Saleh, R.F. Aglan (Eds), Heavy metals (pp. 115-113). IntechOpen, Rijeka. https://doi.org/10.5772/intechopen.76082
  • Mincer, T.J., Jensen, P.R., Kauffman, C.A., & Fenical, W. (2002). Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Applied and Environmental Microbiology, 68(10), 5005-5011. https://doi.org/10.1128/AEM.68.10.5005-5011.2002
  • Mo, P., Yu, Y. Z., Zhao, J.-R., & Gao, J. (2017). Streptomyces xiangtanensis sp. nov., isolated from a manganese-contaminated soil. Antonie Leeuwenhoek, 110, 297-304. https://doi.org/10.1007/s10482-016-0797-z
  • Mondal, H., & Thomas, J. (2022). Isolation and characterization of a novel actinomycete isolated from marine sediments and its antibacterial activity against fish pathogens. Antibiotics, 11, 1546. https://doi.org/10.3390/antibiotics11111546
  • Pazirandeh, M., Wells, B.M., Ryan, R.L. (1998). Development of bacterium based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal-binding motif. Applied and Environmental Microbiology, 64, 4068. https://doi.org/10.1128/AEM.64.10.4068-4072.1998
  • Polti, M.A., Amoroso, M.J., & Abate, C.M. (2007). Chromium (VI) resistance and removal by actinomycete strains isolated from sediments. Chemosphere, 67(4), 660 667. https://doi.org/10.1016/j.chemosphere.2006.11.008
  • Rahman, Z., & Singh, V.P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environmental Monitoring and Assessment, 191, 419. https://doi.org/10.1007/s10661-019-7528-7
  • Reasoner, D.J., & Geldreich, E.E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, 49(1), 1-7. https://doi.org/10.1128/aem.49.1.1-7.1985
  • Sağlam, M.T. (1978). Toprak kimyası tatbikat notları. Atatürk Üniversitesi.
  • Saitou, N., & Nei, M. (1987). The neighbour-joining method: A new method for constructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  • Sanjenbam, P., Saurav, K., & Kannabiran, K. (2012). Biosorption of mercury and lead by aqueous Streptomyces VITSVK9 sp. isolated from marine sediments from the Bay of Bengal, India. Frontiers of Chemical Science and Engineering, 6(2), 198-202. https://doi.org/10.1007/s11705-012-1285-2
  • Schmidt, A., Schmidt, A., Haferburg, G., & Kothe, E. (2007). Superoxide dismutases of heavy metal resistant Streptomycetes. The Journal of Basic Microbiology., 47, 56-62. https://doi.org/10.1002/jobm.200610213
  • Stackebrandt, E., & Ebers, J. (2006). Taxonomic parameters revisited: Tarnished gold standards. Microbiology Today, 33, 152–155.
  • Stackebrandt, E., & Goebel, B. (1994). Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology, 44(4), 846-849. https://doi.org/10.1099/00207713-44-4-846
  • Tan, G.Y.A., Ward, A.C., & Goodfellow, M. (2006). Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Systematic and Applied Microbiology, 29(7), 557-569. https://doi.org/10.1016/j.syapm.2006.01.007
  • Venkatramanan, S., Ramkumar, T., Anithamary, I., & Vasudevan, S. (2014). Heavy metal distribution in surface sediments of the tirumalairajan river estuary and the surrounding coastal area, east coast of india. The Arabian Journal of Geosciences, 7, 123-130. https://doi.org/10.1007/s12517-012-0734-z
There are 40 citations in total.

Details

Primary Language English
Subjects Conservation and Biodiversity
Journal Section Research Article
Authors

Aysel Veyisoğlu 0000-0002-1406-5513

Demet Tatar 0000-0002-9317-3263

Ali Tokatlı 0000-0002-7559-8882

Hünkar Avni Duyar 0000-0002-2560-5407

Project Number SHMYO-1901-23-002
Early Pub Date December 1, 2025
Publication Date December 3, 2025
Submission Date May 17, 2025
Acceptance Date September 16, 2025
Published in Issue Year 2025 Volume: 42 Issue: 4

Cite

APA Veyisoğlu, A., Tatar, D., Tokatlı, A., Duyar, H. A. (2025). Actinobacteria with heavy metal tolerance from the Sinop coast: A molecular characterization approach. Ege Journal of Fisheries and Aquatic Sciences, 42(4), 298-306.