Research Article
BibTex RIS Cite

Methylene blue dye removal utilizing biomass of the macroalgae (Padina sp.): Adsorption, kinetic studies and mechanism

Year 2025, Volume: 42 Issue: 2, 122 - 130, 15.06.2025

Abstract

Macroalgae, which are abundant in marine ecosystems, are promising natural adsorbents for water purification because of their high surface area, rich functional groups, and natural adsorption capabilities. In this study, the adsorption capacity of Padina sp., a brown macroalgae in dried powdered form, was evaluated for the removal of toxic methylene blue (MB) dye from water. A series of batch adsorption tests were conducted to investigate the effects of several operational parameters, as initial MB concentrations (2, 5, 10, 20, and 50 mg L-1), pH levels (2, 4, 7, and 11), and contact time (0, 0.08, 0.5, 1, 2, 4, 6, and 24 h) on MB removal. Furthermore, powdered Padina sp. was analyzed before and after MB adsorption using Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy. The results showed optimal removal efficiency under neutral and alkaline conditions, as opposed to acidic environments. The Freundlich model accurately represents experimental adsorption data (R2= 0.9902). Kinetic analysis revealed that MB adsorption onto Padina sp. primarily followed a pseudo-second order mechanism (R2= 0.9982). The characterization and experimental findings suggest that the proposed mechanisms for MB adsorption by Padina sp. involve electrostatic interactions, pore filling, and hydrogen bonding. The experimental results suggest that powdered Padina sp. is a promising adsorbent for removing MB from water.

Ethical Statement

For this investigation, no ethical approval was needed.

References

  • Abdel-Raouf, N., Al-Enazi, N.M., Ibraheem, I.B.M., Alharbi, R.M., & Alkhulaifi, M.M. (2019). Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization. Saudi Journal of Biological Sciences, 26(6), 1207-1215. https://doi.org/10.1016/j.sjbs.2018.01.007
  • Ali, H. (2010). Biodegradation of synthetic dyes—a review. Water, Air, & Soil Pollution, 213, 251-273. https://doi.org/10.1007/s11270-010-0382-4
  • Alobaidi, D. S., & Alwared, A. I. (2023). Role of immobilised Chlorophyta algae in form of calcium alginate beads for the removal of phenol: isotherm, kinetic and thermodynamic study. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e14851
  • Alprol, A.E., Eleryan, A., Abouelwafa, A., Gad, A.M., & Hamad, T.M. (2024). Green synthesis of zinc oxide nanoparticles using Padina pavonica extract for efficient photocatalytic removal of methylene blue. Scientific Reports, 14(1), 32160. https://doi.org/10.1038/s41598-024-80757-9
  • Al-Trawneh, S.A., Jiries, A.G., Alshahateet, S.F., & Sagadevan, S. (2021). Phenol removal from aqueous solution using synthetic V-shaped organic adsorbent: kinetics, isotherm, and thermodynamics studies. Chemical Physics Letters, 781, 138959. https://doi.org/10.1016/j.cplett.2021.138959
  • Ansari, A.A., Ghanem, S.M., & Naeem, M. (2019). Brown alga Padina: a review. International Journal of Botany Studies, 4(1), 01-03.
  • Aragaw, T.A., & Bogale, F.M. (2021). Biomass-based adsorbents for removal of dyes from wastewater: a review. Frontiers in Environmental Science, 9, 764958. https://doi.org/10.3389/fenvs.2021.764958
  • Batool, F., Akbar, J., Iqbal, S., Noreen, S., & Bukhari, S. N.A. (2018). Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: an overview of linear and nonlinear approach and error analysis. Bioinorganic Chemistry and Applications, 2018, 1, 1-11, 3463724. https://doi.org/10.1155/2018/3463724
  • Benhouria, A., Zaghouane-Boudiaf, H., Bourzami, R., Djerboua, F., Hameed, B., & Boutahala, M. (2023). Cross-linked chitosan-epichlorohydrin/bentonite composite for reactive orange 16 dye removal: Experimental study and molecular dynamic simulation. International Journal of Biological Macromolecules, 242, 124786. https://doi.org/10.1016/j.ijbiomac.2023.124786
  • Boukarma, L., Aboussabek, A., El Aroussi, F., Zerbet, M., Sinan, F., & Chiban, M. (2023). Insight into mechanism, Box-Behnken design, and artificial neural network of cationic dye biosorption by marine macroalgae Fucus spiralis. Algal Research, 76, 103324. https://doi.org/10.1016/j.algal.2023.103324
  • Boukarma, L., Aziam, R., Aboussabek, A., El Qdhy, S., Zerbet, M., Sinan, F., & Chiban, M. (2024). Novel insights into crystal violet dye adsorption onto various macroalgae: Comparative study, recyclability and overview of chromium (VI) removal. Bioresource Technology, 394, 130197. https://doi.org/10.1016/j.biortech.2023.130197
  • Bravo-Yumi, N., Pacheco-Álvarez, M., Bandala, E.R., Brillas, E., & Peralta-Hernández, J.M. (2022). Studying the influence of different parameters on the electrochemical oxidation of tannery dyes using a Ti/IrO2-SnO2-Sb2O5 anode. Chemical Engineering and Processing-Process Intensification, 181, 109173. https://doi.org/10.1016/j.cep.2022.109173
  • Chakrabarti, S., & Dutta, B.K. (2005). On the adsorption and diffusion of methylene blue in glass fibers. Journal of Colloid and Interface Science, 286(2), 807-811. https://doi.org/10.1016/j.jcis.2005.01.035
  • Chin, J.Y., Chng, L.M., Leong, S.S., Yeap, S.P., Yasin, N.H.M., & Toh, P.Y. (2020). Removal of synthetic dye by Chlorella vulgaris microalgae as natural adsorbent. Arabian Journal for Science and Engineering, 45, 7385-7395. https://doi.org/10.1007/s13369-020-04557-9
  • da Fontoura, J.T., Rolim, G.S., Mella, B., Farenzena, M., & Gutterres, M. (2017). Defatted microalgal biomass as biosorbent for the removal of Acid Blue 161 dye from tannery effluent. Journal of Environmental Chemical Engineering, 5(5), 5076 5084. http://dx.doi.org/10.1016/j.jece.2017.09.051
  • El Sikaily, A., Khaled, A., Nemr, A.E., & Abdelwahab, O. (2006). Removal of methylene blue from aqueous solution by marine green alga Ulva lactuca. Chemistry and Ecology, 22(2), 149-157. https://doi.org/10.1080/02757540600579607
  • Eyupoglu, V., Akin, M.B., Kaya, S., Çaylak, O., Berisha, A., & Çetinkaya, S. (2025). Effective removal of methylene blue dye from aqueous solution using Macrolepiota procera mushroom: Experimental and theoretical studies. Journal of Molecular Liquids, 418, 126714. https://doi.org/10.1016/j.molliq.2024.126714
  • Ghosh, I., Kar, S., Chatterjee, T., Bar, N., & Das, S.K. (2021). Removal of methylene blue from aqueous solution using Lathyrus sativus husk: adsorption study, MPR and ANN modelling. Process Safety and Environmental Protection, 149, 345 361. https://doi.org/10.1016/j.psep.2020.11.003
  • Gomes, G.H., Olusegun, S.J., Gabriel, J.B., Costa, R.C., & Mohallem, N.D. (2023). The role of crystalline Nb2O5 nanoparticles for enhanced dye adsorption and photodegradation. Ceramics International, 49(4), 6164-6176. https://doi.org/10.1016/j.ceramint.2022.10.126
  • Hamad, H.N., & Idrus, S. (2022). Recent developments in the application of bio-waste-derived adsorbents for the removal of methylene blue from wastewater: a review. Polymers, 14(4), 783. https://doi.org/10.3390/polym14040783
  • Ihaddaden, S., Aberkane, D., Boukerroui, A., & Robert, D. (2022). Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). Journal of Water Process Engineering, 49, 102952. https://doi.org/10.1016/j.jwpe.2022.102952
  • Joseph, J., Radhakrishnan, R.C., Johnson, J.K., Joy, S.P., & Thomas, J. (2020). Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Materials Chemistry and Physics, 242, 122488. https://doi.org/10.1016/j.matchemphys.2019.122488
  • Khodaie, M., Ghasemi, N., Moradi, B., & Rahimi, M. (2013). Removal of methylene blue from wastewater by adsorption onto ZnCl2 activated corn husk carbon equilibrium studies. Journal of Chemistry, 2013(1), 383985. https://doi.org/10.1155/2013/383985
  • Kousha, M., Daneshvar, E., Sohrabi, M., Koutahzadeh, N., & Khataee, A. (2012). Optimization of CI Acid black 1 biosorption by Cystoseira indica and Gracilaria persica biomasses from aqueous solutions. International Biodeterioration & Biodegradation, 67, 56-63. https://doi.org/10.1016/j.ibiod.2011.10.007
  • Long, Z., Wang, Z., Huang, Q., Jia, Y., Jiao, Z., Wang, Y., & Du, Y. (2024). High-performance adsorption of methylene blue using novel bio-adsorbent based on Sargassum fusiforme. Heliyon, 10(18). https://doi.org/10.1016/j.heliyon.2024.e37949
  • Mahini, R., Esmaeili, H., & Foroutan, R. (2018). Adsorption of methyl violet from aqueous solution using brown algae Padina sanctae-crucis. Turkish Journal of Biochemistry, 43(6), 623-631. https://doi.org/10.1515/tjb-2017-0333
  • Mansour, A.T., Alprol, A.E., Abualnaja, K.M., El-Beltagi, H.S., Ramadan, K.M., & Ashour, M. (2022). Dried brown seaweed’s phytoremediation potential for methylene blue dye removal from aquatic environments. Polymers, 14(7), 1375. https://doi.org/10.3390/polym14071375
  • Martínez Cadena, G., Vargas Hernández, D., Villegas Coronado, D.L., Tánori Córdova, J.C., & Maldonado Arce, A.D. (2025). Synthesis, characterization, and application of carbon black nanoparticles in the removal of methylene blue dye. Adsorption, 31(1), 8. https://doi.org/10.1007/s10450-024-00566-4
  • Mcyotto, F., Wei, Q., Macharia, D.K., Huang, M., Shen, C., & Chow, C.W. (2021). Effect of dye structure on color removal efficiency by coagulation. Chemical Engineering Journal, 405, 126674. https://doi.org/10.1016/j.cej.2020.126674
  • Oladoye, P.O., Ajiboye, T.O., Omotola, E.O., & Oyewola, O.J. (2022). Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering, 16, 100678. https://doi.org/10.1016/j.rineng.2022.100678
  • Omar, H., El-Gendy, A., & Al-Ahmary, K. (2018). Bioremoval of toxic dye by using different marine macroalgae. Turkish Journal of Botany, 42(1), 15-27. https://doi.org/10.3906/bot-1703-4
  • Pandey, P., Sharma, S., & Sambi, S. (2010). Kinetics and equilibrium study of chromium adsorption on zeolite Nax. International Journal of Environmental Science and Technology, 7, 395-404. https://doi.org/10.1007/bf03326149
  • Pandimurugan, R., & Thambidurai, S. (2016). Synthesis of seaweed-ZnO-PANI hybrid composite for adsorption of methylene blue dye. Journal of Environmental Chemical Engineering, 4(1), 1332-1347. https://doi.org/10.1016/j.jece.2016.01.030
  • Saheed, I.O., Oh, W.-D., & Suah, F.B.M. (2021). Enhanced adsorption of acid Blue-25 dye onto chitosan/porous carbon composite modified in 1-allyl-3-methyl imidazolium bromide ionic liquid. International Journal of Biological Macromolecules, 183, 1026-1033. https://doi.org/10.1016/j.ijbiomac.2021.05.042
  • Sahu, J., Karri, R.R., & Jayakumar, N. (2021). Improvement in phenol adsorption capacity on eco-friendly biosorbent derived from waste Palm-oil shells using optimized parametric modelling of isotherms and kinetics by differential evolution. Industrial Crops and Products, 164, 113333. https://doi.org/10.1016/j.indcrop.2021.113333
  • Samar, J., Butt, G.Y., Shah, A.A., Shah, A.N., Ali, S., Jan, B.L., Abdelsalam, R.N., & Hussaan, M. (2022). Phycochemical and biological activities from different extracts of Padina antillarum (Kützing) Piccone. Frontiers in Plant Science, 13, 929368. https://doi.org/10.3389/fpls.2022.929368
  • Seoane, R., Santaeufemia, S., Abalde, J., & Torres, E. (2022). Efficient removal of methylene blue using living biomass of the microalga Chlamydomonas moewusii: Kinetics and equilibrium studies. International Journal of Environmental Research and Public Health, 19(5), 2653. https://doi.org/10.3390/ijerph19052653
  • Sheng, P.X., Ting, Y.-P., Chen, J.P., & Hong, L. (2004). Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science, 275(1), 131-141. https://doi.org/10.1016/j.jcis.2004.01.036
  • Shih, M.C. (2012). Kinetics of the batch adsorption of methylene blue from aqueous solutions onto rice husk: effect of acid-modified process and dye concentration. Desalination and Water Treatment, 37(1-3), 200-214. https://doi.org/10.5004/dwt.2012.1133
  • Srinivasan, A., & Viraraghavan, T. (2010). Decolorization of dye wastewaters by biosorbents: a review. Journal of Environmental Management, 91(10), 1915 1929. https://doi.org/10.1016/j.jenvman.2010.05.003
  • Şahin, M., Arslan, Y., Tomul, F., Akgül, F., & Akgül, R. (2024). Green synthesis of metal nanoparticles from Codium macroalgae for wastewater pollutants removal by adsorption. CLEAN–Soil, Air, Water, 52(5), 2300187. https://doi.org/10.1002/clen.202300187
  • Şen, N.E., & Şenol, Z.M. (2023). Effective removal of Allura red food dye from water using cross-linked chitosan-diatomite composite beads. International Journal of Biological Macromolecules, 253, 126632. https://doi.org/10.1016/j.ijbiomac.2023.126632
  • Şenol, Z.M., El Messaoudi, N., Ciğeroglu, Z., Miyah, Y., Arslanoğlu, H., Baglam, N., Kazan-Kaya, E.S., Kaur, P., & Georgin, J. (2024). Removal of food dyes using biological materials via adsorption: A review. Food Chemistry, 139398. https://doi.org/10.1016/j.foodchem.2024.139398
  • Tabaraki, R., & Sadeghinejad, N. (2017). Biosorption of six basic and acidic dyes on brown alga Sargassum ilicifolium: Optimization, kinetic and isotherm studies. Water Science and Technology, 75(11), 2631-2638. https://doi.org/10.2166/wst.2017.136
  • Tsoutsa, E.K., Tolkou, A.K., Kyzas, G.Z., & Katsoyiannis, I.A. (2024). An update on agricultural wastes used as natural adsorbents or coagulants in single or combined systems for the removal of dyes from wastewater. Water, Air, & Soil Pollution, 235(3), 178. https://doi.org/10.1007/s11270-024-06979-9
  • Türe, H. (2023). Adsorption of methylene blue dye onto alginate-bioglass membranes: response surface method, isotherm, and kinetic studies. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 538-552. https://doi.org/10.17714/gumusfenbil.1245309
  • Ucuncu, E., Şirin, P.A., & Hasan, T. (2022). Prediction models of dye adsorption by Treptacantha barbata. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 300 310. https://doi.org/10.12714/egejfas.39.4.05
  • Vieira, R.H., & Volesky, B. (2000). Biosorption: a solution to pollution? International Microbiology, 3(1), 17-24.
  • Zhou, M., Chen, J., Yu, S., Chen, B., Chen, C., Shen, L., & Lin, H. (2023). The coupling of persulfate activation and membrane separation for the effective pollutant degradation and membrane fouling alleviation. Chemical Engineering Journal, 451, 139009. https://doi.org/10.1016/j.cej.2022.139009
  • Zhu, H., Chen, T., Liu, J., & Li, D. (2018). Adsorption of tetracycline antibiotics from an aqueous solution onto graphene oxide/calcium alginate composite fibers. RSC Advances, 8(5), 2616-2621. https://doi.org/10.1039/c7ra11964j

Makroalg (Padina sp.) biyokütlesi kullanılarak metilen mavisi boyasının uzaklaştırılması: Adsorpsiyon, kinetik çalışmalar ve mekanizma

Year 2025, Volume: 42 Issue: 2, 122 - 130, 15.06.2025

Abstract

Deniz ekosistemlerinde yaygın olarak bulunan makroalgler, yüksek yüzey alanları, zengin fonksiyonel grupları ve doğal adsorpsiyon kabiliyetleri nedeniyle su arıtımı için umut vadeden doğal adsorbanlardır. Bu çalışmada, kurutulmuş toz formunda kahverengi bir makroalg olan Padina sp.’nin sudan toksik metilen mavisi (MB) boyasının uzaklaştırılması için adsorpsiyon kapasitesi değerlendirilmiştir. Başlangıç MB konsantrasyonları (2, 5, 10, 20 ve 50 mg L-1), pH seviyeleri (2, 4, 7 ve 11) ve temas süresi (0, 0.08, 0.5, 1, 2, 4, 6, and 24 saat) dahil olmak üzere çeşitli operasyonel faktörlerin MB eliminasyonu üzerindeki etkilerini incelemek için bir dizi adsorpsiyon testi yürütülmüştür. Ayrıca, toz haline getirilmiş Padina sp., MB adsorpsiyonundan önce ve sonra Fourier dönüşümlü kızılötesi spektroskopisi ve taramalı elektron mikroskobu kullanılarak analiz edilmiştir. Sonuçlar, asidik ortamların aksine, nötr ve alkali koşullar altında optimum bir giderme verimliliği olduğunu göstermiştir. Freundlich modeli, deneysel adsorpsiyon verilerini doğru bir şekilde temsil etmektedir (R2 = 0.9902). Kinetik analiz, MB adsorpsiyonunun Padina sp. üzerine öncelikle psödo-ikinci dereceden bir mekanizmayı izlediğini ortaya koymuştur (R2 = 0.9982). Karakterizasyon ve deneysel bulgulara dayanarak, Padina sp.'nin önerilen MB adsorpsiyon mekanizmaları arasında hidrojen bağı, elektrostatik etkileşimler ve gözenek doldurma yer almaktadır. Deneysel sonuçlar, toz halindeki Padina sp.’nin sudan MB'yi uzaklaştırmak için umut verici bir adsorban olduğunu göstermektedir.

References

  • Abdel-Raouf, N., Al-Enazi, N.M., Ibraheem, I.B.M., Alharbi, R.M., & Alkhulaifi, M.M. (2019). Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization. Saudi Journal of Biological Sciences, 26(6), 1207-1215. https://doi.org/10.1016/j.sjbs.2018.01.007
  • Ali, H. (2010). Biodegradation of synthetic dyes—a review. Water, Air, & Soil Pollution, 213, 251-273. https://doi.org/10.1007/s11270-010-0382-4
  • Alobaidi, D. S., & Alwared, A. I. (2023). Role of immobilised Chlorophyta algae in form of calcium alginate beads for the removal of phenol: isotherm, kinetic and thermodynamic study. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e14851
  • Alprol, A.E., Eleryan, A., Abouelwafa, A., Gad, A.M., & Hamad, T.M. (2024). Green synthesis of zinc oxide nanoparticles using Padina pavonica extract for efficient photocatalytic removal of methylene blue. Scientific Reports, 14(1), 32160. https://doi.org/10.1038/s41598-024-80757-9
  • Al-Trawneh, S.A., Jiries, A.G., Alshahateet, S.F., & Sagadevan, S. (2021). Phenol removal from aqueous solution using synthetic V-shaped organic adsorbent: kinetics, isotherm, and thermodynamics studies. Chemical Physics Letters, 781, 138959. https://doi.org/10.1016/j.cplett.2021.138959
  • Ansari, A.A., Ghanem, S.M., & Naeem, M. (2019). Brown alga Padina: a review. International Journal of Botany Studies, 4(1), 01-03.
  • Aragaw, T.A., & Bogale, F.M. (2021). Biomass-based adsorbents for removal of dyes from wastewater: a review. Frontiers in Environmental Science, 9, 764958. https://doi.org/10.3389/fenvs.2021.764958
  • Batool, F., Akbar, J., Iqbal, S., Noreen, S., & Bukhari, S. N.A. (2018). Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: an overview of linear and nonlinear approach and error analysis. Bioinorganic Chemistry and Applications, 2018, 1, 1-11, 3463724. https://doi.org/10.1155/2018/3463724
  • Benhouria, A., Zaghouane-Boudiaf, H., Bourzami, R., Djerboua, F., Hameed, B., & Boutahala, M. (2023). Cross-linked chitosan-epichlorohydrin/bentonite composite for reactive orange 16 dye removal: Experimental study and molecular dynamic simulation. International Journal of Biological Macromolecules, 242, 124786. https://doi.org/10.1016/j.ijbiomac.2023.124786
  • Boukarma, L., Aboussabek, A., El Aroussi, F., Zerbet, M., Sinan, F., & Chiban, M. (2023). Insight into mechanism, Box-Behnken design, and artificial neural network of cationic dye biosorption by marine macroalgae Fucus spiralis. Algal Research, 76, 103324. https://doi.org/10.1016/j.algal.2023.103324
  • Boukarma, L., Aziam, R., Aboussabek, A., El Qdhy, S., Zerbet, M., Sinan, F., & Chiban, M. (2024). Novel insights into crystal violet dye adsorption onto various macroalgae: Comparative study, recyclability and overview of chromium (VI) removal. Bioresource Technology, 394, 130197. https://doi.org/10.1016/j.biortech.2023.130197
  • Bravo-Yumi, N., Pacheco-Álvarez, M., Bandala, E.R., Brillas, E., & Peralta-Hernández, J.M. (2022). Studying the influence of different parameters on the electrochemical oxidation of tannery dyes using a Ti/IrO2-SnO2-Sb2O5 anode. Chemical Engineering and Processing-Process Intensification, 181, 109173. https://doi.org/10.1016/j.cep.2022.109173
  • Chakrabarti, S., & Dutta, B.K. (2005). On the adsorption and diffusion of methylene blue in glass fibers. Journal of Colloid and Interface Science, 286(2), 807-811. https://doi.org/10.1016/j.jcis.2005.01.035
  • Chin, J.Y., Chng, L.M., Leong, S.S., Yeap, S.P., Yasin, N.H.M., & Toh, P.Y. (2020). Removal of synthetic dye by Chlorella vulgaris microalgae as natural adsorbent. Arabian Journal for Science and Engineering, 45, 7385-7395. https://doi.org/10.1007/s13369-020-04557-9
  • da Fontoura, J.T., Rolim, G.S., Mella, B., Farenzena, M., & Gutterres, M. (2017). Defatted microalgal biomass as biosorbent for the removal of Acid Blue 161 dye from tannery effluent. Journal of Environmental Chemical Engineering, 5(5), 5076 5084. http://dx.doi.org/10.1016/j.jece.2017.09.051
  • El Sikaily, A., Khaled, A., Nemr, A.E., & Abdelwahab, O. (2006). Removal of methylene blue from aqueous solution by marine green alga Ulva lactuca. Chemistry and Ecology, 22(2), 149-157. https://doi.org/10.1080/02757540600579607
  • Eyupoglu, V., Akin, M.B., Kaya, S., Çaylak, O., Berisha, A., & Çetinkaya, S. (2025). Effective removal of methylene blue dye from aqueous solution using Macrolepiota procera mushroom: Experimental and theoretical studies. Journal of Molecular Liquids, 418, 126714. https://doi.org/10.1016/j.molliq.2024.126714
  • Ghosh, I., Kar, S., Chatterjee, T., Bar, N., & Das, S.K. (2021). Removal of methylene blue from aqueous solution using Lathyrus sativus husk: adsorption study, MPR and ANN modelling. Process Safety and Environmental Protection, 149, 345 361. https://doi.org/10.1016/j.psep.2020.11.003
  • Gomes, G.H., Olusegun, S.J., Gabriel, J.B., Costa, R.C., & Mohallem, N.D. (2023). The role of crystalline Nb2O5 nanoparticles for enhanced dye adsorption and photodegradation. Ceramics International, 49(4), 6164-6176. https://doi.org/10.1016/j.ceramint.2022.10.126
  • Hamad, H.N., & Idrus, S. (2022). Recent developments in the application of bio-waste-derived adsorbents for the removal of methylene blue from wastewater: a review. Polymers, 14(4), 783. https://doi.org/10.3390/polym14040783
  • Ihaddaden, S., Aberkane, D., Boukerroui, A., & Robert, D. (2022). Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). Journal of Water Process Engineering, 49, 102952. https://doi.org/10.1016/j.jwpe.2022.102952
  • Joseph, J., Radhakrishnan, R.C., Johnson, J.K., Joy, S.P., & Thomas, J. (2020). Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Materials Chemistry and Physics, 242, 122488. https://doi.org/10.1016/j.matchemphys.2019.122488
  • Khodaie, M., Ghasemi, N., Moradi, B., & Rahimi, M. (2013). Removal of methylene blue from wastewater by adsorption onto ZnCl2 activated corn husk carbon equilibrium studies. Journal of Chemistry, 2013(1), 383985. https://doi.org/10.1155/2013/383985
  • Kousha, M., Daneshvar, E., Sohrabi, M., Koutahzadeh, N., & Khataee, A. (2012). Optimization of CI Acid black 1 biosorption by Cystoseira indica and Gracilaria persica biomasses from aqueous solutions. International Biodeterioration & Biodegradation, 67, 56-63. https://doi.org/10.1016/j.ibiod.2011.10.007
  • Long, Z., Wang, Z., Huang, Q., Jia, Y., Jiao, Z., Wang, Y., & Du, Y. (2024). High-performance adsorption of methylene blue using novel bio-adsorbent based on Sargassum fusiforme. Heliyon, 10(18). https://doi.org/10.1016/j.heliyon.2024.e37949
  • Mahini, R., Esmaeili, H., & Foroutan, R. (2018). Adsorption of methyl violet from aqueous solution using brown algae Padina sanctae-crucis. Turkish Journal of Biochemistry, 43(6), 623-631. https://doi.org/10.1515/tjb-2017-0333
  • Mansour, A.T., Alprol, A.E., Abualnaja, K.M., El-Beltagi, H.S., Ramadan, K.M., & Ashour, M. (2022). Dried brown seaweed’s phytoremediation potential for methylene blue dye removal from aquatic environments. Polymers, 14(7), 1375. https://doi.org/10.3390/polym14071375
  • Martínez Cadena, G., Vargas Hernández, D., Villegas Coronado, D.L., Tánori Córdova, J.C., & Maldonado Arce, A.D. (2025). Synthesis, characterization, and application of carbon black nanoparticles in the removal of methylene blue dye. Adsorption, 31(1), 8. https://doi.org/10.1007/s10450-024-00566-4
  • Mcyotto, F., Wei, Q., Macharia, D.K., Huang, M., Shen, C., & Chow, C.W. (2021). Effect of dye structure on color removal efficiency by coagulation. Chemical Engineering Journal, 405, 126674. https://doi.org/10.1016/j.cej.2020.126674
  • Oladoye, P.O., Ajiboye, T.O., Omotola, E.O., & Oyewola, O.J. (2022). Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering, 16, 100678. https://doi.org/10.1016/j.rineng.2022.100678
  • Omar, H., El-Gendy, A., & Al-Ahmary, K. (2018). Bioremoval of toxic dye by using different marine macroalgae. Turkish Journal of Botany, 42(1), 15-27. https://doi.org/10.3906/bot-1703-4
  • Pandey, P., Sharma, S., & Sambi, S. (2010). Kinetics and equilibrium study of chromium adsorption on zeolite Nax. International Journal of Environmental Science and Technology, 7, 395-404. https://doi.org/10.1007/bf03326149
  • Pandimurugan, R., & Thambidurai, S. (2016). Synthesis of seaweed-ZnO-PANI hybrid composite for adsorption of methylene blue dye. Journal of Environmental Chemical Engineering, 4(1), 1332-1347. https://doi.org/10.1016/j.jece.2016.01.030
  • Saheed, I.O., Oh, W.-D., & Suah, F.B.M. (2021). Enhanced adsorption of acid Blue-25 dye onto chitosan/porous carbon composite modified in 1-allyl-3-methyl imidazolium bromide ionic liquid. International Journal of Biological Macromolecules, 183, 1026-1033. https://doi.org/10.1016/j.ijbiomac.2021.05.042
  • Sahu, J., Karri, R.R., & Jayakumar, N. (2021). Improvement in phenol adsorption capacity on eco-friendly biosorbent derived from waste Palm-oil shells using optimized parametric modelling of isotherms and kinetics by differential evolution. Industrial Crops and Products, 164, 113333. https://doi.org/10.1016/j.indcrop.2021.113333
  • Samar, J., Butt, G.Y., Shah, A.A., Shah, A.N., Ali, S., Jan, B.L., Abdelsalam, R.N., & Hussaan, M. (2022). Phycochemical and biological activities from different extracts of Padina antillarum (Kützing) Piccone. Frontiers in Plant Science, 13, 929368. https://doi.org/10.3389/fpls.2022.929368
  • Seoane, R., Santaeufemia, S., Abalde, J., & Torres, E. (2022). Efficient removal of methylene blue using living biomass of the microalga Chlamydomonas moewusii: Kinetics and equilibrium studies. International Journal of Environmental Research and Public Health, 19(5), 2653. https://doi.org/10.3390/ijerph19052653
  • Sheng, P.X., Ting, Y.-P., Chen, J.P., & Hong, L. (2004). Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science, 275(1), 131-141. https://doi.org/10.1016/j.jcis.2004.01.036
  • Shih, M.C. (2012). Kinetics of the batch adsorption of methylene blue from aqueous solutions onto rice husk: effect of acid-modified process and dye concentration. Desalination and Water Treatment, 37(1-3), 200-214. https://doi.org/10.5004/dwt.2012.1133
  • Srinivasan, A., & Viraraghavan, T. (2010). Decolorization of dye wastewaters by biosorbents: a review. Journal of Environmental Management, 91(10), 1915 1929. https://doi.org/10.1016/j.jenvman.2010.05.003
  • Şahin, M., Arslan, Y., Tomul, F., Akgül, F., & Akgül, R. (2024). Green synthesis of metal nanoparticles from Codium macroalgae for wastewater pollutants removal by adsorption. CLEAN–Soil, Air, Water, 52(5), 2300187. https://doi.org/10.1002/clen.202300187
  • Şen, N.E., & Şenol, Z.M. (2023). Effective removal of Allura red food dye from water using cross-linked chitosan-diatomite composite beads. International Journal of Biological Macromolecules, 253, 126632. https://doi.org/10.1016/j.ijbiomac.2023.126632
  • Şenol, Z.M., El Messaoudi, N., Ciğeroglu, Z., Miyah, Y., Arslanoğlu, H., Baglam, N., Kazan-Kaya, E.S., Kaur, P., & Georgin, J. (2024). Removal of food dyes using biological materials via adsorption: A review. Food Chemistry, 139398. https://doi.org/10.1016/j.foodchem.2024.139398
  • Tabaraki, R., & Sadeghinejad, N. (2017). Biosorption of six basic and acidic dyes on brown alga Sargassum ilicifolium: Optimization, kinetic and isotherm studies. Water Science and Technology, 75(11), 2631-2638. https://doi.org/10.2166/wst.2017.136
  • Tsoutsa, E.K., Tolkou, A.K., Kyzas, G.Z., & Katsoyiannis, I.A. (2024). An update on agricultural wastes used as natural adsorbents or coagulants in single or combined systems for the removal of dyes from wastewater. Water, Air, & Soil Pollution, 235(3), 178. https://doi.org/10.1007/s11270-024-06979-9
  • Türe, H. (2023). Adsorption of methylene blue dye onto alginate-bioglass membranes: response surface method, isotherm, and kinetic studies. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 538-552. https://doi.org/10.17714/gumusfenbil.1245309
  • Ucuncu, E., Şirin, P.A., & Hasan, T. (2022). Prediction models of dye adsorption by Treptacantha barbata. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 300 310. https://doi.org/10.12714/egejfas.39.4.05
  • Vieira, R.H., & Volesky, B. (2000). Biosorption: a solution to pollution? International Microbiology, 3(1), 17-24.
  • Zhou, M., Chen, J., Yu, S., Chen, B., Chen, C., Shen, L., & Lin, H. (2023). The coupling of persulfate activation and membrane separation for the effective pollutant degradation and membrane fouling alleviation. Chemical Engineering Journal, 451, 139009. https://doi.org/10.1016/j.cej.2022.139009
  • Zhu, H., Chen, T., Liu, J., & Li, D. (2018). Adsorption of tetracycline antibiotics from an aqueous solution onto graphene oxide/calcium alginate composite fibers. RSC Advances, 8(5), 2616-2621. https://doi.org/10.1039/c7ra11964j
There are 50 citations in total.

Details

Primary Language English
Subjects Waste Management, Reduction, Reuse and Recycling, Aquaculture and Fisheries (Other)
Journal Section Articles
Authors

Hasan Türe 0000-0003-4883-0751

Pınar Akdoğan Şirin 0000-0001-8518-0044

Early Pub Date June 14, 2025
Publication Date June 15, 2025
Submission Date January 20, 2025
Acceptance Date March 24, 2025
Published in Issue Year 2025Volume: 42 Issue: 2

Cite

APA Türe, H., & Akdoğan Şirin, P. (2025). Methylene blue dye removal utilizing biomass of the macroalgae (Padina sp.): Adsorption, kinetic studies and mechanism. Ege Journal of Fisheries and Aquatic Sciences, 42(2), 122-130.