Research Article
BibTex RIS Cite

Fuel efficiency of trawlers per kilogram of landed catch: Insights for decarbonizing fisheries in Türkiye

Year 2025, Volume: 42 Issue: 1, 56 - 63, 08.03.2025
https://doi.org/10.12714/egejfas.42.1.08

Abstract

Demersal trawling is among the most energy-intensive fishing practices worldwide, primarily due to the drag and frictional force caused by their heavy components. This study aimed to estimate fuel use intensity (litres of fuel per kilogram of landed catch) and associated carbon dioxide emissions of Turkish trawl vessels, most of which still operate using traditional trawl nets equipped with heavy otter boards and lead ground gear, increasing towing resistance and consequently fuel consumption. Data from 129 commercial fishing trips conducted by 13 trawl vessels between 2021 and 2022 were analysed using Generalized Linear Models (GLMs). Overall, to catch one kg of landed marine product, the trawl vessels consumed approximately a median value of 1.22 litres of fuel and emitted 3.21 kg of CO2 for the given period. Vessel length, engine power and the target species group were the main factors affecting the fuel use intensity. The results obtained from the study provide critical insights for implementing effective management measures to decarbonize fisheries, offering practical recommendations for decision makers. Expanding the dataset to encompass a broad range of vessels, regions, and fishing seasons would further enhance the generalizability and applicability across different fisheries.

Thanks

I extend my gratitude to the captains and crew of the 13 trawl vessels for their dedication to this study in terms of data collection. Without their hospitality and patience, this work would not have been accomplished. I would like to acknowledge two fisheries observers on board, Yaşar İşitmez and Murat Uzun for their support and effort in collecting the data essential for this research. I would like to express my sincere gratitude to Gökhan Gökçe and Hüseyin Özbilgin for their invaluable guidance, insightful feedback, and unwavering support throughout the course of this research. Their expertise and encouragement have been instrumental in shaping this work.

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
  • Araya-Schmidt, T., Bayse, S.M., Winger, P.D., & Santos, M.R. (2022). Juvenile redfish (Sebastes spp.) behavior in response to Nordmøre grid systems in the offshore northern shrimp (Pandalus borealis) fishery of Eastern Canada. Frontiers in Marine Science, 9, 1 14. https://doi.org/10.3389/fmars.2022.920429
  • Bastardie, F., Hornborg, S., Ziegler, F., Gislason, H., & Eigaard, O.R. (2022). Reducing the fuel use intensity of fisheries: Through efficient fishing techniques and recovered fish stocks. Frontiers in Marine Science, 9, 1-22. https://doi.org/10.3389/fmars.2022.817335
  • Campos, A., Pilar-Fonseca, T., Parente, J., Fonseca, P., & Afonso-Dias, M. (2011). Fuel efficiency in trawlers under different fishing tactics using a consumption model and VMS data: A case-study for the Portuguese fleet. In E. Rizzuto, C.G. Soares (Eds.), Sustainable Maritime Transportation and Exploitation of Sea Resources, 1162 p. Published by CRC Press
  • Cappell, R., MacNab, S., & Holland, A. (2022). Assessment of NI Fleet Emissions. Report for ANIFPO/NIFPO.
  • Coello, J., Williams, I., Hudson, D.A., & Kemp, S. (2015). An AIS-based approach to calculate atmospheric emissions from the UK fishing fleet. Atmospheric Environment, 114, 1 7. https://doi.org/10.1016/j.atmosenv.2015.05.011
  • Dağtekin, M., Gücü, A.C., & Genç, Y. (2022). Concerns about illegal, unreported and unregulated fishing, carbon footprint, and the impact of fuel subsidy - An economic analysis of the Black Sea anchovy fishery. Marine Policy, 140, 105067. https://doi.org/10.1016/j.marpol.2022.105067
  • Davie, S., Minto, C., Officer, R., Lordan, C., & Jackson, E. (2014). Modelling fuel consumption of fishing vessels for predictive use. ICES Journal of Marine Science, 72(2), 708-719. https://doi.org/10.1093/icesjms/fsu084
  • Demirci, A., & Karaguzel, M. (2018). The evaluation of fishing vessels fuel consumption and pollutions emissions in the Iskenderun Bay. Fresenius Environmental Bulletin, 27(1), 508-514.
  • Deval, M.C. (2020). Population dynamics and biological patterns of commercial crustacean species in the Antalya Bay, Eastern mediterranean sea: III. The giant red shrimp aristaeomorpha foliacea risso, 1827. Turkish Journal of Fisheries and Aquatic Sciences, 20(4), 311-323. https://doi.org/10.4194/1303-2712-v20_4_07
  • Emecan, İ.T., Yıldız, T., Uzer, U., Çatal, A., Moussa, H., Aydın, C., & Karakulak, F.S. (2023). Catch composition of different bottom trawl cod-ends in the Western Black Sea. Aquatic Sciences and Engineering, 38(1), 53-61. https://doi.org/10.26650/ASE20221187355
  • FAO. (2014). General Fisheries Commission for the Mediterranean. Report of the thirty-seventh session. Split, Croatia, 13–17 May 2013. GFCM Report. No. 37, 104 pp., Rome.
  • Greer, K., Zeller, D., Woroniak, J., Coulter, A., Winchester, M., Palomares, M. L.D., & Pauly, D. (2019). Global trends in carbon dioxide (CO2) emissions from fuel combustion in marine fisheries from 1950 to 2016. Marine Policy, 107, 103491. https://doi.org/10.1016/j.marpol.2018.12.001
  • Grimaldo, E., Pedersen, R., & Sistiaga, M. (2015). Energy consumption of three different trawl configurations used in the Barents Sea demersal trawl fishery. Fisheries Research, 165, 71 73. https://doi.org/10.1016/j.fishres.2014.12.021
  • Groen, E.A., Ziegler, F., & Bokkers, E. A. M., Veldhuizen, L.J.L., de Boer, I.J. M., Donnelly, K., Sund, V., & Krewer, C. (2013). Variability in fuel efficiency of a northeast Atlantic demersal trawl fishery. The 6th International Conference on Life Cycle Management.
  • Hartig, F. (2020). DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.2.0. https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html
  • Hilborn, R., Amoroso, R., Collie, J., Hiddink, J.G.J., Kaiser, M.J., Mazor, T., Mcconnaughey, R.A., Parma, A.M., Pitcher, C.R., Sciberras, M., & Suuronen, P. (2023). Evaluating the sustainability and environmental impacts of trawling compared to other food production systems. ICES Journal of Marine Science, 80(6), 1567–1579. https://doi.org/10.1093/icesjms/fsad115
  • Hornborg, S., Hobday, A.J., Ziegler, F., Smith, A.D.M., & Green, B.S. (2018). Shaping sustainability of seafood from capture fisheries integrating the perspectives of supply chain stakeholders through combining systems analysis tools. ICES Journal of Marine Science, 75(6), 1965–1974. https://doi.org/10.1093/icesjms/fsy081
  • Kaykaç, M.H., Düzbastılar, F.O., Zengin, M., Süer, S., & Rüzgar, M. (2017). Measurements of fuel consumption and towing resistance in sea snail beam trawl fisheries: Preliminary results. Turkish Journal of Fisheries and Aquatic Sciences, 17(5), 901–909. https://doi.org/10.4194/1303-2712-v17_5_06
  • Kristofersson, D., Gunnlaugsson, S., & Valtysson, H. (2021). Factors affecting greenhouse gas emissions in fisheries: Evidence from Iceland’s demersal fisheries. ICES Journal of Marine Science, 78(7), 2385–2394. https://doi.org/10.1093/icesjms/fsab109
  • McHugh, M.J., Broadhurst, M.K., Sterling, D.J., & Millar, R.B. (2015). Comparing three conventional penaeid-trawl otter boards and the new batwing design. Fisheries Research, 167, 180-189. https://doi.org/10.1016/j.fishres.2015.02.013
  • Ozsari, I. (2023). Calculating the main engine power of fishing vessels with artificial neural networks analysis. In Proceeding Book of 2nd International Conference on Scientific and Academic Research, 1, 515–520. https://as-proceeding.com/index.php/icsar/article/view/355
  • Park, J.A., Gardner, C., Chang, M.I., Kim, D.H., & Jang, Y.S. (2015). Fuel use and greenhouse gas emissions from offshore fisheries of the Republic of Korea. PLoS ONE, 10(8), e0133778. https://doi.org/10.1371/journal.pone.0133778
  • Parker, R.W.R., Blanchard, J.L., Gardner, C., Green, B.S., Hartmann, K., Tyedmers, P.H., & Watson, R.A. (2018). Fuel use and greenhouse gas emissions of world fisheries. Nature Climate Change, 8(4), 333-337. https://doi.org/10.1038/s41558-018-0117-x
  • Parker, R.W.R., Gardner, C., Green, B.S., Hartmann, K., & Watson, R.A. (2017). Drivers of fuel use in rock lobster fisheries. ICES Journal of Marine Science, 74(6), 1681–1689. https://doi.org/10.1093/icesjms/fsx024
  • Parker, R.W.R., & Tyedmers, P.H. (2015). Fuel consumption of global fishing fleets: Current understanding and knowledge gaps. Fish and Fisheries, 16(4), 684-696. https://doi.org/10.1111/faf.12087
  • R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Sala, A., Damalas, D., Labanchi, L., Martinsohn, J., Moro, F., Sabatella, R., & Notti, E. (2022). Energy audit and carbon footprint in trawl fisheries. Scientific Data, 9(1), 428. https://doi.org/10.1038/s41597-022-01478-0
  • Sala, E., Mayorga, J., Bradley, D., Cabral, R.B., Atwood, T.B., Auber, A., Cheung, W., Costello, C., Ferretti, F., Friedlander, A.M., Gaines, S.D., Garilao, C., Goodell, W., Halpern, B.S., Hinson, A., Kaschner, K., Kesner-Reyes, K., Leprieur, F., McGowan, J., … Lubchenco, J. (2021). Protecting the global ocean for biodiversity, food and climate. Nature, 592(7854), 397–402. https://doi.org/10.1038/s41586-021-03371-z
  • Sarica, A., & Demir, O. (2021). Calculations about fuel and catch of trawl vessels, purse seines and small-scale vessels at Mersin Bay. Fresenius Environmental Bulletin, 30(2 A), 1873-1884.
  • Steadman, D., Thomas, J.B., Rivas Villanueva, V., Lewis, F., Pauly, D., Deng Palomares, M.L., Bailly, N., Levine, M., Virdin, J., Rocliffe, S., & Collinson, T. (2021). New perspectives on an old fishing practice: Scale, context and impacts of bottom trawling. Blue Ventures Report, Report 2021, 1–44, Bristol, UK.
  • Suuronen, P., Chopin, F., Glass, C., Løkkeborg, S., Matsushita, Y., Queirolo, D., & Rihan, D. (2012). Low impact and fuel efficient fishing-Looking beyond the horizon. Fisheries Research, 119–120, 135-146. https://doi.org/10.1016/j.fishres.2011.12.009
  • Thrane, M. (2004). Energy consumption in the Danish fishery: Identification of key factors. Journal of Industrial Ecology, 8(1–2), 223-239. https://doi.org/10.1162/1088198041269427
  • TURKSTAT. (2022) Fisheries Statistics for 2021. Online. Avaliable at: https://data.tuik.gov.tr/Bulten/Index?p=Fishery-Products-2021-45745&dil=2 (Last access 15 May 2023)
  • Tyedmers, P.H. (2001). Energy consumed by North Atlantic Fisheries. In D. Zeller, R. Watson, D. Pauly, (Eds.), Fisheries impacts on North Atlantic ecosystems: Catch, effort and national/regional datasets. Fisheries Centre Research Reports, 9(3), 12–34.
  • Tyedmers, P.H., Watson, R., & Pauly, D. (2005). Fueling global fishing fleets. Ambio, 34(8), 635-638. https://doi.org/10.1579/0044-7447-34.8.635
  • Venables, W.N., & Ripley, B.D. (2002). Satistics and computing. Modern Applied Statistics with S. Fourth edition, Publisher: Springer-Verlag.
  • Winther, U., Hognes, E.S., Jafarzadeh, S., & Ziegler, F. (2020). Greenhouse gas emissions of Norwegian seafood products in 2017. SINTEF Ocean AS Seafood Technology, Report No. 2019:01505.
  • Ziegler, F., & Hansson, P.A. (2003). Emissions from fuel combustion in Swedish cod fishery. Journal of Cleaner Production, 11(3), 303–314. https://doi.org/10.1016/S0959-6526(02)00050-1
  • Ziegler, F., & Hornborg, S. (2014). Stock size matters more than vessel size: The fuel efficiency of Swedish demersal trawl fisheries 2002-2010. Marine Policy, 44, 72-81. https://doi.org/10.1016/j.marpol.2013.06.015
  • Ziegler, F., Hornborg, S., Valentinsson, D., Skontorp Hognes, E., Søvik, G., & Ritzau Eigaard, O. (2016). Same stock, different management: Quantifying the sustainability of three shrimp fisheries in the Skagerrak from a product perspective. ICES Journal of Marine Science, 73(7), 1806-1814. https://doi.org/10.1093/icesjms/fsw035
  • Ziegler, F., Jafarzadeh, S., Skontorp Hognes, E., & Winther, U. (2021). Greenhouse gas emissions of Norwegian seafoods: From comprehensive to simplified assessment. Journal of Industrial Ecology, 26(6), 1908-1919. https://doi.org/10.1111/jiec.13150

Trol teknelerinin karaya çıkarılan bir kilogram av başına akaryakıt verimliliği: Türkiye’de balıkçılığın karbonsuzlaştırılmasına yönelik çıkarımlar

Year 2025, Volume: 42 Issue: 1, 56 - 63, 08.03.2025
https://doi.org/10.12714/egejfas.42.1.08

Abstract

Dip trolleri, ağır bileşenlerinden kaynaklanan sürükleme direnci ve sürtünme kuvveti nedeniyle dünyanın en yoğun enerji tüketen balıkçılık yöntemlerinden biridir. Bu çalışma, çoğu hala çekme direncini ve yakıt tüketimini artıran ağır kapılar ve kurşun yakalarla donatılmış geleneksel trol ağlarıyla çalışan Türk trol teknelerinin yakıt kullanım yoğunluğunu (karaya çıkarılan bir kilogram av başına kullanılan yakıt) ve ilgili karbondioksit emisyonlarını tahmin etmeyi amaçlamıştır. 2021-2022 yıllarında 13 trol teknesiyle gerçekleştirilen 129 ticari balıkçılık seferinden elde edilen veriler Genelleştirilmiş Doğrusal Modeller kullanılarak analiz edilmiştir. Genel olarak, bir kilogram deniz ürünü avlamak için medyan değeri yaklaşık 1,22 litre yakıt tüketilmiş ve söz konusu dönemde 3,21 kg CO2 salınmıştır. Tekne boyu, motor gücü ve hedeflenen tür grubu, yakıt kullanım yoğunluğunu etkileyen başlıca faktörler olarak belirlenmiştir. Mevcut çalışma, balıkçılık sektörünün karbonsuzlaştırılması için etkili yönetim önlemlerinin uygulanmasına yönelik kritik bilgiler sağlayarak karar alıcılar için pratik öneriler sunmaktadır. Daha geniş filo, farklı bölgeler ve balıkçılık sezonlarını kapsayacak şekilde veri setinin genişletilmesi, elde edilen sonuçların genellenebilirliğini ve farklı balıkçılıklarda uygulanabilirliğini daha da geliştirecektir.

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
  • Araya-Schmidt, T., Bayse, S.M., Winger, P.D., & Santos, M.R. (2022). Juvenile redfish (Sebastes spp.) behavior in response to Nordmøre grid systems in the offshore northern shrimp (Pandalus borealis) fishery of Eastern Canada. Frontiers in Marine Science, 9, 1 14. https://doi.org/10.3389/fmars.2022.920429
  • Bastardie, F., Hornborg, S., Ziegler, F., Gislason, H., & Eigaard, O.R. (2022). Reducing the fuel use intensity of fisheries: Through efficient fishing techniques and recovered fish stocks. Frontiers in Marine Science, 9, 1-22. https://doi.org/10.3389/fmars.2022.817335
  • Campos, A., Pilar-Fonseca, T., Parente, J., Fonseca, P., & Afonso-Dias, M. (2011). Fuel efficiency in trawlers under different fishing tactics using a consumption model and VMS data: A case-study for the Portuguese fleet. In E. Rizzuto, C.G. Soares (Eds.), Sustainable Maritime Transportation and Exploitation of Sea Resources, 1162 p. Published by CRC Press
  • Cappell, R., MacNab, S., & Holland, A. (2022). Assessment of NI Fleet Emissions. Report for ANIFPO/NIFPO.
  • Coello, J., Williams, I., Hudson, D.A., & Kemp, S. (2015). An AIS-based approach to calculate atmospheric emissions from the UK fishing fleet. Atmospheric Environment, 114, 1 7. https://doi.org/10.1016/j.atmosenv.2015.05.011
  • Dağtekin, M., Gücü, A.C., & Genç, Y. (2022). Concerns about illegal, unreported and unregulated fishing, carbon footprint, and the impact of fuel subsidy - An economic analysis of the Black Sea anchovy fishery. Marine Policy, 140, 105067. https://doi.org/10.1016/j.marpol.2022.105067
  • Davie, S., Minto, C., Officer, R., Lordan, C., & Jackson, E. (2014). Modelling fuel consumption of fishing vessels for predictive use. ICES Journal of Marine Science, 72(2), 708-719. https://doi.org/10.1093/icesjms/fsu084
  • Demirci, A., & Karaguzel, M. (2018). The evaluation of fishing vessels fuel consumption and pollutions emissions in the Iskenderun Bay. Fresenius Environmental Bulletin, 27(1), 508-514.
  • Deval, M.C. (2020). Population dynamics and biological patterns of commercial crustacean species in the Antalya Bay, Eastern mediterranean sea: III. The giant red shrimp aristaeomorpha foliacea risso, 1827. Turkish Journal of Fisheries and Aquatic Sciences, 20(4), 311-323. https://doi.org/10.4194/1303-2712-v20_4_07
  • Emecan, İ.T., Yıldız, T., Uzer, U., Çatal, A., Moussa, H., Aydın, C., & Karakulak, F.S. (2023). Catch composition of different bottom trawl cod-ends in the Western Black Sea. Aquatic Sciences and Engineering, 38(1), 53-61. https://doi.org/10.26650/ASE20221187355
  • FAO. (2014). General Fisheries Commission for the Mediterranean. Report of the thirty-seventh session. Split, Croatia, 13–17 May 2013. GFCM Report. No. 37, 104 pp., Rome.
  • Greer, K., Zeller, D., Woroniak, J., Coulter, A., Winchester, M., Palomares, M. L.D., & Pauly, D. (2019). Global trends in carbon dioxide (CO2) emissions from fuel combustion in marine fisheries from 1950 to 2016. Marine Policy, 107, 103491. https://doi.org/10.1016/j.marpol.2018.12.001
  • Grimaldo, E., Pedersen, R., & Sistiaga, M. (2015). Energy consumption of three different trawl configurations used in the Barents Sea demersal trawl fishery. Fisheries Research, 165, 71 73. https://doi.org/10.1016/j.fishres.2014.12.021
  • Groen, E.A., Ziegler, F., & Bokkers, E. A. M., Veldhuizen, L.J.L., de Boer, I.J. M., Donnelly, K., Sund, V., & Krewer, C. (2013). Variability in fuel efficiency of a northeast Atlantic demersal trawl fishery. The 6th International Conference on Life Cycle Management.
  • Hartig, F. (2020). DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.2.0. https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html
  • Hilborn, R., Amoroso, R., Collie, J., Hiddink, J.G.J., Kaiser, M.J., Mazor, T., Mcconnaughey, R.A., Parma, A.M., Pitcher, C.R., Sciberras, M., & Suuronen, P. (2023). Evaluating the sustainability and environmental impacts of trawling compared to other food production systems. ICES Journal of Marine Science, 80(6), 1567–1579. https://doi.org/10.1093/icesjms/fsad115
  • Hornborg, S., Hobday, A.J., Ziegler, F., Smith, A.D.M., & Green, B.S. (2018). Shaping sustainability of seafood from capture fisheries integrating the perspectives of supply chain stakeholders through combining systems analysis tools. ICES Journal of Marine Science, 75(6), 1965–1974. https://doi.org/10.1093/icesjms/fsy081
  • Kaykaç, M.H., Düzbastılar, F.O., Zengin, M., Süer, S., & Rüzgar, M. (2017). Measurements of fuel consumption and towing resistance in sea snail beam trawl fisheries: Preliminary results. Turkish Journal of Fisheries and Aquatic Sciences, 17(5), 901–909. https://doi.org/10.4194/1303-2712-v17_5_06
  • Kristofersson, D., Gunnlaugsson, S., & Valtysson, H. (2021). Factors affecting greenhouse gas emissions in fisheries: Evidence from Iceland’s demersal fisheries. ICES Journal of Marine Science, 78(7), 2385–2394. https://doi.org/10.1093/icesjms/fsab109
  • McHugh, M.J., Broadhurst, M.K., Sterling, D.J., & Millar, R.B. (2015). Comparing three conventional penaeid-trawl otter boards and the new batwing design. Fisheries Research, 167, 180-189. https://doi.org/10.1016/j.fishres.2015.02.013
  • Ozsari, I. (2023). Calculating the main engine power of fishing vessels with artificial neural networks analysis. In Proceeding Book of 2nd International Conference on Scientific and Academic Research, 1, 515–520. https://as-proceeding.com/index.php/icsar/article/view/355
  • Park, J.A., Gardner, C., Chang, M.I., Kim, D.H., & Jang, Y.S. (2015). Fuel use and greenhouse gas emissions from offshore fisheries of the Republic of Korea. PLoS ONE, 10(8), e0133778. https://doi.org/10.1371/journal.pone.0133778
  • Parker, R.W.R., Blanchard, J.L., Gardner, C., Green, B.S., Hartmann, K., Tyedmers, P.H., & Watson, R.A. (2018). Fuel use and greenhouse gas emissions of world fisheries. Nature Climate Change, 8(4), 333-337. https://doi.org/10.1038/s41558-018-0117-x
  • Parker, R.W.R., Gardner, C., Green, B.S., Hartmann, K., & Watson, R.A. (2017). Drivers of fuel use in rock lobster fisheries. ICES Journal of Marine Science, 74(6), 1681–1689. https://doi.org/10.1093/icesjms/fsx024
  • Parker, R.W.R., & Tyedmers, P.H. (2015). Fuel consumption of global fishing fleets: Current understanding and knowledge gaps. Fish and Fisheries, 16(4), 684-696. https://doi.org/10.1111/faf.12087
  • R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Sala, A., Damalas, D., Labanchi, L., Martinsohn, J., Moro, F., Sabatella, R., & Notti, E. (2022). Energy audit and carbon footprint in trawl fisheries. Scientific Data, 9(1), 428. https://doi.org/10.1038/s41597-022-01478-0
  • Sala, E., Mayorga, J., Bradley, D., Cabral, R.B., Atwood, T.B., Auber, A., Cheung, W., Costello, C., Ferretti, F., Friedlander, A.M., Gaines, S.D., Garilao, C., Goodell, W., Halpern, B.S., Hinson, A., Kaschner, K., Kesner-Reyes, K., Leprieur, F., McGowan, J., … Lubchenco, J. (2021). Protecting the global ocean for biodiversity, food and climate. Nature, 592(7854), 397–402. https://doi.org/10.1038/s41586-021-03371-z
  • Sarica, A., & Demir, O. (2021). Calculations about fuel and catch of trawl vessels, purse seines and small-scale vessels at Mersin Bay. Fresenius Environmental Bulletin, 30(2 A), 1873-1884.
  • Steadman, D., Thomas, J.B., Rivas Villanueva, V., Lewis, F., Pauly, D., Deng Palomares, M.L., Bailly, N., Levine, M., Virdin, J., Rocliffe, S., & Collinson, T. (2021). New perspectives on an old fishing practice: Scale, context and impacts of bottom trawling. Blue Ventures Report, Report 2021, 1–44, Bristol, UK.
  • Suuronen, P., Chopin, F., Glass, C., Løkkeborg, S., Matsushita, Y., Queirolo, D., & Rihan, D. (2012). Low impact and fuel efficient fishing-Looking beyond the horizon. Fisheries Research, 119–120, 135-146. https://doi.org/10.1016/j.fishres.2011.12.009
  • Thrane, M. (2004). Energy consumption in the Danish fishery: Identification of key factors. Journal of Industrial Ecology, 8(1–2), 223-239. https://doi.org/10.1162/1088198041269427
  • TURKSTAT. (2022) Fisheries Statistics for 2021. Online. Avaliable at: https://data.tuik.gov.tr/Bulten/Index?p=Fishery-Products-2021-45745&dil=2 (Last access 15 May 2023)
  • Tyedmers, P.H. (2001). Energy consumed by North Atlantic Fisheries. In D. Zeller, R. Watson, D. Pauly, (Eds.), Fisheries impacts on North Atlantic ecosystems: Catch, effort and national/regional datasets. Fisheries Centre Research Reports, 9(3), 12–34.
  • Tyedmers, P.H., Watson, R., & Pauly, D. (2005). Fueling global fishing fleets. Ambio, 34(8), 635-638. https://doi.org/10.1579/0044-7447-34.8.635
  • Venables, W.N., & Ripley, B.D. (2002). Satistics and computing. Modern Applied Statistics with S. Fourth edition, Publisher: Springer-Verlag.
  • Winther, U., Hognes, E.S., Jafarzadeh, S., & Ziegler, F. (2020). Greenhouse gas emissions of Norwegian seafood products in 2017. SINTEF Ocean AS Seafood Technology, Report No. 2019:01505.
  • Ziegler, F., & Hansson, P.A. (2003). Emissions from fuel combustion in Swedish cod fishery. Journal of Cleaner Production, 11(3), 303–314. https://doi.org/10.1016/S0959-6526(02)00050-1
  • Ziegler, F., & Hornborg, S. (2014). Stock size matters more than vessel size: The fuel efficiency of Swedish demersal trawl fisheries 2002-2010. Marine Policy, 44, 72-81. https://doi.org/10.1016/j.marpol.2013.06.015
  • Ziegler, F., Hornborg, S., Valentinsson, D., Skontorp Hognes, E., Søvik, G., & Ritzau Eigaard, O. (2016). Same stock, different management: Quantifying the sustainability of three shrimp fisheries in the Skagerrak from a product perspective. ICES Journal of Marine Science, 73(7), 1806-1814. https://doi.org/10.1093/icesjms/fsw035
  • Ziegler, F., Jafarzadeh, S., Skontorp Hognes, E., & Winther, U. (2021). Greenhouse gas emissions of Norwegian seafoods: From comprehensive to simplified assessment. Journal of Industrial Ecology, 26(6), 1908-1919. https://doi.org/10.1111/jiec.13150
There are 42 citations in total.

Details

Primary Language English
Subjects Fisheries Management, Fisheries Technologies, Aquaculture and Fisheries (Other)
Journal Section Articles
Authors

Yunus Emre Fakıoğlu 0000-0003-2937-7920

Publication Date March 8, 2025
Submission Date December 19, 2024
Acceptance Date February 20, 2025
Published in Issue Year 2025Volume: 42 Issue: 1

Cite

APA Fakıoğlu, Y. E. (2025). Fuel efficiency of trawlers per kilogram of landed catch: Insights for decarbonizing fisheries in Türkiye. Ege Journal of Fisheries and Aquatic Sciences, 42(1), 56-63. https://doi.org/10.12714/egejfas.42.1.08