Research Article
PDF BibTex RIS Cite

Year 2021, Volume: 38 Issue: 3, 269 - 273, 15.09.2021
https://doi.org/10.12714/egejfas.38.3.02

Abstract

References

  • Ahlatci, A., Kuzhan, A., Taysi, S., Demirtas, O.C., Alkis, H.E., Tarakcioglu, M., Demirci, A., Caglayan, D., Saricicek, E. & Cinar, K. (2014). Radiation-modifying abilities of Nigella sativa and thymoquinone on radiation-induced nitrosative stress in the brain tissue. Phytomedicine 21, 740-744. DOI: 10.1016/j.phymed.2013.10.023
  • Al-Nimer, M.S., Al-Ani F.S. & Ali F.S. (2012). Role of nitrosative and oxidative stress in neuropathy in patients with type 2 diabetes mellitus. Journal of Neurosciences in Rural Practice 3, 41-44. DOI: 10.4103/0976-3147.91932
  • Bano, Y. & Hasan M. (1990). Histopathological lesions in the body organs of cat-fish (Heteropneustes fossilis) following mercury intoxication. Journal of Environmental Science and Health, Part B 25, 67-85. DOI: 10.1080/03601239009372677
  • Baser, S., Erkoc, F., Selvi, M. & Kocak, O. (2003). Investigation of acute toxicity of permethrin on guppies Poecilia reticulata. Chemosphere 51, 469-474. DOI: 10.1016/S0045-6535(03)00033-X
  • Berntssen, M.H.G., Aatland, A. & Handy, R.D. (2003). Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquatic Toxicology 65, 55-72. DOI: 10.1016/S0166-445X(03)00104-8
  • Boudou, A. & Ribeyre, F. (1983). Contamination of aquatic biocenoses by mercury compounds an experimental ecotoxicological approach. In J. O. Nriagu (Ed.) Aquatic Toxicology, J Wiley and Sons (New York), pp. 117-136.
  • Chaudiere, J. & Ferrari-Iliou, R. (1999). Intracellular antioxidants: from chemical to biochemical mechanisms. Food and Chemical Toxicology 37, 949-962. DOI: 10.1016/S0278-6915(99)00090-3
  • de Oliveira Ribeiro, C.A., Belger, L., Pelletier, E. & Rouleau, C. (2002). Histopathological evidence of inorganic mercury and methyl mercury toxicity in the arctic charr (Salvelinus alpinus). Environmental Research 90, 217-225. DOI: 10.1016/S0013-9351(02)00025-7
  • Doğan, N., Yazıcı, Z. & Şişman, T. (2011). Lepistes balığının karaciğeri üzerine fenpiroksimat akarisiti’nin biyokimyasal etkileri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13: 1-8.
  • Doyotte, A., Cossu, C., Jacquin, M. C., Babut, M. & Vasseur, P. (1997). Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus. Aquatic Toxicology, 39(2), 93-110. doi:Doi 10.1016/S0166-445x(97)00024-6
  • Driscoll, C. T., Yan, C., Schofiel, L., Munson, R. & Holsapple, J. (1994). The mercury cycle and fish in the adirondak lakes. Environmental Science and Technology, 28, 136-143. DOI:10.1021/es00052a003
  • Dural, M., Goksu, M. Z. L. & Ozak, A. A. (2007). Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chemistry, 102(1), 415-421. DOI: 10.1016/j.foodchem.2006.03.001
  • Elia, A. C., Galarini, R., Taticchi, M. I., Dorr, A. J. & Mantilacci, L. (2003). Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicology and Environmental Safety, 55(2), 162-167. DOI: 10.1016/s0147-6513(02)00123-9
  • Erel, O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37(4), 277-285. DOI: 10.1016/j.clinbiochem.2003.11.015
  • Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38(12), 1103-1111. DOI: 10.1016/j.clinbiochem.2005.08.008
  • Fathi, M., Binkowski, L. J., Azadi, N. A., Hamesadeghi, U. & Mansouri, B. (2018). Co-exposure effects of mercury chloride (HgCl2) and silver nanoparticles (Ag-NPs) on goldfish (Carassius auratus): Histopathological changes, oxidative stress response, and bioaccumulation. Desalination and Water Treatment, 105, 264-272. DOI: 10.5004/dwt.2018.21994
  • Gilbert, S. G. & Grantwebster, K. S. (1995). Neurobehavioral effects of developmental methylmercury exposure. Environmental Health Perspectives, 103, 135-142. DOI: 10.2307/3432363
  • Guardiola, F. A., Chaves-Pozo, E., Espinosa, C., Romero, D., Meseguer, J., Cuesta, A. & Esteban, M. A. (2016). Mercury accumulation, structural damages, and antioxidant and immune status changes in the gilthead seabream (Sparus aurata L.) exposed to methylmercury. Archives of Environmental Contamination and Toxicology, 70(4), 734-746. DOI: 10.1007/s00244-016-0268-6
  • Gundacker, C., Komarnicki, G., Zodl, B., Forster, C., Schuster, E. & Wittmann, K. (2006). Whole blood mercury and selenium concentrations in a selected Austrian population: Does gender matter? Science of the Total Environment, 372(1), 76-86. DOI: 10.1016/j.scitotenv.2006.08.006
  • Gunes, M., Sokmen, T. O. & Kirici, M. (2019). Determination of some metal levels in water, sediment and fish species of Tercan Dam Lake, Turkey. Applied Ecology and Environmental Research, 17(6), 14961-14972. DOI: 10.15666/aeer/1706_1496114972
  • Gül, A., Yılmaz, M. & Selvi, M. (2004). The study of the toxic effects of mercury-II-chloride. Gazi Üniversitesi Fen Bilimleri Dergisi, 17(4), 53-58.
  • Gül, A., Yılmaz, M. & Uzel, N. (2008). Acute toxic effect of mercury II chloride in Capoeta tinca (Heckel. 1843), living in the Kirmir stream of Sakarya river. Kastamonu Educational Journal, 16, 199-206.
  • Güven, A., Kahvecioğlu, Ö., Kartal, G. & Timur, S. (2004). Metallerin çevresel etkileri- III. Metalurji Dergisi 17(138), 64-71.
  • Has-Schon, E., Bogut, I., Vukovic, R., Galovic, D., Bogut, A. & Horvatic, J. (2015). Distribution and age-related bioaccumulation of lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As) in tissues of common carp (Cyprinus carpio) and European catfish (Sylurus glanis) from the Busko Blato reservoir (Bosnia and Herzegovina). Chemosphere, 135, 289-296. DOI: 10.1016/j.chemosphere.2015.04.015
  • Ibrahim, A. T. A. (2015). Effects of mercury chloride on oxidative stress biomarkers of some tissues of the african catfish Clarias gariepinus (Burchell, 1822). Journal of Veterinary Science and Technology, 6(4), 1-5. DOI: 10.4172/2157-7579.1000242
  • Kasassi, A., Rakimbei, P., Karagiannidis, A., Zabaniotou, A., Tsiouvaras, K., Nastis, A. & Tzafeiropoulou, K. (2008). Soil contamination by heavy metals: Measurements from a closed unlined landfill. Bioresource Technology, 99(18), 8578-8584. DOI: 10.1016/j.biortech.2008.04.010
  • Kaya, İ., Yılmaz, M., Koç, E., Deveci, H. A., Ersan, Y. & Karapehlivan, M. (2014). Tebukonazol (fungusit) uygulanan Cyprinus carpio (L. 1758)’da serum total antioksidan, oksidan ve sialik asit düzeylerinin incelenmesi. Journal of FisheriesSciences.com, 8(3), 214-219.
  • Kırıcı, M., Taysi, M. R., Bengü, A. Ş. & İspir, Ü. (2013). Determination of accumulation concentrations of some metals in the muscle tissue of Capoeta trutta (Heckel, 1843) captured in the Murat River. Journal of Erzincan University Institute of Science, 6(1), 115-124.
  • Iliopoulou-Georgudaki, J. & Kotsanis, N. (2001). Toxic effects of cadmium and mercury in rainbow trouth (Oncorhynchus mykiss): a short-term bioassay. Bulletin of Environmental Contamination and Toxicology. 66, 77-85. DOI: 10.1007/s0012800208
  • Maulvault, A. L., Custodio, A., Anacleto, P., Repolho, T., Pousao, P., Nunes, M. L. & Marques, A. (2016). Bioaccumulation and elimination of mercury in juvenile seabass (Dicentrarchus labrax) in a warmer environment. Environmental Research, 149, 77-85. DOI: 10.1016/j.envres.2016.04.035
  • Mieiro, C. L., Ahmad, I., Pereira, M. E., Duarte, A. C. & Pacheco, M. (2010). Antioxidant system breakdown in brain of feral golden grey mullet (Liza aurata) as an effect of mercury exposure. Ecotoxicology, 19(6), 1034-1045. DOI: 10.1007/s10646-010-0485-0
  • Morales, A. E., Pèrez-Jimènez, A., Hidalgo, M. C., Abellán, E. & Gabriel, C. G. (2004). Oxidative stres and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comporative Biochemistry and Physiology, 139(7), 153-161.
  • Ohkawa, H., Ohishi, N. & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. DOI: 10.1016/0003-2697(79)90738-3
  • Pandey, S., Kumar, R., Sharma, S., Hagpure, N.S., Srivastava, S.K., Verma, M.S. (2005). Acute toxicity bioassays of mercuric chloride and malathion on air-breathing fish Channa punctatus (Bloch). Ecotoxicology and Environmental Safety 61: 114-120. DOI: 10.1016/j.ecoenv.2004.08.004
  • Perottoni, J., Lobato, L. P., Silveira, A., Batista, J., Rocha, T. & Emanuelli, T. (2004). Effects of mercury and selenite on delta-aminolevulinate dehydratase activity and on selected oxidative stress parameters in rats. Environmental Research, 95(2), 166-173. DOI: 10.1016/j.envres.2003.08.007
  • Plessi, M., Bertelli, D. & Monzani, A. (2001). Mercury and selenium content in selected seafood. Journal of Food Composition and Analysis, 14, 461-467. DOI:10.1006/jfca.2001.1003
  • Powell, C. L., Swenberg, J. A. & Rusyn, I. (2005). Expression of base excision DNA repair genes as a biomarker of oxidative DNA damage. Cancer Letters, 229(1), 1-11. DOI: 10.1016/j.canlet.2004.12.002
  • Svobodova, Z., Luskova, V., Drastichova, J., Svoboda, M. & Zlabek, V. (2003). Effect of deltamethrin on haematological indices of common carp (Cyprinus carpio L.). Acta Veterinaria Brno, 72(1), 79-85. DOI: 10.2754/avb200372010079
  • Terzi, E. & Verep, B. (2012). Effects of water hardness and temperature on the acute toxicity of mercuric chloride on rainbow trout (Oncorhynchus mykiss). Toxicology and Industrial Health, 28(6), 499-504. DOI: 10.1177/0748233711416943
  • Thirumavalavan, R. (2010). Effect of mercury on lipid peroxidation and antioxidants in gill tissue of fresh water fish, labeo rohita. International Journal of Recent Scientific Research, 5, 122-124.
  • Thongra-ar, W., Parkpian, P. & Tang, A. (2003). Toxicity of mercury to growth and survival of seabass larvae. Lates carcarifer. and the modyfing of effects of salinity. ScienceAsia, 29, 2009-2019.
  • Vanuffelen, B. E., Van Der Zee, J., De Koster, B. M., Vansteveninck, J. & Elferink, J. G. (1998). Intracellular but not extracellular conversion of nitroxyl anion into nitric oxide leads to stimulation of human neutrophil migration. Biochemical Journal, 330(2), 719-722. DOI: 10.1042/bj3300719
  • Veena, K. B., Radhakrishnan, C. K. & Chacko, J. (1997). Heavy metal induced biochemical effects in an estuarine teleost. Indian Journal of Marine Sciences, 26(1), 74-78.
  • Verep, B., Besli, E. S., Altinok, I. & Mutlu, C. (2007). Assessment of mercuric chloride toxicity on rainbow trouts (Oncorhynchus mykiss) and chubs (Alburnoides bipunctatus). Pakistan Journal of Biological Sciences, 10(7), 1098-1102. DOI: 10.3923/pjbs.2007.1098.1102
  • Wang, B., Feng, L., Jiang, W. D., Wu, P., Kuang, S. Y., Jiang, J. & Zhou, X. Q. (2015). Copper-induced tight junction mRNA expression changes, apoptosis and antioxidant responses via NF-kappa B, TOR and Nrf2 signaling molecules in the gills of fish: Preventive role of arginine. Aquatic Toxicology, 158, 125-137. DOI:10.1016/j.aquatox.2014.10.025
  • Yonar, M. E., Ispir, U., Mise Yonar, S. & Kirici, M. (2016). Effect of copper sulphate on the antioxidant parameters in the rainbow trout fry, Oncorhynchus mykiss. Cellular and Molecular Biology, 62(6), 55-58.

The role of nitrosative and oxidative stress in rainbow trout (Oncorhynchus mykiss) liver tissue applied mercury chloride (HgCl2)

Year 2021, Volume: 38 Issue: 3, 269 - 273, 15.09.2021
https://doi.org/10.12714/egejfas.38.3.02

Abstract



The aim of this study was to determine oxidative stress caused by mercury chloride (HgCl2) in rainbow trout (Oncorhynchus mykiss) liver tissue. For this purpose, the LD50 value of HgCl2 on rainbow trout was determined as 551 μg/L. In the study, 40 fish in four groups were exposed to 25% and 50% (138 and 276 µg/L) of the two subletal doses of HgCl2 for 2 and 7 days, with 10 fish (n=10) in each group. To determine oxidative stress; peroxynitrite (ONOO−), total oxidant level (TOS), total antioxidant level (TAS), oxidative stress index (OSI) and malondialdehyde (MDA) were analyzed. In the study, it was observed that the differences between the groups in terms of ONOO−, TOS, TAS and OSI levels in the liver tissues was significant (P<0.05), however, this difference was not significant (P>0.05) in terms of MDA values. As a result, it can be concluded that HgCl2 increases ONOO−, TOS, TAS, OSI and MDA levels in liver tissue and even small doses of mercury are toxic to fish. 


References

  • Ahlatci, A., Kuzhan, A., Taysi, S., Demirtas, O.C., Alkis, H.E., Tarakcioglu, M., Demirci, A., Caglayan, D., Saricicek, E. & Cinar, K. (2014). Radiation-modifying abilities of Nigella sativa and thymoquinone on radiation-induced nitrosative stress in the brain tissue. Phytomedicine 21, 740-744. DOI: 10.1016/j.phymed.2013.10.023
  • Al-Nimer, M.S., Al-Ani F.S. & Ali F.S. (2012). Role of nitrosative and oxidative stress in neuropathy in patients with type 2 diabetes mellitus. Journal of Neurosciences in Rural Practice 3, 41-44. DOI: 10.4103/0976-3147.91932
  • Bano, Y. & Hasan M. (1990). Histopathological lesions in the body organs of cat-fish (Heteropneustes fossilis) following mercury intoxication. Journal of Environmental Science and Health, Part B 25, 67-85. DOI: 10.1080/03601239009372677
  • Baser, S., Erkoc, F., Selvi, M. & Kocak, O. (2003). Investigation of acute toxicity of permethrin on guppies Poecilia reticulata. Chemosphere 51, 469-474. DOI: 10.1016/S0045-6535(03)00033-X
  • Berntssen, M.H.G., Aatland, A. & Handy, R.D. (2003). Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquatic Toxicology 65, 55-72. DOI: 10.1016/S0166-445X(03)00104-8
  • Boudou, A. & Ribeyre, F. (1983). Contamination of aquatic biocenoses by mercury compounds an experimental ecotoxicological approach. In J. O. Nriagu (Ed.) Aquatic Toxicology, J Wiley and Sons (New York), pp. 117-136.
  • Chaudiere, J. & Ferrari-Iliou, R. (1999). Intracellular antioxidants: from chemical to biochemical mechanisms. Food and Chemical Toxicology 37, 949-962. DOI: 10.1016/S0278-6915(99)00090-3
  • de Oliveira Ribeiro, C.A., Belger, L., Pelletier, E. & Rouleau, C. (2002). Histopathological evidence of inorganic mercury and methyl mercury toxicity in the arctic charr (Salvelinus alpinus). Environmental Research 90, 217-225. DOI: 10.1016/S0013-9351(02)00025-7
  • Doğan, N., Yazıcı, Z. & Şişman, T. (2011). Lepistes balığının karaciğeri üzerine fenpiroksimat akarisiti’nin biyokimyasal etkileri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13: 1-8.
  • Doyotte, A., Cossu, C., Jacquin, M. C., Babut, M. & Vasseur, P. (1997). Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus. Aquatic Toxicology, 39(2), 93-110. doi:Doi 10.1016/S0166-445x(97)00024-6
  • Driscoll, C. T., Yan, C., Schofiel, L., Munson, R. & Holsapple, J. (1994). The mercury cycle and fish in the adirondak lakes. Environmental Science and Technology, 28, 136-143. DOI:10.1021/es00052a003
  • Dural, M., Goksu, M. Z. L. & Ozak, A. A. (2007). Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chemistry, 102(1), 415-421. DOI: 10.1016/j.foodchem.2006.03.001
  • Elia, A. C., Galarini, R., Taticchi, M. I., Dorr, A. J. & Mantilacci, L. (2003). Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicology and Environmental Safety, 55(2), 162-167. DOI: 10.1016/s0147-6513(02)00123-9
  • Erel, O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37(4), 277-285. DOI: 10.1016/j.clinbiochem.2003.11.015
  • Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38(12), 1103-1111. DOI: 10.1016/j.clinbiochem.2005.08.008
  • Fathi, M., Binkowski, L. J., Azadi, N. A., Hamesadeghi, U. & Mansouri, B. (2018). Co-exposure effects of mercury chloride (HgCl2) and silver nanoparticles (Ag-NPs) on goldfish (Carassius auratus): Histopathological changes, oxidative stress response, and bioaccumulation. Desalination and Water Treatment, 105, 264-272. DOI: 10.5004/dwt.2018.21994
  • Gilbert, S. G. & Grantwebster, K. S. (1995). Neurobehavioral effects of developmental methylmercury exposure. Environmental Health Perspectives, 103, 135-142. DOI: 10.2307/3432363
  • Guardiola, F. A., Chaves-Pozo, E., Espinosa, C., Romero, D., Meseguer, J., Cuesta, A. & Esteban, M. A. (2016). Mercury accumulation, structural damages, and antioxidant and immune status changes in the gilthead seabream (Sparus aurata L.) exposed to methylmercury. Archives of Environmental Contamination and Toxicology, 70(4), 734-746. DOI: 10.1007/s00244-016-0268-6
  • Gundacker, C., Komarnicki, G., Zodl, B., Forster, C., Schuster, E. & Wittmann, K. (2006). Whole blood mercury and selenium concentrations in a selected Austrian population: Does gender matter? Science of the Total Environment, 372(1), 76-86. DOI: 10.1016/j.scitotenv.2006.08.006
  • Gunes, M., Sokmen, T. O. & Kirici, M. (2019). Determination of some metal levels in water, sediment and fish species of Tercan Dam Lake, Turkey. Applied Ecology and Environmental Research, 17(6), 14961-14972. DOI: 10.15666/aeer/1706_1496114972
  • Gül, A., Yılmaz, M. & Selvi, M. (2004). The study of the toxic effects of mercury-II-chloride. Gazi Üniversitesi Fen Bilimleri Dergisi, 17(4), 53-58.
  • Gül, A., Yılmaz, M. & Uzel, N. (2008). Acute toxic effect of mercury II chloride in Capoeta tinca (Heckel. 1843), living in the Kirmir stream of Sakarya river. Kastamonu Educational Journal, 16, 199-206.
  • Güven, A., Kahvecioğlu, Ö., Kartal, G. & Timur, S. (2004). Metallerin çevresel etkileri- III. Metalurji Dergisi 17(138), 64-71.
  • Has-Schon, E., Bogut, I., Vukovic, R., Galovic, D., Bogut, A. & Horvatic, J. (2015). Distribution and age-related bioaccumulation of lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As) in tissues of common carp (Cyprinus carpio) and European catfish (Sylurus glanis) from the Busko Blato reservoir (Bosnia and Herzegovina). Chemosphere, 135, 289-296. DOI: 10.1016/j.chemosphere.2015.04.015
  • Ibrahim, A. T. A. (2015). Effects of mercury chloride on oxidative stress biomarkers of some tissues of the african catfish Clarias gariepinus (Burchell, 1822). Journal of Veterinary Science and Technology, 6(4), 1-5. DOI: 10.4172/2157-7579.1000242
  • Kasassi, A., Rakimbei, P., Karagiannidis, A., Zabaniotou, A., Tsiouvaras, K., Nastis, A. & Tzafeiropoulou, K. (2008). Soil contamination by heavy metals: Measurements from a closed unlined landfill. Bioresource Technology, 99(18), 8578-8584. DOI: 10.1016/j.biortech.2008.04.010
  • Kaya, İ., Yılmaz, M., Koç, E., Deveci, H. A., Ersan, Y. & Karapehlivan, M. (2014). Tebukonazol (fungusit) uygulanan Cyprinus carpio (L. 1758)’da serum total antioksidan, oksidan ve sialik asit düzeylerinin incelenmesi. Journal of FisheriesSciences.com, 8(3), 214-219.
  • Kırıcı, M., Taysi, M. R., Bengü, A. Ş. & İspir, Ü. (2013). Determination of accumulation concentrations of some metals in the muscle tissue of Capoeta trutta (Heckel, 1843) captured in the Murat River. Journal of Erzincan University Institute of Science, 6(1), 115-124.
  • Iliopoulou-Georgudaki, J. & Kotsanis, N. (2001). Toxic effects of cadmium and mercury in rainbow trouth (Oncorhynchus mykiss): a short-term bioassay. Bulletin of Environmental Contamination and Toxicology. 66, 77-85. DOI: 10.1007/s0012800208
  • Maulvault, A. L., Custodio, A., Anacleto, P., Repolho, T., Pousao, P., Nunes, M. L. & Marques, A. (2016). Bioaccumulation and elimination of mercury in juvenile seabass (Dicentrarchus labrax) in a warmer environment. Environmental Research, 149, 77-85. DOI: 10.1016/j.envres.2016.04.035
  • Mieiro, C. L., Ahmad, I., Pereira, M. E., Duarte, A. C. & Pacheco, M. (2010). Antioxidant system breakdown in brain of feral golden grey mullet (Liza aurata) as an effect of mercury exposure. Ecotoxicology, 19(6), 1034-1045. DOI: 10.1007/s10646-010-0485-0
  • Morales, A. E., Pèrez-Jimènez, A., Hidalgo, M. C., Abellán, E. & Gabriel, C. G. (2004). Oxidative stres and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comporative Biochemistry and Physiology, 139(7), 153-161.
  • Ohkawa, H., Ohishi, N. & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. DOI: 10.1016/0003-2697(79)90738-3
  • Pandey, S., Kumar, R., Sharma, S., Hagpure, N.S., Srivastava, S.K., Verma, M.S. (2005). Acute toxicity bioassays of mercuric chloride and malathion on air-breathing fish Channa punctatus (Bloch). Ecotoxicology and Environmental Safety 61: 114-120. DOI: 10.1016/j.ecoenv.2004.08.004
  • Perottoni, J., Lobato, L. P., Silveira, A., Batista, J., Rocha, T. & Emanuelli, T. (2004). Effects of mercury and selenite on delta-aminolevulinate dehydratase activity and on selected oxidative stress parameters in rats. Environmental Research, 95(2), 166-173. DOI: 10.1016/j.envres.2003.08.007
  • Plessi, M., Bertelli, D. & Monzani, A. (2001). Mercury and selenium content in selected seafood. Journal of Food Composition and Analysis, 14, 461-467. DOI:10.1006/jfca.2001.1003
  • Powell, C. L., Swenberg, J. A. & Rusyn, I. (2005). Expression of base excision DNA repair genes as a biomarker of oxidative DNA damage. Cancer Letters, 229(1), 1-11. DOI: 10.1016/j.canlet.2004.12.002
  • Svobodova, Z., Luskova, V., Drastichova, J., Svoboda, M. & Zlabek, V. (2003). Effect of deltamethrin on haematological indices of common carp (Cyprinus carpio L.). Acta Veterinaria Brno, 72(1), 79-85. DOI: 10.2754/avb200372010079
  • Terzi, E. & Verep, B. (2012). Effects of water hardness and temperature on the acute toxicity of mercuric chloride on rainbow trout (Oncorhynchus mykiss). Toxicology and Industrial Health, 28(6), 499-504. DOI: 10.1177/0748233711416943
  • Thirumavalavan, R. (2010). Effect of mercury on lipid peroxidation and antioxidants in gill tissue of fresh water fish, labeo rohita. International Journal of Recent Scientific Research, 5, 122-124.
  • Thongra-ar, W., Parkpian, P. & Tang, A. (2003). Toxicity of mercury to growth and survival of seabass larvae. Lates carcarifer. and the modyfing of effects of salinity. ScienceAsia, 29, 2009-2019.
  • Vanuffelen, B. E., Van Der Zee, J., De Koster, B. M., Vansteveninck, J. & Elferink, J. G. (1998). Intracellular but not extracellular conversion of nitroxyl anion into nitric oxide leads to stimulation of human neutrophil migration. Biochemical Journal, 330(2), 719-722. DOI: 10.1042/bj3300719
  • Veena, K. B., Radhakrishnan, C. K. & Chacko, J. (1997). Heavy metal induced biochemical effects in an estuarine teleost. Indian Journal of Marine Sciences, 26(1), 74-78.
  • Verep, B., Besli, E. S., Altinok, I. & Mutlu, C. (2007). Assessment of mercuric chloride toxicity on rainbow trouts (Oncorhynchus mykiss) and chubs (Alburnoides bipunctatus). Pakistan Journal of Biological Sciences, 10(7), 1098-1102. DOI: 10.3923/pjbs.2007.1098.1102
  • Wang, B., Feng, L., Jiang, W. D., Wu, P., Kuang, S. Y., Jiang, J. & Zhou, X. Q. (2015). Copper-induced tight junction mRNA expression changes, apoptosis and antioxidant responses via NF-kappa B, TOR and Nrf2 signaling molecules in the gills of fish: Preventive role of arginine. Aquatic Toxicology, 158, 125-137. DOI:10.1016/j.aquatox.2014.10.025
  • Yonar, M. E., Ispir, U., Mise Yonar, S. & Kirici, M. (2016). Effect of copper sulphate on the antioxidant parameters in the rainbow trout fry, Oncorhynchus mykiss. Cellular and Molecular Biology, 62(6), 55-58.

Details

Primary Language English
Journal Section Articles
Authors

Mehmet Reşit TAYSI
Bingöl Üniversitesi Ziraat Fakültesi
0000-0002-1072-4059
Türkiye


Muammer KIRICI
Bingöl Üniversitesi, Gıda Tarım ve Hayvancılık Meslek Yüksekokulu, Veterinerlik Bölümü
0000-0003-1888-4388
Türkiye


Mahinur KIRICI
Bingöl Üniversitesi Fen Edebiyat Fakültesi Kimya
0000-0003-4642-7387
Türkiye


Hasan ULUSAL
Gaziantep Üniversitesi Tıbbi Biyokimya Bölümü
0000-0003-3890-2088
Türkiye


Bünyamin SÖGÜT
BANDIRMA ONYEDİ EYLÜL ÜNİVERSİTESİ, BANDIRMA MESLEK YÜKSEKOKULU
0000-0002-7644-7226
Türkiye


Seyithan TAYSI
Gaziantep Üniversitesi Tıbbi Biyokimya
0000-0003-1251-3148
Türkiye

Publication Date September 15, 2021
Submission Date December 23, 2020
Acceptance Date April 1, 2021
Published in Issue Year 2021Volume: 38 Issue: 3

Cite

APA Taysı, M. R. , Kırıcı, M. , Kırıcı, M. , Ulusal, H. , Sögüt, B. & Taysı, S. (2021). The role of nitrosative and oxidative stress in rainbow trout (Oncorhynchus mykiss) liver tissue applied mercury chloride (HgCl2) . Ege Journal of Fisheries and Aquatic Sciences , 38 (3) , 269-273 . DOI: 10.12714/egejfas.38.3.02