Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Comparison of Industrial-scale Tubular Photobioreactor to FRP (Fiberglass reinforced plastic) Panel Photobioreactor on Outdoor Culture of Nannochloropsis oculata in the Marine Hatchery

Year 2020, Volume 37, Issue 3, 303 - 308, 15.09.2020
https://doi.org/10.12714/egejfas.37.3.13

Abstract



Microalgal culture is a key procedure in marine fish hatcheries, but this activity is far from optimized and has several problems remain to be solved. Nannochloropsis oculata are important to live feed organisms, which are used to rear the larvae of marine finfish. N. oculata were cultivated in tubular PBR and FRP panel PBR in a greenhouse. Tubular PBR was reached 701.7 x 106 cells mL-1 as its maximum cell density and FRP panel PBR was reached 245 x 106 cells mL-1 as maximum. Also, estimated maximum dry weights of tubular and FRP panel PBRs were calculated as 3.249 g L-1 and 1.47 g L-1, respectively. Consequently, tubular PBR was showed that it is more efficient than FRP panel PBR in this study.




References

  • Ashokkumar, V., Agila, E., Sivakumar, P., Salam, Z., Rengasamy, R. & Ani, F. N. (2014). Optimization and characterization of biodiesel production from microalgae Botryococcus grown at semi-continuous system. Energy Conversion and Management, 88, 936-946. DOI: 10.1016/j.enconman.2014.09.019
  • Boeing, P. (2000). Larval feed alternatives. Global Aquaculture Advocate 3 (1):48-50.
  • Briassoulis, D., Panagakis, P., Chionidis, M., Tzenos, D., Lalos, A., Tsinos, C. & Jacobsen, A. (2010). An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresource Technology, 101(17), 6768-6777. DOI: 10.1016/j.biortech.2010.03.103
  • Brown, M.R., Mular, M., Miller, I., Farmer, C. & Trenerry, C. (1999). The vitamin content of microalgae used in aquaculture. Journal of Applied Phycology, 11(3), 247-255. DOI: 10.1023/A:1008075903578
  • Del Campo, J. A., García-González, M. & Guerrero, M.G. (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied microbiology and biotechnology, 74(6), 1163-1174. DOI: 10.1007/s00253-007-0844-9
  • Dogaris, I., Welch, M., Meiser, A., Walmsley, L. & Philippidis, G. (2015). A novel horizontal photobioreactor for high-density cultivation of microalgae. Bioresource Technology, 198, 316-324. DOI: 10.1016/j.biortech.2015.09.030
  • Durmaz, Y. (2007). Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture, 272(1), 717-722. DOI: 10.1016/j.aquaculture.2007.07.213
  • Durmaz, Y., Donato, M., Monteiro, M., Gouveia, L., Nunes, M. L., Gama Pereira, T., Gokpinar, S. & Bandarra, N. M. (2008). Effect of Temperature on Growth and Biochemical Composition (Sterols, α-tocopherol, Carotenoids, Fatty Acid Profiles) of the Microalga, Isochrysis galbana. Israeli Journal of Aquaculture – Bamidgeh, 60(3), 188-195.
  • El-Sheekh, M. M., Osman, M. E., Dyab, M. A. & Amer, M.S., (2006). Production and characterization of antimicrobial active substance from the cyanobacterium Nostoc muscorum. Environmental toxicology and pharmacology, 21(1), 42-50.
  • FAO, (1996). Manual on the Production and Use of Live Food for Aquaculture. FAO Fisheries Technical Paper No. 361. Rome.
  • Guillard, R. R. & Ryther, J.H. (1962). Studies of marine planktonic diatoms: I. Cyclotella Nana Hustedt, and Detonula Confervacea (CLEVE) Gran. Canadian Journal of Microbiology, 8(2), 229-239. DOI: 10.1139/m62-029
  • Hibberd, D.J., (1981). Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Botanical Journal of Linnean Society, 82(2), 93-119. DOI: 10.1111/j.1095-8339.1981.tb00954.x
  • Huang, X., Huang, Z., Wen, W. & Yan, J. (2013). Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). Journal of Applied Phycology, Volume 25, Issue 1, 129-137.
  • Hulatt, C.J., Wijffels, R.H., Bolla, S., & Kiron, V. (2017). Production of fatty acids and protein by Nannochloropsis in flat-plate photobioreactors. PLOS ONE, 12(1), e0170440. DOI: 10.1371/journal.pone.0170440
  • Ketheesan, B. & Nirmalakhandan, N. (2012). Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor. Bioresource Technology, 108:196-202. DOI: 10.1016/j.biortech.2011.12.146
  • Kumar, K. S., Dahms, H. U., Won, E. J., Lee, J. S. & Shin, K. H. (2015). Microalgae-A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329-352. DOI: 10.1016/j.ecoenv.2014.12.019
  • Lourenco, S., Barbarino, E., Mancini-Filho, J., Schinke, K. & Aidar, E. (2002). Effect of different nitrojen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: An evaluation for aquaculture, Phycologia 12, 249-255.
  • Low, C. & Toledo, M.I. (2015). Assessment of the shelf-life of Nannochloropsis oculata flocculates stored at different temperatures. Latin American Journal of Aquatic Research, 43(2), 315-321.
  • Lubián, L.M., Montero, O., Moreno-Garrido, I., Huertas, I. E., Sobrino, C., González-del Valle, M. & Parés, G. (2000). Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. Journal of Applied Phycology, 12(3-5), 249-255.
  • Muller-Feuga A. (2013). Microalgae for aquaculture: the current global situation and future trends. In: Richmond A, Hu Q. Eds., Handbook of microalgal culture: Applied phycology and biotechnology, Wiley Blackwell, Chichester, 613-627. DOI: 10.1002/9781118567166.ch33
  • Olaizola, M. (2003). Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomolecular Engineering, 20(4), 459-466.
  • Otero, A., García, D. & Fábregas, J. (1997). Factors controlling eicosapentaenoic acid production in semicontinuous cultures of marine microalgae. Journal of Applied Phycology, 9(5), 465-469. DOI: 10.1023/A:1007930804367
  • Qiang, Hu., & Richmond, A. (1994). Mikroalgae Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. Journal of Applied Phycology, 6(4), 391-396. DOI: 10.1007/BF02182155
  • Renaud, S. M., Zhou, H.C., Parry, D.L., Thinh, L.V. & Woo, K. C. (1995). Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp. (clone T. ISO). Journal of Applied Phycology, 7(6), 595-602. DOI: 10.1007/BF00003948
  • Richmond A. (1986). Cell response to environmental factors. pp. 69-99. In: A. Richmond (ed.). CRC Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, FL.
  • Richmond, A., (2004). Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia, 512(1-3), 33-37. DOI: 10.1023/B:HYDR.0000020365.06145.36
  • Sathasivam, R., Radhakrishnan, R., Hashem, A. & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi journal of biological sciences, 26(4), 709-722. DOI: 10.1016/j.sjbs.2017.11.003
  • Sukenik, A., Zmora, O. & Carmeli, Y. (1993). Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture, 117(3-4), 313-326. DOI: 10.1016/0044-8486(93)90328-V
  • Thompson, P. A., Guo, M. X. & Harrison, P.J. (1992). Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton. Journal of Phycology, 28(4), 481-488. DOI: 10.1111/j.0022-3646.1992.00481.x
  • Vismara, R., Vestri, S., Kusmic, C., Barsanti, L. & Gualtieri, P. (2003). Natural vitamin E enrichment of Artemia salina fed freshwater and marine microalgae. Journal of Applied Phycology, 15(1), 75-80. DOI: 10.1023/A:1022942705496
  • Xu, F., Hu, H. H., Cong, W., Cai, Z. L. & Ouyang, F. (2004). Growth characteristics and eicosapentaenoic acid production by Nannochloropsis sp. in mixotrophic conditions. Biotechnology Letters, 26(1), 51-53. DOI: 10.1023/B:BILE.0000009460.81267.cc
  • Zhu, L. (2015). Biorefinery as a promising approach to promote microalgae industry: An innovative framework. Renewable Sustainable Energy Review, 41, 1376-1384. DOI: 10.1016/j.rser.2014.09.040
  • Zou, N. & Richmond, A. (1999). Effect of light-path length in outdoor fiat plate reactors on output rate of cell mass and of EPA in Nannochloropsis sp. In Progress in Industrial Microbiology, Vol. 35, 351-356. DOI: 10.1016/S0079-6352(99)80127-1

Denizel kuluçkahanede Nannochloropsis oculata dış ortam kültüründe endüstriyel ölçekli tübüler fotobiyoreaktör ile FRP (fiberglas ile güçlendirilmiş plastik) panel fotobiyoreaktörün karşılaştırılması

Year 2020, Volume 37, Issue 3, 303 - 308, 15.09.2020
https://doi.org/10.12714/egejfas.37.3.13

Abstract



Mikroalg üretimi balık kuluçkahaneleri için kilit noktası olmakla birlikte hala optimizasyonu tamamlanmamış ve çözülmesi gereken problemlere sahiptir. Nannochloropsis oculata önemli bir canlı yem kaynağıdır ve deniz balıkları üretiminde larvaların beslenmesi amacıyla üretilmektedir. N. oculata, sera içerisinde tübüler ve FRP panel fotobiyoreaktörlerde üretilmiştir. Tübüler FBR 701,7 x 106 hücre mL-1 maksimum yoğunluğa ulaşırken, FRP panel FBR ise 245 x 106 hücre mL-1 maksimum yoğunluğa ulaşmıştır. Ayrıca, tübüler ve FRP panel FBR’ler için maksimum tahmini kuru ağırlıklar da sırasıyla 3,249 g L-1 ve 1,47 g L-1 olarak hesaplanmıştır. Sonuç olarak, tübüler FBR’ün, FRP panel FBR’e göre daha verimli olduğu bu çalışma ile ortaya konulmuştur.




References

  • Ashokkumar, V., Agila, E., Sivakumar, P., Salam, Z., Rengasamy, R. & Ani, F. N. (2014). Optimization and characterization of biodiesel production from microalgae Botryococcus grown at semi-continuous system. Energy Conversion and Management, 88, 936-946. DOI: 10.1016/j.enconman.2014.09.019
  • Boeing, P. (2000). Larval feed alternatives. Global Aquaculture Advocate 3 (1):48-50.
  • Briassoulis, D., Panagakis, P., Chionidis, M., Tzenos, D., Lalos, A., Tsinos, C. & Jacobsen, A. (2010). An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresource Technology, 101(17), 6768-6777. DOI: 10.1016/j.biortech.2010.03.103
  • Brown, M.R., Mular, M., Miller, I., Farmer, C. & Trenerry, C. (1999). The vitamin content of microalgae used in aquaculture. Journal of Applied Phycology, 11(3), 247-255. DOI: 10.1023/A:1008075903578
  • Del Campo, J. A., García-González, M. & Guerrero, M.G. (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied microbiology and biotechnology, 74(6), 1163-1174. DOI: 10.1007/s00253-007-0844-9
  • Dogaris, I., Welch, M., Meiser, A., Walmsley, L. & Philippidis, G. (2015). A novel horizontal photobioreactor for high-density cultivation of microalgae. Bioresource Technology, 198, 316-324. DOI: 10.1016/j.biortech.2015.09.030
  • Durmaz, Y. (2007). Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture, 272(1), 717-722. DOI: 10.1016/j.aquaculture.2007.07.213
  • Durmaz, Y., Donato, M., Monteiro, M., Gouveia, L., Nunes, M. L., Gama Pereira, T., Gokpinar, S. & Bandarra, N. M. (2008). Effect of Temperature on Growth and Biochemical Composition (Sterols, α-tocopherol, Carotenoids, Fatty Acid Profiles) of the Microalga, Isochrysis galbana. Israeli Journal of Aquaculture – Bamidgeh, 60(3), 188-195.
  • El-Sheekh, M. M., Osman, M. E., Dyab, M. A. & Amer, M.S., (2006). Production and characterization of antimicrobial active substance from the cyanobacterium Nostoc muscorum. Environmental toxicology and pharmacology, 21(1), 42-50.
  • FAO, (1996). Manual on the Production and Use of Live Food for Aquaculture. FAO Fisheries Technical Paper No. 361. Rome.
  • Guillard, R. R. & Ryther, J.H. (1962). Studies of marine planktonic diatoms: I. Cyclotella Nana Hustedt, and Detonula Confervacea (CLEVE) Gran. Canadian Journal of Microbiology, 8(2), 229-239. DOI: 10.1139/m62-029
  • Hibberd, D.J., (1981). Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Botanical Journal of Linnean Society, 82(2), 93-119. DOI: 10.1111/j.1095-8339.1981.tb00954.x
  • Huang, X., Huang, Z., Wen, W. & Yan, J. (2013). Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). Journal of Applied Phycology, Volume 25, Issue 1, 129-137.
  • Hulatt, C.J., Wijffels, R.H., Bolla, S., & Kiron, V. (2017). Production of fatty acids and protein by Nannochloropsis in flat-plate photobioreactors. PLOS ONE, 12(1), e0170440. DOI: 10.1371/journal.pone.0170440
  • Ketheesan, B. & Nirmalakhandan, N. (2012). Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor. Bioresource Technology, 108:196-202. DOI: 10.1016/j.biortech.2011.12.146
  • Kumar, K. S., Dahms, H. U., Won, E. J., Lee, J. S. & Shin, K. H. (2015). Microalgae-A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329-352. DOI: 10.1016/j.ecoenv.2014.12.019
  • Lourenco, S., Barbarino, E., Mancini-Filho, J., Schinke, K. & Aidar, E. (2002). Effect of different nitrojen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: An evaluation for aquaculture, Phycologia 12, 249-255.
  • Low, C. & Toledo, M.I. (2015). Assessment of the shelf-life of Nannochloropsis oculata flocculates stored at different temperatures. Latin American Journal of Aquatic Research, 43(2), 315-321.
  • Lubián, L.M., Montero, O., Moreno-Garrido, I., Huertas, I. E., Sobrino, C., González-del Valle, M. & Parés, G. (2000). Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. Journal of Applied Phycology, 12(3-5), 249-255.
  • Muller-Feuga A. (2013). Microalgae for aquaculture: the current global situation and future trends. In: Richmond A, Hu Q. Eds., Handbook of microalgal culture: Applied phycology and biotechnology, Wiley Blackwell, Chichester, 613-627. DOI: 10.1002/9781118567166.ch33
  • Olaizola, M. (2003). Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomolecular Engineering, 20(4), 459-466.
  • Otero, A., García, D. & Fábregas, J. (1997). Factors controlling eicosapentaenoic acid production in semicontinuous cultures of marine microalgae. Journal of Applied Phycology, 9(5), 465-469. DOI: 10.1023/A:1007930804367
  • Qiang, Hu., & Richmond, A. (1994). Mikroalgae Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. Journal of Applied Phycology, 6(4), 391-396. DOI: 10.1007/BF02182155
  • Renaud, S. M., Zhou, H.C., Parry, D.L., Thinh, L.V. & Woo, K. C. (1995). Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp. (clone T. ISO). Journal of Applied Phycology, 7(6), 595-602. DOI: 10.1007/BF00003948
  • Richmond A. (1986). Cell response to environmental factors. pp. 69-99. In: A. Richmond (ed.). CRC Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, FL.
  • Richmond, A., (2004). Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia, 512(1-3), 33-37. DOI: 10.1023/B:HYDR.0000020365.06145.36
  • Sathasivam, R., Radhakrishnan, R., Hashem, A. & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi journal of biological sciences, 26(4), 709-722. DOI: 10.1016/j.sjbs.2017.11.003
  • Sukenik, A., Zmora, O. & Carmeli, Y. (1993). Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture, 117(3-4), 313-326. DOI: 10.1016/0044-8486(93)90328-V
  • Thompson, P. A., Guo, M. X. & Harrison, P.J. (1992). Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton. Journal of Phycology, 28(4), 481-488. DOI: 10.1111/j.0022-3646.1992.00481.x
  • Vismara, R., Vestri, S., Kusmic, C., Barsanti, L. & Gualtieri, P. (2003). Natural vitamin E enrichment of Artemia salina fed freshwater and marine microalgae. Journal of Applied Phycology, 15(1), 75-80. DOI: 10.1023/A:1022942705496
  • Xu, F., Hu, H. H., Cong, W., Cai, Z. L. & Ouyang, F. (2004). Growth characteristics and eicosapentaenoic acid production by Nannochloropsis sp. in mixotrophic conditions. Biotechnology Letters, 26(1), 51-53. DOI: 10.1023/B:BILE.0000009460.81267.cc
  • Zhu, L. (2015). Biorefinery as a promising approach to promote microalgae industry: An innovative framework. Renewable Sustainable Energy Review, 41, 1376-1384. DOI: 10.1016/j.rser.2014.09.040
  • Zou, N. & Richmond, A. (1999). Effect of light-path length in outdoor fiat plate reactors on output rate of cell mass and of EPA in Nannochloropsis sp. In Progress in Industrial Microbiology, Vol. 35, 351-356. DOI: 10.1016/S0079-6352(99)80127-1

Details

Primary Language English
Subjects Biology
Journal Section Articles
Authors

Yaşar DURMAZ (Primary Author)
EGE ÜNİVERSİTESİ
0000-0002-1858-5882
Türkiye


Gökhun Çağatay ERBİL This is me
KASTAMONU UNIVERSITY
0000-0002-6704-5073
Türkiye

Publication Date September 15, 2020
Application Date October 30, 2019
Acceptance Date May 8, 2020
Published in Issue Year 2020, Volume 37, Issue 3

Cite

APA Durmaz, Y. & Erbil, G. Ç. (2020). Comparison of Industrial-scale Tubular Photobioreactor to FRP (Fiberglass reinforced plastic) Panel Photobioreactor on Outdoor Culture of Nannochloropsis oculata in the Marine Hatchery . Ege Journal of Fisheries and Aquatic Sciences , 37 (3) , 303-308 . DOI: 10.12714/egejfas.37.3.13