Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Year 2020, Volume 37, Issue 1, 15 - 27, 15.03.2020
https://doi.org/10.12714/egejfas.37.1.03

Abstract

References

  • Achten, C. & Andersson, J.T. (2015). Overview of Polycyclic Aromatic Compounds (PAC). Polycyclic Aromatic Compounds, 35(2–4), 177–186. DOI: 10.1080/10406638.2014.994071
  • Amani-Ghadim, A.R. & Dorraji, M.S.S. (2015). Modeling of photocatalyatic process on synthesized ZnO nanoparticles: Kinetic model development and artificial neural networks. Applied Catalysis B: Environmental, 163, 539–546. DOI: 10.1016/j.apcatb.2014.08.020
  • Bagheri, S., Termehyousefi, A. & Do, T.O. (2017). Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: Structure, kinetics and mechanism approach. Catalysis Science and Technology, 7(20), 4548–4569. DOI: 10.1039/c7cy00468k
  • Battin, T.J., Kammer, F. v.d., Weilhartner, A., Ottofuelling, S. & Hofmann, T. (2009). Nanostructured TiO 2 : Transport Behavior and Effects on Aquatic Microbial Communities under Environmental Conditions. Environmental Science & Technology, 43(21), 8098–8104. DOI: 10.1021/es9017046
  • Beach, D. G., Quilliam, M. A., Rouleau, C., Croll, R.P. & Hellou, J. (2010). Bioaccumulation and biotransformation of pyrene and 1-hydroxypyrene by the marine whelk Buccinum undatum. Environmental Toxicology and Chemistry, 29(4), 779–788. DOI: 10.1002/etc.112
  • Bergman, Å., Heindel, J., Jobling, S., Kidd, K. & Zoeller, R.T. (2012). State of the science of endocrine disrupting chemicals, 2012. Toxicology Letters (Vol. 211). UNEP/WHO. DOI: 10.1016/j.toxlet.2012.03.020
  • Chatterjee, D. & Mahata, A. (2002). Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface. Journal of Photochemistry and Photobiology A: Chemistry, 153(1–3), 199–204. DOI: 10.1016/S1010-6030(02)00291-5
  • Daniela, M. Pampanin, M.O.S. (2013). Polycyclic Aromatic Hydrocarbons a Constituent of Petroleum: Presence and Influence in the Aquatic Environment. In Hydrocarbon. InTech. DOI: 10.5772/48176
  • Deng, X.-Y., Cheng, J., Hu, X.-L., Wang, L., Li, D. & Gao, K. (2017). Biological effects of TiO 2 and CeO 2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum. Science of The Total Environment, 575, 87–96. DOI: 10.1016/j.scitotenv.2016.10.003
  • Dionysiou, D., Puma, G.L., Ye, J., Schneider, J. & Bahnemann, D. (2016). Photocatalysis Applications. (D. D. Dionysiou, G. Li Puma, J. Ye, J. Schneider, & D. Bahnemann, Eds.). Cambridge: Royal Society of Chemistry. DOI: 10.1039/9781782627104
  • Fasnacht, M.P. & Blough, N.V. (2003). Mechanisms of the Aqueous Photodegradation of Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology, 37(24), 5767–5772. DOI: 10.1021/es034389c
  • Fechner, H.F.H. & E.J. (2015). Chemical Fate and Transport in the Environment. Elsevier. DOI: 10.1016/C2011-0-09677-1
  • Forsgren, A.J. (2015). Wastewater Treatment: Occurrence and Fate of Polycyclic Aromatic Hydrocarbons (PAHs). CRC Press. Retrieved from https://books.google.com.tr/books?id=D3V3CAAAQBAJ&dq=Wastewater+Treatment+Occurrence+and+Fate+of+Polycyclic+Aromatic+Hydrocarbons+(PAHs)+DIO&lr=&source=gbs_navlinks_s&hl=en
  • Förstner, U. & Wittmann, G.T.W. (1981). Metal Pollution in the Aquatic Environment. Springer-Verlag. DOI: 10.1007/978-3-642-69385-4
  • Gmurek, M., Olak-Kucharczyk, M. & Ledakowicz, S. (2017). Photochemical decomposition of endocrine disrupting compounds – A review. Chemical Engineering Journal, 310, 437–456. DOI: 10.1016/j.cej.2016.05.014
  • González-Gaya, B., Fernández-Pinos, M.-C., Morales, L., Méjanelle, L., Abad, E., Piña, B., … Dachs, J. (2016). High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons. Nature Geoscience, 9(6), 438–442. DOI: 10.1038/ngeo2714
  • Gurunathan, K., Murugan, A.V., Marimuthu, R., Mulik, U. & Amalnerkar, D. (1999). Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Materials Chemistry and Physics, 61(3), 173–191. DOI: 10.1016/S0254-0584(99)00081-4
  • Kochany, J. & Maguire, R.J. (1994). Abiotic transformations of polynuclear aromatic hydrocarbons and polynuclear aromatic nitrogen heterocycles in aquatic environments. Science of The Total Environment, 144(1–3), 17–31. DOI: 10.1016/0048-9697(94)90424-3
  • Konstantinou, I.K. & Albanis, T.A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Applied Catalysis B: Environmental, 49(1), 1–14. DOI: 10.1016/j.apcatb.2003.11.010
  • Kurtoglu, M. E., Longenbach, T. & Gogotsi, Y. (2011). Preventing Sodium Poisoning of Photocatalytic TiO2 Films on Glass by Metal Doping. International Journal of Applied Glass Science, 2(2), 108–116. DOI: 10.1111/j.2041-1294.2011.00040.x
  • Kurtoglu, M. E., Longenbach, T., Reddington, P. & Gogotsi, Y. (2011). Effect of Calcination Temperature and Environment on Photocatalytic and Mechanical Properties of Ultrathin Sol-Gel Titanium Dioxide Films. Journal of the American Ceramic Society, 94(4), 1101–1108. DOI: 10.1111/j.1551-2916.2010.04218.x
  • Luo, Z., Wei, C., He, N., Sun, Z., Li, H. & Chen, D. (2015). Correlation between the Photocatalytic Degradability of PAHs over Pt/TiO 2 -SiO 2 in Water and Their Quantitative Molecular Structure. Journal of Nanomaterials, 2015, 1–11. DOI: 10.1155/2015/284834
  • Mastral, A.M. & Callén, M.S. (2000). A Review on Polycyclic Aromatic Hydrocarbon (PAH) Emissions from Energy Generation. Environmental Science & Technology, 34(15), 3051–3057. DOI:10.1021/es001028d
  • Miller, J.S., & Olejnik, D. (2001). Photolysis of polycyclic aromatic hydrocarbons in water. Water Research, 35(1), 233–243. DOI: 10.1016/S0043-1354(00)00230-X
  • Mondal, K., Bhattacharyya, S. & Sharma, A. (2014). Photocatalytic Degradation of Naphthalene by Electrospun Mesoporous Carbon-Doped Anatase TiO 2 Nanofiber Mats. Industrial & Engineering Chemistry Research, 53(49), 18900–18909. DOI: 10.1021/ie5025744
  • Motorykin, O., Santiago-Delgado, L., Rohlman, D., Schrlau, J. E., Harper, B., Harris, S., … Massey Simonich, S. L. (2015). Metabolism and excretion rates of parent and hydroxy-PAHs in urine collected after consumption of traditionally smoked salmon for Native American volunteers. Science of The Total Environment, 514, 170–177. DOI: 10.1016/j.scitotenv.2015.01.083
  • Mueller, N.C. & Nowack, B. (2008). Exposure Modeling of Engineered Nanoparticles in the Environment. Environmental Science & Technology, 42(12), 4447–4453. DOI: 10.1021/es7029637
  • Naphthalene in Moth Balls and Toilet Deodorant Cakes - Fact sheets. (n.d.). Retrieved from www.health.nsw.gov.au/publichealth/infectious/phus.asp
  • National Academy of Sciences. (1993). Managing Wastewater in Coastal Urban Areas. Washington, D.C.: National Academies Press. DOI: 10.17226/2049
  • Oturan, M.A. & Aaron, J.-J. (2014). Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Critical Reviews in Environmental Science and Technology, 44(23), 2577–2641. DOI: 10.1080/10643389.2013.829765
  • Pal, A., Gin, K.Y.H., Lin, A.Y.C. & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24), 6062–6069. DOI: 10.1016/j.scitotenv.2010.09.026
  • Pujro, R., Falco, M. & Sedran, U. (2015). Catalytic Cracking of Heavy Aromatics and Polycyclic Aromatic Hydrocarbons over Fluidized Catalytic Cracking Catalysts. Energy & Fuels, 29(3), 1543–1549. DOI: 10.1021/ef502707w
  • Ramesh, A., Archibong, A., Hood, D., Guo, Z. & Loganathan, B. (2011). Global Environmental Distribution and Human Health Effects of Polycyclic Aromatic Hydrocarbons. In Global Contamination Trends of Persistent Organic Chemicals (pp. 97–126). CRC Press. DOI: 10.1201/b11098-7
  • Ravindra, K., Sokhi, R. & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921. DOI: 10.1016/j.atmosenv.2007.12.010
  • Rezaee, M., Assadi, Y., Milani Hosseini, M.-R., Aghaee, E., Ahmadi, F. & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A, 1116(1–2), 1–9. http://doi.org/10.1016/j.chroma.2006.03.007
  • Ross, R.D. & Crosby, D.G. (1985). Photooxidant activity in natural waters. Environmental Toxicology and Chemistry, 4(6), 773–778. DOI:10.1002/etc.5620040608
  • Shanker, U., Jassal, V. & Rani, M. (2017). Degradation of toxic PAHs in water and soil using potassium zinc hexacyanoferrate nanocubes. Journal of Environmental Management, 204, 337–348. DOI: 10.1016/j.jenvman.2017.09.015
  • Sigman, M.E., Schuler, P.F., Ghosh, M.M. & Dabestani, R.T. (1998). Mechanism of Pyrene Photochemical Oxidation in Aqueous and Surfactant Solutions. Environmental Science & Technology, 32(24), 3980–3985. DOI: 10.1021/es9804767
  • Sigman, M.E., Zingg, S.P., Pagni, R.M. & Burns, J. H. (1991). Photochemistry of anthracene in water. Tetrahedron Letters, 32(41), 5737–5740. DOI: 10.1016/S0040-4039(00)93543-3
  • Stogiannidis, E. & Laane, R. (2015). Source Characterization of Polycyclic Aromatic Hydrocarbons by Using Their Molecular Indices: An Overview of Possibilities. In Springer International Publishing (Vol. 234, pp. 49–133). Springer International Publishing. DOI: 10.1007/978-3-319-10638-0_2
  • Tiedeken, E.J., Tahar, A., McHugh, B. & Rowan, N.J. (2017). Monitoring, sources, receptors, and control measures for three European Union watch list substances of emerging concern in receiving waters – A 20 year systematic review. Science of The Total Environment, 574, 1140–1163. DOI: 10.1016/j.scitotenv.2016.09.084
  • Tjeerdema, R.S. (2012). Aquatic Life Water Quality Criteria for Selected Pesticides. (R. S. Tjeerdema, Ed.) (Vol. 216). Boston, MA: Springer US. DOI: 10.1007/978-1-4614-2260-0
  • Tornero, V., & Hanke, G. (2016). Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas. Marine Pollution Bulletin, 112(1–2), 17–38. DOI: 10.1016/j.marpolbul.2016.06.091
  • U.S. Environmental Protection Agency. (2007). Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Final. Washington, DC. Retrieved from https://www.epa.gov/sites/production/files/2015-09/documents/eco-ssl_pah.pdf
  • USEPA. (2007). Method 625 - Base/neutrals and acids. Methods for organic chemical analysis of municipal and industrial wastewater.
  • Viswanathan, V., Hansen, H.A., & Nørskov, J.K. (2015). Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation. The Journal of Physical Chemistry Letters, 6(21), 4224–4228. DOI: 10.1021/acs.jpclett.5b02178
  • Wang, Y., Zhu, X., Lao, Y., Lv, X., Tao, Y., Huang, B., … Cai, Z. (2016). TiO 2 nanoparticles in the marine environment: Physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. Science of The Total Environment, 565, 818–826. DOI: 10.1016/j.scitotenv.2016.03.164
  • Water Treatability Database / Ultraviolet Irradiation + Hydrogen Peroxide. (n.d.). Retrieved December 26, 2018, from https://iaspub.epa.gov/tdb/pages/treatment/treatmentOverview.do
  • Wee, S.Y. & Aris, A.Z. (2017). Endocrine disrupting compounds in drinking water supply system and human health risk implication. Environment International, 106(April), 207–233. DOI: 10.1016/j.envint.2017.05.004
  • Yan, J., Wang, L., Fu, P.P. & Yu, H. (2004). Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 557(1), 99–108. DOI: 10.1016/j.mrgentox.2003.10.004
  • Yin, S., Tang, M., Chen, F., Li, T. & Liu, W. (2017). Environmental exposure to polycyclic aromatic hydrocarbons ( PAHs ): The correlation with and impact on reproductive hormones in umbilical cord serum *. Environmental Pollution, 220, 1429–1437. DOI: 10.1016/j.envpol.2016.10.090
  • Zhang, Y., Dong, S., Wang, H., Tao, S. & Kiyama, R. (2016). Biological impact of environmental polycyclic aromatic hydrocarbons ( ePAHs ) as endocrine disruptors *. Environmental Pollution, 213(November), 809–824. DOI: 10.1016/j.envpol.2016.03.050

Abatement efficiency and fate of EPA-Listed PAHs in aqueous medium under simulated solar and UV-C irradiations, and combined process with TiO2 and H2O2

Year 2020, Volume 37, Issue 1, 15 - 27, 15.03.2020
https://doi.org/10.12714/egejfas.37.1.03

Abstract



Photolytic degradation of dissolved compounds of 16 EPA-Listed PAHs in aqueous medium, exposed to ultraviolet/ titanium dioxide (UV-C/TiO2), xenon light/ titanium dioxide (Xe/TiO2), xenon light/ hydrogen peroxide (Xe/H2O2) and ultraviolet/ hydrogen peroxide (UV-C/H2O2) was studied. The compounds which detected above detection limit of applied analytical method and instrument include: naphthalene (Nap), acenaphthylene (Acy), acenaphthene (Ace), fluorene (Flu), fluoranthene (Fln) and pyrene (Pyr) survived. A time-course experiment (0, 1, 2, 5, 12 min) was performed to determine the fate of PAHs profile along treatments. After accomplishment of the removal process ∑6 PAHs ranked as follow: UV-C/TiO2 > Xe/TiO2 > UV-C > Xe > Xe/H2O2, and UV-C /H2O2 with estimated values of 76.38, 23.02, 22.55, 2.78, 0.00 and 0.00% of the concentration values at the beginning of the treatment, respectively. High efficiency of Xe/H2O2 treatment process (100.00%) at the end of treatment and the structure of residual PAHs which changed to the lighter compounds (2,3-ringed PAHs) before accomplishment of the removal process were proven. Generally, low resistance of Fln to all treatment conditions was observed. Total removal of Nap was considered to be a characteristic PAH compound for completion of the removal of PAHs. Mutate of parent PAH compounds and intermediates were analyzed by gas chromatography-mass spectrometry (GC-MS) and the results suggest the evaluating the toxicity of the treated water due to by-product formation concerns.




References

  • Achten, C. & Andersson, J.T. (2015). Overview of Polycyclic Aromatic Compounds (PAC). Polycyclic Aromatic Compounds, 35(2–4), 177–186. DOI: 10.1080/10406638.2014.994071
  • Amani-Ghadim, A.R. & Dorraji, M.S.S. (2015). Modeling of photocatalyatic process on synthesized ZnO nanoparticles: Kinetic model development and artificial neural networks. Applied Catalysis B: Environmental, 163, 539–546. DOI: 10.1016/j.apcatb.2014.08.020
  • Bagheri, S., Termehyousefi, A. & Do, T.O. (2017). Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: Structure, kinetics and mechanism approach. Catalysis Science and Technology, 7(20), 4548–4569. DOI: 10.1039/c7cy00468k
  • Battin, T.J., Kammer, F. v.d., Weilhartner, A., Ottofuelling, S. & Hofmann, T. (2009). Nanostructured TiO 2 : Transport Behavior and Effects on Aquatic Microbial Communities under Environmental Conditions. Environmental Science & Technology, 43(21), 8098–8104. DOI: 10.1021/es9017046
  • Beach, D. G., Quilliam, M. A., Rouleau, C., Croll, R.P. & Hellou, J. (2010). Bioaccumulation and biotransformation of pyrene and 1-hydroxypyrene by the marine whelk Buccinum undatum. Environmental Toxicology and Chemistry, 29(4), 779–788. DOI: 10.1002/etc.112
  • Bergman, Å., Heindel, J., Jobling, S., Kidd, K. & Zoeller, R.T. (2012). State of the science of endocrine disrupting chemicals, 2012. Toxicology Letters (Vol. 211). UNEP/WHO. DOI: 10.1016/j.toxlet.2012.03.020
  • Chatterjee, D. & Mahata, A. (2002). Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface. Journal of Photochemistry and Photobiology A: Chemistry, 153(1–3), 199–204. DOI: 10.1016/S1010-6030(02)00291-5
  • Daniela, M. Pampanin, M.O.S. (2013). Polycyclic Aromatic Hydrocarbons a Constituent of Petroleum: Presence and Influence in the Aquatic Environment. In Hydrocarbon. InTech. DOI: 10.5772/48176
  • Deng, X.-Y., Cheng, J., Hu, X.-L., Wang, L., Li, D. & Gao, K. (2017). Biological effects of TiO 2 and CeO 2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum. Science of The Total Environment, 575, 87–96. DOI: 10.1016/j.scitotenv.2016.10.003
  • Dionysiou, D., Puma, G.L., Ye, J., Schneider, J. & Bahnemann, D. (2016). Photocatalysis Applications. (D. D. Dionysiou, G. Li Puma, J. Ye, J. Schneider, & D. Bahnemann, Eds.). Cambridge: Royal Society of Chemistry. DOI: 10.1039/9781782627104
  • Fasnacht, M.P. & Blough, N.V. (2003). Mechanisms of the Aqueous Photodegradation of Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology, 37(24), 5767–5772. DOI: 10.1021/es034389c
  • Fechner, H.F.H. & E.J. (2015). Chemical Fate and Transport in the Environment. Elsevier. DOI: 10.1016/C2011-0-09677-1
  • Forsgren, A.J. (2015). Wastewater Treatment: Occurrence and Fate of Polycyclic Aromatic Hydrocarbons (PAHs). CRC Press. Retrieved from https://books.google.com.tr/books?id=D3V3CAAAQBAJ&dq=Wastewater+Treatment+Occurrence+and+Fate+of+Polycyclic+Aromatic+Hydrocarbons+(PAHs)+DIO&lr=&source=gbs_navlinks_s&hl=en
  • Förstner, U. & Wittmann, G.T.W. (1981). Metal Pollution in the Aquatic Environment. Springer-Verlag. DOI: 10.1007/978-3-642-69385-4
  • Gmurek, M., Olak-Kucharczyk, M. & Ledakowicz, S. (2017). Photochemical decomposition of endocrine disrupting compounds – A review. Chemical Engineering Journal, 310, 437–456. DOI: 10.1016/j.cej.2016.05.014
  • González-Gaya, B., Fernández-Pinos, M.-C., Morales, L., Méjanelle, L., Abad, E., Piña, B., … Dachs, J. (2016). High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons. Nature Geoscience, 9(6), 438–442. DOI: 10.1038/ngeo2714
  • Gurunathan, K., Murugan, A.V., Marimuthu, R., Mulik, U. & Amalnerkar, D. (1999). Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Materials Chemistry and Physics, 61(3), 173–191. DOI: 10.1016/S0254-0584(99)00081-4
  • Kochany, J. & Maguire, R.J. (1994). Abiotic transformations of polynuclear aromatic hydrocarbons and polynuclear aromatic nitrogen heterocycles in aquatic environments. Science of The Total Environment, 144(1–3), 17–31. DOI: 10.1016/0048-9697(94)90424-3
  • Konstantinou, I.K. & Albanis, T.A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Applied Catalysis B: Environmental, 49(1), 1–14. DOI: 10.1016/j.apcatb.2003.11.010
  • Kurtoglu, M. E., Longenbach, T. & Gogotsi, Y. (2011). Preventing Sodium Poisoning of Photocatalytic TiO2 Films on Glass by Metal Doping. International Journal of Applied Glass Science, 2(2), 108–116. DOI: 10.1111/j.2041-1294.2011.00040.x
  • Kurtoglu, M. E., Longenbach, T., Reddington, P. & Gogotsi, Y. (2011). Effect of Calcination Temperature and Environment on Photocatalytic and Mechanical Properties of Ultrathin Sol-Gel Titanium Dioxide Films. Journal of the American Ceramic Society, 94(4), 1101–1108. DOI: 10.1111/j.1551-2916.2010.04218.x
  • Luo, Z., Wei, C., He, N., Sun, Z., Li, H. & Chen, D. (2015). Correlation between the Photocatalytic Degradability of PAHs over Pt/TiO 2 -SiO 2 in Water and Their Quantitative Molecular Structure. Journal of Nanomaterials, 2015, 1–11. DOI: 10.1155/2015/284834
  • Mastral, A.M. & Callén, M.S. (2000). A Review on Polycyclic Aromatic Hydrocarbon (PAH) Emissions from Energy Generation. Environmental Science & Technology, 34(15), 3051–3057. DOI:10.1021/es001028d
  • Miller, J.S., & Olejnik, D. (2001). Photolysis of polycyclic aromatic hydrocarbons in water. Water Research, 35(1), 233–243. DOI: 10.1016/S0043-1354(00)00230-X
  • Mondal, K., Bhattacharyya, S. & Sharma, A. (2014). Photocatalytic Degradation of Naphthalene by Electrospun Mesoporous Carbon-Doped Anatase TiO 2 Nanofiber Mats. Industrial & Engineering Chemistry Research, 53(49), 18900–18909. DOI: 10.1021/ie5025744
  • Motorykin, O., Santiago-Delgado, L., Rohlman, D., Schrlau, J. E., Harper, B., Harris, S., … Massey Simonich, S. L. (2015). Metabolism and excretion rates of parent and hydroxy-PAHs in urine collected after consumption of traditionally smoked salmon for Native American volunteers. Science of The Total Environment, 514, 170–177. DOI: 10.1016/j.scitotenv.2015.01.083
  • Mueller, N.C. & Nowack, B. (2008). Exposure Modeling of Engineered Nanoparticles in the Environment. Environmental Science & Technology, 42(12), 4447–4453. DOI: 10.1021/es7029637
  • Naphthalene in Moth Balls and Toilet Deodorant Cakes - Fact sheets. (n.d.). Retrieved from www.health.nsw.gov.au/publichealth/infectious/phus.asp
  • National Academy of Sciences. (1993). Managing Wastewater in Coastal Urban Areas. Washington, D.C.: National Academies Press. DOI: 10.17226/2049
  • Oturan, M.A. & Aaron, J.-J. (2014). Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Critical Reviews in Environmental Science and Technology, 44(23), 2577–2641. DOI: 10.1080/10643389.2013.829765
  • Pal, A., Gin, K.Y.H., Lin, A.Y.C. & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24), 6062–6069. DOI: 10.1016/j.scitotenv.2010.09.026
  • Pujro, R., Falco, M. & Sedran, U. (2015). Catalytic Cracking of Heavy Aromatics and Polycyclic Aromatic Hydrocarbons over Fluidized Catalytic Cracking Catalysts. Energy & Fuels, 29(3), 1543–1549. DOI: 10.1021/ef502707w
  • Ramesh, A., Archibong, A., Hood, D., Guo, Z. & Loganathan, B. (2011). Global Environmental Distribution and Human Health Effects of Polycyclic Aromatic Hydrocarbons. In Global Contamination Trends of Persistent Organic Chemicals (pp. 97–126). CRC Press. DOI: 10.1201/b11098-7
  • Ravindra, K., Sokhi, R. & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921. DOI: 10.1016/j.atmosenv.2007.12.010
  • Rezaee, M., Assadi, Y., Milani Hosseini, M.-R., Aghaee, E., Ahmadi, F. & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A, 1116(1–2), 1–9. http://doi.org/10.1016/j.chroma.2006.03.007
  • Ross, R.D. & Crosby, D.G. (1985). Photooxidant activity in natural waters. Environmental Toxicology and Chemistry, 4(6), 773–778. DOI:10.1002/etc.5620040608
  • Shanker, U., Jassal, V. & Rani, M. (2017). Degradation of toxic PAHs in water and soil using potassium zinc hexacyanoferrate nanocubes. Journal of Environmental Management, 204, 337–348. DOI: 10.1016/j.jenvman.2017.09.015
  • Sigman, M.E., Schuler, P.F., Ghosh, M.M. & Dabestani, R.T. (1998). Mechanism of Pyrene Photochemical Oxidation in Aqueous and Surfactant Solutions. Environmental Science & Technology, 32(24), 3980–3985. DOI: 10.1021/es9804767
  • Sigman, M.E., Zingg, S.P., Pagni, R.M. & Burns, J. H. (1991). Photochemistry of anthracene in water. Tetrahedron Letters, 32(41), 5737–5740. DOI: 10.1016/S0040-4039(00)93543-3
  • Stogiannidis, E. & Laane, R. (2015). Source Characterization of Polycyclic Aromatic Hydrocarbons by Using Their Molecular Indices: An Overview of Possibilities. In Springer International Publishing (Vol. 234, pp. 49–133). Springer International Publishing. DOI: 10.1007/978-3-319-10638-0_2
  • Tiedeken, E.J., Tahar, A., McHugh, B. & Rowan, N.J. (2017). Monitoring, sources, receptors, and control measures for three European Union watch list substances of emerging concern in receiving waters – A 20 year systematic review. Science of The Total Environment, 574, 1140–1163. DOI: 10.1016/j.scitotenv.2016.09.084
  • Tjeerdema, R.S. (2012). Aquatic Life Water Quality Criteria for Selected Pesticides. (R. S. Tjeerdema, Ed.) (Vol. 216). Boston, MA: Springer US. DOI: 10.1007/978-1-4614-2260-0
  • Tornero, V., & Hanke, G. (2016). Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas. Marine Pollution Bulletin, 112(1–2), 17–38. DOI: 10.1016/j.marpolbul.2016.06.091
  • U.S. Environmental Protection Agency. (2007). Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Final. Washington, DC. Retrieved from https://www.epa.gov/sites/production/files/2015-09/documents/eco-ssl_pah.pdf
  • USEPA. (2007). Method 625 - Base/neutrals and acids. Methods for organic chemical analysis of municipal and industrial wastewater.
  • Viswanathan, V., Hansen, H.A., & Nørskov, J.K. (2015). Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation. The Journal of Physical Chemistry Letters, 6(21), 4224–4228. DOI: 10.1021/acs.jpclett.5b02178
  • Wang, Y., Zhu, X., Lao, Y., Lv, X., Tao, Y., Huang, B., … Cai, Z. (2016). TiO 2 nanoparticles in the marine environment: Physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. Science of The Total Environment, 565, 818–826. DOI: 10.1016/j.scitotenv.2016.03.164
  • Water Treatability Database / Ultraviolet Irradiation + Hydrogen Peroxide. (n.d.). Retrieved December 26, 2018, from https://iaspub.epa.gov/tdb/pages/treatment/treatmentOverview.do
  • Wee, S.Y. & Aris, A.Z. (2017). Endocrine disrupting compounds in drinking water supply system and human health risk implication. Environment International, 106(April), 207–233. DOI: 10.1016/j.envint.2017.05.004
  • Yan, J., Wang, L., Fu, P.P. & Yu, H. (2004). Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 557(1), 99–108. DOI: 10.1016/j.mrgentox.2003.10.004
  • Yin, S., Tang, M., Chen, F., Li, T. & Liu, W. (2017). Environmental exposure to polycyclic aromatic hydrocarbons ( PAHs ): The correlation with and impact on reproductive hormones in umbilical cord serum *. Environmental Pollution, 220, 1429–1437. DOI: 10.1016/j.envpol.2016.10.090
  • Zhang, Y., Dong, S., Wang, H., Tao, S. & Kiyama, R. (2016). Biological impact of environmental polycyclic aromatic hydrocarbons ( ePAHs ) as endocrine disruptors *. Environmental Pollution, 213(November), 809–824. DOI: 10.1016/j.envpol.2016.03.050

Details

Primary Language English
Subjects Environmental Sciences
Journal Section Articles
Authors

Navid KARGAR (Primary Author)
Department of Marine-Inland Water Sciences and Technology, Faculty of Fisheries, Ege University, 35100 Bornova, Izmir
0000-0002-6939-0284
Türkiye


Ali Reza AMANİ-GHADİM This is me
Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz
0000-0003-3279-5170
Iran


Amir Abbas MATİN This is me
Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz
0000-0001-8264-8414
Iran


Golnar MATİN
Department of Marine-Inland Water Sciences and Technology, Faculty of Fisheries, Ege University, 35100 Bornova, Izmir
0000-0002-1286-8611
Türkiye


Hasan Baha BUYUKİSİK This is me
Department of Marine-Inland Water Sciences and Technology, Faculty of Fisheries, Ege University, 35100 Bornova, Izmir
0000-0002-5855-4300
Türkiye

Supporting Institution Ege University
Project Number 2017/SÜF/014
Thanks This study was partially funded by Ege University Scientific Research (BAP) (Project No.: 2017/SÜF/014). Authors acknowledge Dr. Ozan Ünsalan (Ege University, Department of Physics) for his help with the analysis of Raman spectra. Navid Kargar and Golnar Matin thank Prof. Yury Gogotsi (A.J. Drexel Nanotechnology Institute, Drexel University) for his useful comments and suggestions on characterization of TiO2 nanocrystals.
Publication Date March 15, 2020
Application Date April 9, 2019
Acceptance Date September 5, 2019
Published in Issue Year 2020, Volume 37, Issue 1

Cite

APA Kargar, N. , Amani-ghadim, A. R. , Matin, A. A. , Matin, G. & Buyukisik, H. B. (2020). Abatement efficiency and fate of EPA-Listed PAHs in aqueous medium under simulated solar and UV-C irradiations, and combined process with TiO2 and H2O2 . Ege Journal of Fisheries and Aquatic Sciences , 37 (1) , 15-27 . DOI: 10.12714/egejfas.37.1.03