Filtrasyonun oligotrofik deniz balık çiftliği ortamındaki fitoplankton dinamikleri üzerindeki etkisine dair ön çalışma
Yıl 2024,
Cilt: 41 Sayı: 1, 16 - 25, 15.03.2024
Betül Bardakçı Şener
,
Eyüp Mümtaz Tıraşın
Öz
Balık çiftlikleri, beslenmede artan balık talebini karşılamada kritik bir rol oynamakta, ancak çiftliklerden salınan nütrientler çevre için potansiyel riskler oluşturmaktadır. Bu çalışma, doğu Ege Denizi'ndeki bir balık çiftliğinin yerel fitoplankton dinamikleri üzerindeki etkisini, fitoplanktonu, nütrient varlığının bir göstergesi olarak kullanarak incelemektedir. Doğal fitoplankton toplulukları, balık çiftliğine yakın bir konumda yerleştirilen bir fitoplankton biyoanalizi tasarlanarak diyaliz membran torbalarında inkübe edilmiştir. Bu sayede fitoplanktonun salınan besinlere denizel ortamda dağılmadan önce erişebileceği içerisinde bulundukları sınırlı bir ortam oluşturulmuştur. Bu nedenle, torbaların içindeki büyüme oranlarının dışarıdaki deniz suyuna kıyasla daha yüksek olması beklenmektedir. Ancak, fitoplankton kommüniteleri av-avcı dinamiklerini içerir ve bu da fitoplanktonun net büyüme oranlarını etkilemektedir. İnkübe edilen fitoplankton üzerinde farklı otlama (grazing) baskılarını incelemek için beş deneme grubu oluşturulmuştur. Bu grupların dördü, deniz suyunu çeşitli göz açıklığına sahip ağlardan (40 µm, 56 µm, 100 µm ve 150 µm) geçirerek, diyaliz membran torbalarının bu süzülmüş deniz suyu ile doldurulması ile oluşturulmuştur. Beşinci grup ise deniz suyu filtrasyon aşamasından geçirilmeden kullanılarak hazırlanmıştır. Ortam deniz suyunun oligotrofik doğasına rağmen, çiftliğe yakın konumlandırılan diyaliz membran torbalarının içindeki fitoplankton büyüme oranlarında belirgin bir artış gözlemlenmiştir. Özellikle gruplar arasında farklı büyüme oranları gözlemlenmiş, filtresiz deniz suyu ve 150 µm göz açıklığına sahip ağ ile filtrelenmiş deniz suyu ile hazırlanan torbalarda en yüksek büyüme oranları tespit edilmiştir. Bunun nedeninin, torbaların içinde kopepodların bulunmaması olabileceği düşünülmektedir. Torba içerisindeki tür kompozisyonu ortam deniz suyundan farklılıklar gösterirken, genel tür çeşitliliği sınırlı olarak kalmıştır. Çalışma bölgesinden alınan deniz suyu örneklerinde, 17'si diatom ve 16'sı dinoflagellat türü olmak üzere toplam 33 fitoplankton taksonu belirlenmiştir. Pronoctiluca spinifera (Lohmann) Schiller 1932 türü, Türkiye'nin Ege Denizi kıyısında ilk kez bu araştırmada kaydedilmiştir. Bu çalışma, balık çiftliklerinin fitoplankton komünitelerine nasıl etki edebileceğini anlama konusuna katkı sağlamakta ve oligotrofik ortamlardaki akuakültür ve deniz ekosistemleri arasındaki karmaşık etkileşimlerin daha fazla incelenmesi gerekliliğini vurgulamaktadır.
Proje Numarası
2019KBFEN017
Kaynakça
- Arzul, G., Clément, A., & Pinier, A. (1996). Effects on phytoplankton growth of dissolved substances produced by fish farming. Aquatic Living Resources, 9, 95–102. https://doi.org/10.1051/alr:1996012
- Dalsgaard, T., & Krause-Jensen, D. (2006). Monitoring nutrient release from fish farms with macroalgal and phytoplankton bioassays. Aquaculture, 256, 302–310. https://doi.org/10.1016/j.aquaculture.2006.02.047
- Furnas, M.J. (1982). Growth rates of summer nanoplankton (<10 μm) populations in lower Narragansett Bay, Rhode Island, USA. Marine Biology, 70, 105–115. https://doi.org/10.1007/BF00397301
- Furnas, M.J. (1990). In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. Journal of Plankton Research, 12, 1117 1151. https://doi.org/10.1093/plankt/12.6.1117
- Gephart, J.A., Golden, C.D., Asche, F., Belton, B., Brugere, C., Froehlich, H. E., Jillian P., Fry, J.P., Halpern, B.S., Hicks, C.C., Jones, R. C., Klinger, D.H., Little, D.C., McCauley, D.J., Thilsted, S.H., Troell, M., & Allison, E.H. (2020). Scenarios for global aquaculture and its role in human nutrition. Reviews in Fisheries Science & Aquaculture, 29, 122-138. https://doi.org/10.1080/23308249.2020.1782342
- Gómez, F., Moreira D., & López-García P. (2010). Neoceratium gen. nov., a new genus for all marine species currently assigned to Ceratium (Dinophyceae). Protist, 161, 35 54. https://doi.org/10.1016/j.protis.2009.06.004
- Gowen R.J., & Bradbury N.B. (1987). The ecological impact of salmon farming in coastal waters: A review. Oceanography and Marine Biology, 25, 508–519. https://doi.org/10.1016/0198-0254(88)92716-1
- Grasshoff K., Kremling K., & Ehrhardt M. (1999). Methods of seawater analysis. 3rd edn. Weinheim, Wiley. https://doi.org/10.1002/9783527613984
- Ignatiades, L., Karydis, M., & Vounatsou, P. (1992). A possible method for evaluating oligotrophy and eutrophication based on nutrient concentration scales. Marine pollution bulletin, 24, 238-243. https://doi.org/10.1016/0025-326X(92)90561-J
- Krebs C.J. (1999). Ecological methodology. 3rd edn. Addison Wesley, Longman, California
- Krom, M.D., Kress, N., Brenner, S., & Gordon, L.I. (1991). Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnology and Oceanography, 36, 424 432. https://doi.org/10.4319/lo.1991.36.3.0424
- La Rosa, T., Mirto S., Favaloro E., Savona B., Sarà, G., Danovaro, R., & Mazzola, A. (2002). Impact on the water column biogeochemistry of a Mediterranean mussel and fish farm. Water Research, 36, 713–721. https://doi.org/10.1016/S0043-1354(01)00274-3
- López-Sandoval, D.C., Fernández, A., & Marañón, E. (2011). Dissolved and particulate primary production along a longitudinal gradient in the Mediterranean Sea. Biogeosciences, 8, 815 825. https://doi.org/10.5194/bg-8-815-2011
- Magurran, A.E. (1988). Ecological diversity and its measurement. New Jersey, Princeton University Press. https://doi.org/10.1007/978-94-015-7358-0
- Mura, M.P., Agustí, S., Del Giorgio, P.A., Gasol, J.M., Vaqué, D., & Duarte, C.M. (1996). Loss-controlled phytoplankton production in nutrient-poor littoral waters of the NW Mediterranean: in situ experimental evidence. Marine Ecology Progress Series, 130, 213 219. https://doi.org/10.3354/meps130213
- Navarro, N., Leakey, R.J., & Black, K.D. (2008). Effect of salmon cage aquaculture on the pelagic environment of temperate coastal waters: seasonal changes in nutrients and microbial community. Marine Ecology Progress Series, 361, 47–58. https://doi.org/10.3354/meps07357
- Öztürk, B. (1998). Black Sea Biological Diversity. Turkey, Black Sea. New York, Environmental series, United Nations Publications, 9, 1-144.
- Pitta, P., Karakassis, I., Tsapakis, M., & Zivanovic, S. (1999). Natural vs. mariculture induced variability in nutrients and plankton in the eastern Mediterranean. Hydrobiologia, 391, 179 192. https://doi.org/10.1023/A:1003501832069
- Pitta, P., Tsapakis, M., Apostolaki, E.T., Tsagaraki, T., Holmer, M., & Karakassis, I. (2009). 'Ghost nutrients' from fish farms are transferred up the food web by phytoplankton grazers. Marine Ecology Progress Series, 374, 1–6. https://doi.org/10.3354/meps07763
- Price, C., Black, K.D., Hargrave, B.T., & Morris Jr, J.A. (2015). Marine cage culture and the environment: effects on water quality and primary production. Aquaculture environment interactions, 6, 151–174. https://doi.org/10.3354/aei00122
- R Core Team (2022). R: A language and environment for statistical computing, R foundation for statistical computing, Version 4.1.3. Available from http://www.R-project.org
- Reynolds, C.S. (2006). The ecology of phytoplankton. New York. Cambridge University Press, https://doi.org/10.1017/CBO9780511542145
- Sidik, M.J., Rashed-Un-Nabi, M., & Hoque, M.A. (2008). Distribution of phytoplankton community in relation to environmental parameters in cage culture area of Sepanggar Bay, Sabah, Malaysia. Estuarine, Coastal and Shelf Science, 80, 251 260. https://doi.org/10.1016/j.ecss.2008.08.004
- Snedecor, G.W., & Cochran, W.G. (1989). Statistical methods. 8th edn. Ames, Iowa, Iowa State University Press.
- Strickland, J.D.H., & Parsons, T.R. (1972). A practical handbook of seawater analysis. 2nd edn. Canada, Fisheries Research Board of Canada 167, 1–310. https://doi.org/10.25607/OBP-1791
- Tomas, C.R. Ed, (1997). Identifying marine phytoplankton. San Diego, California, Academic Press.
- Zöllner, E., Hoppe, H.G., Sommer, U., & Jürgens, K. (2009). Effect of zooplankton‐mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnology and Oceanography, 54, 262–275. https://doi.org/10.4319/lo.2009.54.1.0262
A preliminary study into the influence of filtration on phytoplankton dynamics in an oligotrophic marine fish farm environment
Yıl 2024,
Cilt: 41 Sayı: 1, 16 - 25, 15.03.2024
Betül Bardakçı Şener
,
Eyüp Mümtaz Tıraşın
Öz
Fish farms play a crucial role in meeting the escalating demand for fish in human diets, yet their nutrient releases pose potential environmental risks. This study explores the influence of a fish farm in the eastern Aegean Sea on local phytoplankton dynamics, serving as an indicator of nutrient abundance. Designing a phytoplankton bioassay near the fish farm, natural phytoplankton communities were incubated within dialysis membrane bags, creating a confined environment for accessing farm-released nutrients before dispersing into surrounding seawater. Consequently, higher growth rates within the bags were anticipated compared to the ambient seawater. However, natural interactions within phytoplankton communities involve predator-prey dynamics, influencing the net growth rates of phytoplankton. To investigate different grazing pressures on the incubated phytoplankton, five experimental groups were established. Four of these groups involved filtering seawater through various mesh sizes (40 µm, 56 µm, 100 µm, and 150 µm) and then filling the dialysis membrane bags with the filtered water. The fifth group contained seawater without any filtration. Despite the oligotrophic nature of the ambient seawater, a remarkable increase in phytoplankton growth was observed inside the bags. Variable growth rates were observed among the groups, with unfiltered and 150 µm mesh-filtered bags exhibiting the highest growth rates, suggesting copepod absence may contribute. Although the species composition within the bags differed from that of the ambient seawater, the overall species diversity remained limited. A total of 33 phytoplankton taxa were identified in the seawater samples taken from the study site, comprising 17 diatom and 16 dinoflagellate species. Pronoctiluca spinifera (Lohmann) Schiller 1932 was documented for the first time along the Aegean Sea coast of Türkiye. This study enhances our understanding of how fish farming can impact phytoplankton communities and underscores the necessity for further investigations into the complex interactions between aquaculture and marine ecosystems in oligotrophic environments.
Etik Beyan
We declare that all aspects of our research, including data collection, analysis, and reporting, have been conducted with the utmost integrity and in compliance with established ethical guidelines.We confirm that all authors listed on this manuscript have made significant and substantial contributions to the study.We disclose any potential conflicts of interest that could be perceived as affecting the objectivity, integrity, or validity of the research.
Destekleyen Kurum
Dokuz Eylül Üniversitesi Bilimsel Araştırma Projeleri
Proje Numarası
2019KBFEN017
Teşekkür
We extend our sincere gratitude to Akvatek Aquaculture Inc. for generously permitting us to conduct the in situ microcosm experiment within their fish farm facilities. Our special thanks go to Dr. Güngör Muhtaroğlu for his unwavering support and for granting us access to the farm's resources throughout the study. We are indebted to Tahsin Han and Cumhur Şahin from Akvatek for their invaluable assistance in experiment design and their unwavering support during all fieldwork phases. Additionally, we appreciate the insightful discussions with Dr. Filiz Küçüksezgin and Dr. Güzel Yücel Gier. It's worth noting that the first author is submitting this paper as part of the requirements for a Ph.D. degree at Dokuz Eylül University. We are grateful for the financial support provided by Dokuz Eylül University's Department of Scientific Research Projects (Project number: 2019KBFEN017), which also included an 18-month fellowship for Author B. B. Şener."
Kaynakça
- Arzul, G., Clément, A., & Pinier, A. (1996). Effects on phytoplankton growth of dissolved substances produced by fish farming. Aquatic Living Resources, 9, 95–102. https://doi.org/10.1051/alr:1996012
- Dalsgaard, T., & Krause-Jensen, D. (2006). Monitoring nutrient release from fish farms with macroalgal and phytoplankton bioassays. Aquaculture, 256, 302–310. https://doi.org/10.1016/j.aquaculture.2006.02.047
- Furnas, M.J. (1982). Growth rates of summer nanoplankton (<10 μm) populations in lower Narragansett Bay, Rhode Island, USA. Marine Biology, 70, 105–115. https://doi.org/10.1007/BF00397301
- Furnas, M.J. (1990). In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. Journal of Plankton Research, 12, 1117 1151. https://doi.org/10.1093/plankt/12.6.1117
- Gephart, J.A., Golden, C.D., Asche, F., Belton, B., Brugere, C., Froehlich, H. E., Jillian P., Fry, J.P., Halpern, B.S., Hicks, C.C., Jones, R. C., Klinger, D.H., Little, D.C., McCauley, D.J., Thilsted, S.H., Troell, M., & Allison, E.H. (2020). Scenarios for global aquaculture and its role in human nutrition. Reviews in Fisheries Science & Aquaculture, 29, 122-138. https://doi.org/10.1080/23308249.2020.1782342
- Gómez, F., Moreira D., & López-García P. (2010). Neoceratium gen. nov., a new genus for all marine species currently assigned to Ceratium (Dinophyceae). Protist, 161, 35 54. https://doi.org/10.1016/j.protis.2009.06.004
- Gowen R.J., & Bradbury N.B. (1987). The ecological impact of salmon farming in coastal waters: A review. Oceanography and Marine Biology, 25, 508–519. https://doi.org/10.1016/0198-0254(88)92716-1
- Grasshoff K., Kremling K., & Ehrhardt M. (1999). Methods of seawater analysis. 3rd edn. Weinheim, Wiley. https://doi.org/10.1002/9783527613984
- Ignatiades, L., Karydis, M., & Vounatsou, P. (1992). A possible method for evaluating oligotrophy and eutrophication based on nutrient concentration scales. Marine pollution bulletin, 24, 238-243. https://doi.org/10.1016/0025-326X(92)90561-J
- Krebs C.J. (1999). Ecological methodology. 3rd edn. Addison Wesley, Longman, California
- Krom, M.D., Kress, N., Brenner, S., & Gordon, L.I. (1991). Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnology and Oceanography, 36, 424 432. https://doi.org/10.4319/lo.1991.36.3.0424
- La Rosa, T., Mirto S., Favaloro E., Savona B., Sarà, G., Danovaro, R., & Mazzola, A. (2002). Impact on the water column biogeochemistry of a Mediterranean mussel and fish farm. Water Research, 36, 713–721. https://doi.org/10.1016/S0043-1354(01)00274-3
- López-Sandoval, D.C., Fernández, A., & Marañón, E. (2011). Dissolved and particulate primary production along a longitudinal gradient in the Mediterranean Sea. Biogeosciences, 8, 815 825. https://doi.org/10.5194/bg-8-815-2011
- Magurran, A.E. (1988). Ecological diversity and its measurement. New Jersey, Princeton University Press. https://doi.org/10.1007/978-94-015-7358-0
- Mura, M.P., Agustí, S., Del Giorgio, P.A., Gasol, J.M., Vaqué, D., & Duarte, C.M. (1996). Loss-controlled phytoplankton production in nutrient-poor littoral waters of the NW Mediterranean: in situ experimental evidence. Marine Ecology Progress Series, 130, 213 219. https://doi.org/10.3354/meps130213
- Navarro, N., Leakey, R.J., & Black, K.D. (2008). Effect of salmon cage aquaculture on the pelagic environment of temperate coastal waters: seasonal changes in nutrients and microbial community. Marine Ecology Progress Series, 361, 47–58. https://doi.org/10.3354/meps07357
- Öztürk, B. (1998). Black Sea Biological Diversity. Turkey, Black Sea. New York, Environmental series, United Nations Publications, 9, 1-144.
- Pitta, P., Karakassis, I., Tsapakis, M., & Zivanovic, S. (1999). Natural vs. mariculture induced variability in nutrients and plankton in the eastern Mediterranean. Hydrobiologia, 391, 179 192. https://doi.org/10.1023/A:1003501832069
- Pitta, P., Tsapakis, M., Apostolaki, E.T., Tsagaraki, T., Holmer, M., & Karakassis, I. (2009). 'Ghost nutrients' from fish farms are transferred up the food web by phytoplankton grazers. Marine Ecology Progress Series, 374, 1–6. https://doi.org/10.3354/meps07763
- Price, C., Black, K.D., Hargrave, B.T., & Morris Jr, J.A. (2015). Marine cage culture and the environment: effects on water quality and primary production. Aquaculture environment interactions, 6, 151–174. https://doi.org/10.3354/aei00122
- R Core Team (2022). R: A language and environment for statistical computing, R foundation for statistical computing, Version 4.1.3. Available from http://www.R-project.org
- Reynolds, C.S. (2006). The ecology of phytoplankton. New York. Cambridge University Press, https://doi.org/10.1017/CBO9780511542145
- Sidik, M.J., Rashed-Un-Nabi, M., & Hoque, M.A. (2008). Distribution of phytoplankton community in relation to environmental parameters in cage culture area of Sepanggar Bay, Sabah, Malaysia. Estuarine, Coastal and Shelf Science, 80, 251 260. https://doi.org/10.1016/j.ecss.2008.08.004
- Snedecor, G.W., & Cochran, W.G. (1989). Statistical methods. 8th edn. Ames, Iowa, Iowa State University Press.
- Strickland, J.D.H., & Parsons, T.R. (1972). A practical handbook of seawater analysis. 2nd edn. Canada, Fisheries Research Board of Canada 167, 1–310. https://doi.org/10.25607/OBP-1791
- Tomas, C.R. Ed, (1997). Identifying marine phytoplankton. San Diego, California, Academic Press.
- Zöllner, E., Hoppe, H.G., Sommer, U., & Jürgens, K. (2009). Effect of zooplankton‐mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnology and Oceanography, 54, 262–275. https://doi.org/10.4319/lo.2009.54.1.0262