Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of lettuce (Lactuca sativa L.) in aquaponic system in terms of food safety

Yıl 2023, Cilt: 40 Sayı: 1, 27 - 34, 15.03.2023
https://doi.org/10.12714/egejfas.40.1.04

Öz



We determined the number of coliform bacteria, Escherichia coli, yeast, and molds that may occur in the system, and the quality of lettuce grown in aquaponics for consumers from sensory, colour, and texture points of view. The amount of yeast and mold in the plant growing medium (hydroton) and water was 4.67 log CFU/cm2 and 2.25 log CFU/mL at the end of the six-week experiment, respectively. The number of coliform bacteria and E. coli in the growing medium and in the system water was found to be 2.57 log CFU/cm2 and 3.46 log CFU/mL for coliform, 0.75 log CFU/cm2 0.31 log CFU/mL for E. coli, respectively. Organisms that pose a risk to food safety, accumulate in the culture media. After the harvest, lettuce cultured in the aquaponic system (AP) was compared with the lettuce cultured in soil (SC). According to the results, AP lettuce was found to have darker colors (Lightness: 56.4 AP, 49.09 SC, p<0.05), harder (Hardness: 209.3 AP, 153.7 SC, p<0.05), and slightly appetizing (Sensory analysis overall liking: 8.4 AP, 7.7 SC) than SC. In conclution, aquaponic systems are much more preferable in terms of sensory quality and consumer preferences than soil-based production systems.


Destekleyen Kurum

Scientific Research Projects Coordination Unit of Istanbul University

Proje Numarası

FDK-2020-37081 and FBG-2018-31504

Teşekkür

We thank the Sapanca Inland Fisheries Production Research and Application Unit staff. This work was supported by the Scientific Research Projects Coordination Unit of Istanbul University. Project numbers FDK-2020-37081 and FBG-2018-31504.

Kaynakça

  • Abadias, M., Alegre, I., Oliveira, M., Altisent, R., & Viñas, I. (2012). Growth potential of Escherichia coli O157:H7 on fresh-cut fruits (melon and pineapple) and vegetables (carrot and escarole) stored under different conditions. Food Control, 27, 37–44. https://doi.org/10.1016/j.foodcont.2012.02.032
  • Atique, F., Lindholm-Lehto, P., & Pirhonen, J. (2022). Is Aquaponics Beneficial in Terms of Fish and Plant Growth and Water Quality in Comparison to Separate Recirculating Aquaculture and Hydroponic Systems?. Water, 14(9), 1447. https://doi.org/10.3390/w14091447
  • Back, K.H., Ha, J.W., & Kang, D.H. (2014). Effect of hydrogen peroxide vapor treatment for inactivating Salmonella Typhimurium, Escherichia coli O157: H7 and Listeria monocytogenes on organic fresh lettuce. Food Control, 44, 78-85. https://doi.org/10.1016/j.foodcont.2014.03.046
  • Blancheton J.P., Attramadal K.J.K., Michaud L., D’Orbcastel E.R., & Vadstein O. (2013). Insight into bacterial population in aquaculture systems and its implication. Aquaculture Engineering 53, 30–39. https://doi.org/10.1016/j.aquaeng.2012.11.009
  • Brashears, M.M., & Durre, W.A. (1999). Antagonistic Action of Lactobacillus lactis toward Salmonella spp. and Escherichia coli O157:H7 during Growth and Refrigerated Storage. Journal of Food Protection, 62, 1336–1340. https://doi.org/10.4315/0362-028X-62.11.1336
  • Chalmers, G.A. (2004). Aquaponics and Food Safety Aquaponics and Food Safety. http://www.byap.backyardmagazines.com/Travis/Aquaponics-and-Food-Safety.pdf. (accessed 08.04.2022)
  • Deering, A.J., Mauer, L.J., & Pruitt, R.E. (2012). Internalization of E. coli O157:H7 and Salmonella spp. in plants: A review. Food Research International, 45, 567–575. https://doi.org/10.1016/j.foodres.2011.06.058
  • Eck, M., Sare, A.R., Massart, S., Schmautz, Z., Junge, R., Smits, T.H.M., & Jijakli, M.H. (2019). Exploring bacterial communities in aquaponic systems. Water, 11, 260. https://doi.org/10.3390/w11020260
  • Elumalai, S.D., Shaw, A.M., Pattillo, D.A., Currey, C.J., Rosentrater, K.A., & Xie, K. (2017). Influence of UV treatment on the food safety status of a model aquaponic system. Water, 9(1), 27. https://doi.org/10.3390/w9010027
  • Fávaro-Trindade, C.S., de Carvalho Balieiro, J.C., Dias, P.F., Amaral Sanino, F., & Boschini, C. (2007). Effects of culture, pH and fat concentration on melting rate and sensory characteristics of probiotic fermented yellow mombin (Spondias mombin L) ice creams. Food Science and Technology International, 13(4), 285-291. https://doi.org/10.1177/1082013207082387
  • Feng, P., Weagant, S., Grant, M., & Burkhardt, W. (2022, August 4). Enumeration of Escherichia coli and the Coliform Bacteria. https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4-enumeration-escherichia-coli-and-coliform-bacteria
  • Fontana, L., Rossi, C.A., Hubinger, S.Z., Ferreira, M.D., Spoto, M.H., Sala, F.C., & Verruma-Bernardi, M.R. (2018). Physicochemical characterization and sensory evaluation of lettuce cultivated in three growing systems. Horticultura Brasileira, 36, 20-26. https://doi.org/10.1590/S0102-053620180104
  • Fox, B.K., Tamaru, C.S., Hollyer, J., Castro, L.F., Fonseca, J.M., Jay-Russell, M., & Low, T. (2022, August 4). A preliminary study of microbial water quality related to food safety in recirculating aquaponic fish and vegetable production systems. https://scholarspace.manoa.hawaii.edu/server/api/core/bitstreams/b92b8b32-2edc-468b-b4b3-80450c22ecc3/content
  • Gerdes D.L., & Santos Valdez C. (1991). Modified atmosphere packaging of commercial Pacific red snapper (Sebastes entomelas, Sebastes flavidus or Sebastes godei). Lebensmittel-Wissenschaft und –Technologie, 24, 256–258.
  • González-Alanis, P., Gutierrez-Olguín, J.I., Castro-Segura, I., Ezqueda-Palacios, H., Acosta, M.H., Gojon-Báez, H.H., Aguirre-Guzmán, G., Guzmán-Saénz, F.M., & Fitzsimmons, K.M. (2011). Food Safety Study of Leafy Green Irrigated with Tilapia Farm Effluents in Tamaulipas. In Better Science, Better Fish, Better Life: Proceedings of the Ninth International Symposium on Tilapia in Aquaculture (pp. 121-122).
  • Hilborn, E.D., Mermin, J.H., Mshar, P.A., Hadler, J.L., Voetsch, A., Wojtkunski, C., Swartz M., Mshar, R., Lambert-Fair, M.A., Farrar, J.A., Glynn, M.K., & Slutsker, L. (1999). A multistate outbreak of Escherichia coli O157: H7 infections associated with consumption of mesclun lettuce. Archives of Internal Medicine, 159(15), 1758-1764. https://doi.org/10.1001/archinte.159.15.1758
  • Hoagland, L., Ximenes, E., Ku, S., Ladisch, M. (2018). Foodborne pathogens in horticultural production systems: ecology and mitigation. Scientia Horticulturae, 236, 192–206. https://doi.org/10.1016/j.scienta.2018.03.040
  • Hollyer, J., Tamaru, C., Riggs, A., Klinger-Bowen, R., Howerton, R., Okimoto, D., Castro, L., Ron, T., Fox, B.K., Troegner, V., & Martinez, G. (2009). On-Farm Food Safety: Aquaponics. College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa Food Safety and Technology FST-38: 1–7. http://byap.backyardmagazines.com/Travis/Safety.pdf (accessed 07.04.2022)
  • Holmes, S.C., Wells, D.E., Pickens, J.M., & Kemble, J.M. (2019). Selection of heat tolerant lettuce (Lactuca sativa L.) cultivars grown in deep water culture and their marketability. Horticulturae, 5(3), 50. https://doi.org/10.3390/horticulturae5030050
  • Ibrahim, R., & Zuki, W.A.M. (2012). The Physico-Chemical Properties Of Lettuce (Lactuca Sativa 'Grand Rapid') Grown Under Different Planting Methods. In H. Abdullah, M.N. Latifah (Eds.) VII International Postharvest Symposium 2012 (pp. 201-206). Kuala Lumpur, Malaysia: Proceedings Book.
  • Kasozi, N., Abraham, B., Kaiser, H., & Wilhelmi, B. (2021). The complex microbiome in aquaponics: significance of the bacterial ecosystem. Annals of Microbiology, 71(1), 1-13. https://doi.org/10.1186/s13213-020-01613-5
  • Khalil, S. (2018). Growth performance, nutrients and microbial dynamic in aquaponics systems as affected by water temperature. European Journal of Horticultural Science, 83(6), 388-394. https://doi.org/10.17660/eJHS.2018/83.6.7
  • Lei, C., & Engeseth, N.J. (2021). Comparison of growth characteristics, functional qualities, and texture of hydroponically grown and soil-grown lettuce. Lebensmittel-Wissenschaft & Technologie, 150, 111931. https://doi.org/10.1016/j.lwt.2021.111931
  • Mampholo, B.M., Maboko, M.M., Soundy, P., & Sivakumar, D. (2016). Phytochemicals and overall quality of leafy lettuce (Lactuca sativa L.) varieties grown in closed hydroponic system. Journal of Food Quality, 39(6), 805–815. https://doi.org/10.1111/jfq.12234
  • Martínez-Sánchez, A., Tudela, J.A., Luna, C., Allende, A., & Gil, M.I. (2011). Low oxygen levels and light exposure affect quality of fresh-cut Romaine lettuce. Postharvest Biology and Technology, 59(1), 34-42. https://doi.org/j.postharvbio.2010.07.005
  • Matthew T.M., Fannie, Z., Yukiko K.N., & Stanley T.O. (2011). Comparison between hydroponically and conventionally and organically grown lettuces for taste, odor, visual quality and texture: A pilot study. Food and Nutrition Sciences, 2(2), 4534. https://doi.org/10.4236/fns.2011.22017
  • Moriarty, M.J., Semmens, K., Bissonnette, G.K., & Jaczynski, J. (2018). Inactivation with UV-radiation and internalization assessment of coliforms and Escherichia coli in aquaponically grown lettuce. Lebensmittel-Wissenschaft & Technologie, 89, 624-630. https://doi.org/10.1016/j.lwt.2017.11.038
  • Nuevaespana, J., & Matias, J.R. (2022, August 4). Comparison of the physical profile of Klayton and LECA as media for aquaponics. https://www.researchgate.net/profile/Jonathan-Matias/publication/261914267_Comparison_of_the_physical_profile_of_Klayton_and_LECA_as_media_for_aquaponics/links/0c960535f358c6f169000000/Comparison-of-the-physical-profile-of-Klayton-and-LECA-as-media-for-aquaponics.pdf
  • Ozgen, S., & Sekerci, S. (2011). Effect of leaf position on the distribution of phytochemicals and antioxidant capacity among green and red lettuce cultivars. Spanish Journal of Agricultural Research, 9(3), 801-809. https://doi.org/10.5424/sjar/20110903-472-10
  • Pedersen, P. B., von Ahnen, M., Fernandes, P., Naas, C., Pedersen, L. F., & Dalsgaard, J. (2017). Particle surface area and bacterial activity in recirculating aquaculture systems. Aquacultural Engineering, 78, 18-23. https://doi.org/10.1016/j.aquaeng.2017.04.005
  • Petreska M., Ziberoski J. and Zekiri M., (2013). Fish feed microbiological status. Journal of Hygienic Engineering and Design, 4, 16-19.
  • Predmore, A., Sanglay, G., Li, J., & Lee, K. (2015). Control of human norovirus surrogates in fresh foods by gaseous ozone and a proposed mechanism of inactivation. Food Microbiology, 50, 118-125. https://doi.org/10.1016/j.fm.2015.04.004
  • Schmautz Z, Graber A, Jaenicke S, Goesmann A, Junge R, Smits THM (2017). Microbial diversity in different compartments of an aquaponics system. Archives Microbiology,199:613–620. https://doi.org/10.1007/s00203-016-1334-1
  • Schnabel, U., Handorf, O., Stachowiak, J., Boehm, D., Weit, C., Weihe, T., Thomas, W., Schäfer, J., Below, H., Bourke, P., & Ehlbeck, J. (2021). Plasma-functionalized water: from bench to prototype for fresh-cut lettuce. Food Engineering Reviews, 13(1), 115-135. https://doi.org/10.1007/s12393-020-09238-9
  • Schröder, M.J. (2003). Origins and Nature of Sensory and other Performance Attributes in Foods. In Food Quality and Consumer Value (pp. 137-165). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07283-7_6
  • Selma, M.V., Luna, M.C., Martínez-Sánchez, A., Tudela, J.A., Beltrán, D., Baixauli, C., & Gil, M.I. (2012). Sensory quality, bioactive constituents and microbiological quality of green and red fresh-cut lettuces (Lactuca sativa L.) are influenced by soil and soilless agricultural production systems. Postharvest Biology and Technology, 63(1), 16-24. https://doi.org/10.1016/j.postharvbio.2011.08.002
  • Sirsat, S.A., & Neal, J.A. (2013). Microbial profile of soil-free versus in-soil grown lettuce and intervention methodologies to combat pathogen surrogates and spoilage microorganisms on lettuce. Foods, 2(4), 488-498. https://doi.org/10.3390/foods2040488
  • Somerville, C., Cohen, M., Pantanella, E., Stankus, A., & Lovatelli, A., (2014). Small-scale aquaponic food production: integrated fish and plant farming. In: FAO fisheries and aquaculture technical paper food and agriculture organization of the United Nations, Rome, Italy, p 262.
  • Strawn, L.K., Gröhn, Y.T., Warchocki, S., Worobo, R.W., Bihn, E.A., & Wiedmann, M. (2013). Risk factors associated with salmonella and listeria monocytogenes contamination of produce fields. Applied Environmental Microbiology, 79, 7618–7627. https://doi.org/10.1128/AEM.02831-13
  • Taylor, E.V., Nguyen, T.A., Machesky, K.D., Koch, E., Sotir, M.J., Bohm, S. R., Folster J.P., Bokanyı, R., Kupper, A., Bıdol, S.A., Emanuel, A., Arends, K.D., Johnson, S.A., Dunn, J., Stroıka, S., Patel, M.K., & Williams, I. (2013). Multistate outbreak of Escherichia coli O145 infections associated with romaine lettuce consumption, 2010. Journal of food protection, 76(6), 939-944. https://doi.org/10.4315/0362-028X.JFP-12-503
  • Tournas, V., Stack, M.E., Mislivec, P.B., Koch, H.A., & Bandler, R. (2022, August 4). Bacteriological Analytical Manual Chapter 18: Yeasts, Molds and Mycotoxins. https://www.fda.gov/food/laboratory-methods-food/bam-chapter-18-yeasts-molds-and-mycotoxins
  • Tyson, R.V., Danyluk, M.D., Simonne, E.H., & Treadwell, D.D. (2012). Aquaponics—Sustainable vegetable and fish co-production. Proceedings of the Florida State Horticultural Society, 125, 381-385.
  • Weller, D.L., Saylor, L., & Turkon, P. (2020). Total coliform and generic E. coli levels, and Salmonella presence in eight experimental aquaponics and hydroponics systems: A brief report highlighting exploratory data. Horticulturae, 6(3), 42. https://doi.org/10.3390/horticulturae6030042
  • Willmon, E. (2018). Microbial Quality of Aquaculture Water Used for Produce Irrigation. Master’s thesis. The Graduate Faculty of Auburn University.
  • Yavuzcan Yildiz, H., Robaina, L., Pirhonen, J., Mente, E., Domínguez, D., & Parisi, G. (2017). Fish welfare in aquaponic systems: its relation to water quality with an emphasis on feed and faeces-a review. Water, 9(1), 13. https://doi.org/10.3390/w9010013

Marul bitkisinin (Lactuca sativa L.) akuaponik sistemde gıda güvenliği açısından değerlendirilmesi

Yıl 2023, Cilt: 40 Sayı: 1, 27 - 34, 15.03.2023
https://doi.org/10.12714/egejfas.40.1.04

Öz



Bu çalışmada, akuaponik sistemde üretilen marul bitkisinin duyusal tüketici tercihi, renk ve doku kalitesi açısından değerlendirilmiş ve sistemde oluşabilecek koliform bakteri, Escherichia coli, maya ve küf miktarları belirlenmiştir. Bitki yetiştirme ortamındaki (hidroton) ve sudaki maya-küf miktarları, altı haftalık deneyin sonunda sırasıyla 4,67 log KOB/cm2 ve 2,25 log KOB/mL olarak tespit edilmiştir. Hidrotonda ve sistem suyundaki koliform bakteri miktarı sırasıyla 2,57 log KOB/cm2 ve 3,46 log KOB/mL, E. coli miktarı ise sırasıyla 0,75 log KOB/cm2 ve 0,31 log KOB/mL olarak bulunmuştur. Gıda güvenliği açısından risk oluşturan mikroorganizmalar yetiştiricilik ortamında birikebilmektedir. Akuaponik sistemde (AP) yetiştirilen marul hasat edildikten sonra topraklı tarımda (TT) üretilen marul ile karşılaştırılmıştır. Sonuçlara göre AP marulun renkleri TT'den daha koyu (Parlaklık: 56,4 AP, 49,09 TT, p<0,05), daha sert (Sertlik: 209,3 AP, 153,7 TT, p<0,05) ve duyusal analize göre daha iştah açıcı (Genel duyusal beğenisi: 8,4 AP, 7,7 TT) bulunmuştur. Sonuç olarak akuaponik sistemler duyusal kalite ve tüketici tercihleri açısından topraklı üretim sistemlerine göre daha çok tercih edilmiştir.



Proje Numarası

FDK-2020-37081 and FBG-2018-31504

Kaynakça

  • Abadias, M., Alegre, I., Oliveira, M., Altisent, R., & Viñas, I. (2012). Growth potential of Escherichia coli O157:H7 on fresh-cut fruits (melon and pineapple) and vegetables (carrot and escarole) stored under different conditions. Food Control, 27, 37–44. https://doi.org/10.1016/j.foodcont.2012.02.032
  • Atique, F., Lindholm-Lehto, P., & Pirhonen, J. (2022). Is Aquaponics Beneficial in Terms of Fish and Plant Growth and Water Quality in Comparison to Separate Recirculating Aquaculture and Hydroponic Systems?. Water, 14(9), 1447. https://doi.org/10.3390/w14091447
  • Back, K.H., Ha, J.W., & Kang, D.H. (2014). Effect of hydrogen peroxide vapor treatment for inactivating Salmonella Typhimurium, Escherichia coli O157: H7 and Listeria monocytogenes on organic fresh lettuce. Food Control, 44, 78-85. https://doi.org/10.1016/j.foodcont.2014.03.046
  • Blancheton J.P., Attramadal K.J.K., Michaud L., D’Orbcastel E.R., & Vadstein O. (2013). Insight into bacterial population in aquaculture systems and its implication. Aquaculture Engineering 53, 30–39. https://doi.org/10.1016/j.aquaeng.2012.11.009
  • Brashears, M.M., & Durre, W.A. (1999). Antagonistic Action of Lactobacillus lactis toward Salmonella spp. and Escherichia coli O157:H7 during Growth and Refrigerated Storage. Journal of Food Protection, 62, 1336–1340. https://doi.org/10.4315/0362-028X-62.11.1336
  • Chalmers, G.A. (2004). Aquaponics and Food Safety Aquaponics and Food Safety. http://www.byap.backyardmagazines.com/Travis/Aquaponics-and-Food-Safety.pdf. (accessed 08.04.2022)
  • Deering, A.J., Mauer, L.J., & Pruitt, R.E. (2012). Internalization of E. coli O157:H7 and Salmonella spp. in plants: A review. Food Research International, 45, 567–575. https://doi.org/10.1016/j.foodres.2011.06.058
  • Eck, M., Sare, A.R., Massart, S., Schmautz, Z., Junge, R., Smits, T.H.M., & Jijakli, M.H. (2019). Exploring bacterial communities in aquaponic systems. Water, 11, 260. https://doi.org/10.3390/w11020260
  • Elumalai, S.D., Shaw, A.M., Pattillo, D.A., Currey, C.J., Rosentrater, K.A., & Xie, K. (2017). Influence of UV treatment on the food safety status of a model aquaponic system. Water, 9(1), 27. https://doi.org/10.3390/w9010027
  • Fávaro-Trindade, C.S., de Carvalho Balieiro, J.C., Dias, P.F., Amaral Sanino, F., & Boschini, C. (2007). Effects of culture, pH and fat concentration on melting rate and sensory characteristics of probiotic fermented yellow mombin (Spondias mombin L) ice creams. Food Science and Technology International, 13(4), 285-291. https://doi.org/10.1177/1082013207082387
  • Feng, P., Weagant, S., Grant, M., & Burkhardt, W. (2022, August 4). Enumeration of Escherichia coli and the Coliform Bacteria. https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4-enumeration-escherichia-coli-and-coliform-bacteria
  • Fontana, L., Rossi, C.A., Hubinger, S.Z., Ferreira, M.D., Spoto, M.H., Sala, F.C., & Verruma-Bernardi, M.R. (2018). Physicochemical characterization and sensory evaluation of lettuce cultivated in three growing systems. Horticultura Brasileira, 36, 20-26. https://doi.org/10.1590/S0102-053620180104
  • Fox, B.K., Tamaru, C.S., Hollyer, J., Castro, L.F., Fonseca, J.M., Jay-Russell, M., & Low, T. (2022, August 4). A preliminary study of microbial water quality related to food safety in recirculating aquaponic fish and vegetable production systems. https://scholarspace.manoa.hawaii.edu/server/api/core/bitstreams/b92b8b32-2edc-468b-b4b3-80450c22ecc3/content
  • Gerdes D.L., & Santos Valdez C. (1991). Modified atmosphere packaging of commercial Pacific red snapper (Sebastes entomelas, Sebastes flavidus or Sebastes godei). Lebensmittel-Wissenschaft und –Technologie, 24, 256–258.
  • González-Alanis, P., Gutierrez-Olguín, J.I., Castro-Segura, I., Ezqueda-Palacios, H., Acosta, M.H., Gojon-Báez, H.H., Aguirre-Guzmán, G., Guzmán-Saénz, F.M., & Fitzsimmons, K.M. (2011). Food Safety Study of Leafy Green Irrigated with Tilapia Farm Effluents in Tamaulipas. In Better Science, Better Fish, Better Life: Proceedings of the Ninth International Symposium on Tilapia in Aquaculture (pp. 121-122).
  • Hilborn, E.D., Mermin, J.H., Mshar, P.A., Hadler, J.L., Voetsch, A., Wojtkunski, C., Swartz M., Mshar, R., Lambert-Fair, M.A., Farrar, J.A., Glynn, M.K., & Slutsker, L. (1999). A multistate outbreak of Escherichia coli O157: H7 infections associated with consumption of mesclun lettuce. Archives of Internal Medicine, 159(15), 1758-1764. https://doi.org/10.1001/archinte.159.15.1758
  • Hoagland, L., Ximenes, E., Ku, S., Ladisch, M. (2018). Foodborne pathogens in horticultural production systems: ecology and mitigation. Scientia Horticulturae, 236, 192–206. https://doi.org/10.1016/j.scienta.2018.03.040
  • Hollyer, J., Tamaru, C., Riggs, A., Klinger-Bowen, R., Howerton, R., Okimoto, D., Castro, L., Ron, T., Fox, B.K., Troegner, V., & Martinez, G. (2009). On-Farm Food Safety: Aquaponics. College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa Food Safety and Technology FST-38: 1–7. http://byap.backyardmagazines.com/Travis/Safety.pdf (accessed 07.04.2022)
  • Holmes, S.C., Wells, D.E., Pickens, J.M., & Kemble, J.M. (2019). Selection of heat tolerant lettuce (Lactuca sativa L.) cultivars grown in deep water culture and their marketability. Horticulturae, 5(3), 50. https://doi.org/10.3390/horticulturae5030050
  • Ibrahim, R., & Zuki, W.A.M. (2012). The Physico-Chemical Properties Of Lettuce (Lactuca Sativa 'Grand Rapid') Grown Under Different Planting Methods. In H. Abdullah, M.N. Latifah (Eds.) VII International Postharvest Symposium 2012 (pp. 201-206). Kuala Lumpur, Malaysia: Proceedings Book.
  • Kasozi, N., Abraham, B., Kaiser, H., & Wilhelmi, B. (2021). The complex microbiome in aquaponics: significance of the bacterial ecosystem. Annals of Microbiology, 71(1), 1-13. https://doi.org/10.1186/s13213-020-01613-5
  • Khalil, S. (2018). Growth performance, nutrients and microbial dynamic in aquaponics systems as affected by water temperature. European Journal of Horticultural Science, 83(6), 388-394. https://doi.org/10.17660/eJHS.2018/83.6.7
  • Lei, C., & Engeseth, N.J. (2021). Comparison of growth characteristics, functional qualities, and texture of hydroponically grown and soil-grown lettuce. Lebensmittel-Wissenschaft & Technologie, 150, 111931. https://doi.org/10.1016/j.lwt.2021.111931
  • Mampholo, B.M., Maboko, M.M., Soundy, P., & Sivakumar, D. (2016). Phytochemicals and overall quality of leafy lettuce (Lactuca sativa L.) varieties grown in closed hydroponic system. Journal of Food Quality, 39(6), 805–815. https://doi.org/10.1111/jfq.12234
  • Martínez-Sánchez, A., Tudela, J.A., Luna, C., Allende, A., & Gil, M.I. (2011). Low oxygen levels and light exposure affect quality of fresh-cut Romaine lettuce. Postharvest Biology and Technology, 59(1), 34-42. https://doi.org/j.postharvbio.2010.07.005
  • Matthew T.M., Fannie, Z., Yukiko K.N., & Stanley T.O. (2011). Comparison between hydroponically and conventionally and organically grown lettuces for taste, odor, visual quality and texture: A pilot study. Food and Nutrition Sciences, 2(2), 4534. https://doi.org/10.4236/fns.2011.22017
  • Moriarty, M.J., Semmens, K., Bissonnette, G.K., & Jaczynski, J. (2018). Inactivation with UV-radiation and internalization assessment of coliforms and Escherichia coli in aquaponically grown lettuce. Lebensmittel-Wissenschaft & Technologie, 89, 624-630. https://doi.org/10.1016/j.lwt.2017.11.038
  • Nuevaespana, J., & Matias, J.R. (2022, August 4). Comparison of the physical profile of Klayton and LECA as media for aquaponics. https://www.researchgate.net/profile/Jonathan-Matias/publication/261914267_Comparison_of_the_physical_profile_of_Klayton_and_LECA_as_media_for_aquaponics/links/0c960535f358c6f169000000/Comparison-of-the-physical-profile-of-Klayton-and-LECA-as-media-for-aquaponics.pdf
  • Ozgen, S., & Sekerci, S. (2011). Effect of leaf position on the distribution of phytochemicals and antioxidant capacity among green and red lettuce cultivars. Spanish Journal of Agricultural Research, 9(3), 801-809. https://doi.org/10.5424/sjar/20110903-472-10
  • Pedersen, P. B., von Ahnen, M., Fernandes, P., Naas, C., Pedersen, L. F., & Dalsgaard, J. (2017). Particle surface area and bacterial activity in recirculating aquaculture systems. Aquacultural Engineering, 78, 18-23. https://doi.org/10.1016/j.aquaeng.2017.04.005
  • Petreska M., Ziberoski J. and Zekiri M., (2013). Fish feed microbiological status. Journal of Hygienic Engineering and Design, 4, 16-19.
  • Predmore, A., Sanglay, G., Li, J., & Lee, K. (2015). Control of human norovirus surrogates in fresh foods by gaseous ozone and a proposed mechanism of inactivation. Food Microbiology, 50, 118-125. https://doi.org/10.1016/j.fm.2015.04.004
  • Schmautz Z, Graber A, Jaenicke S, Goesmann A, Junge R, Smits THM (2017). Microbial diversity in different compartments of an aquaponics system. Archives Microbiology,199:613–620. https://doi.org/10.1007/s00203-016-1334-1
  • Schnabel, U., Handorf, O., Stachowiak, J., Boehm, D., Weit, C., Weihe, T., Thomas, W., Schäfer, J., Below, H., Bourke, P., & Ehlbeck, J. (2021). Plasma-functionalized water: from bench to prototype for fresh-cut lettuce. Food Engineering Reviews, 13(1), 115-135. https://doi.org/10.1007/s12393-020-09238-9
  • Schröder, M.J. (2003). Origins and Nature of Sensory and other Performance Attributes in Foods. In Food Quality and Consumer Value (pp. 137-165). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07283-7_6
  • Selma, M.V., Luna, M.C., Martínez-Sánchez, A., Tudela, J.A., Beltrán, D., Baixauli, C., & Gil, M.I. (2012). Sensory quality, bioactive constituents and microbiological quality of green and red fresh-cut lettuces (Lactuca sativa L.) are influenced by soil and soilless agricultural production systems. Postharvest Biology and Technology, 63(1), 16-24. https://doi.org/10.1016/j.postharvbio.2011.08.002
  • Sirsat, S.A., & Neal, J.A. (2013). Microbial profile of soil-free versus in-soil grown lettuce and intervention methodologies to combat pathogen surrogates and spoilage microorganisms on lettuce. Foods, 2(4), 488-498. https://doi.org/10.3390/foods2040488
  • Somerville, C., Cohen, M., Pantanella, E., Stankus, A., & Lovatelli, A., (2014). Small-scale aquaponic food production: integrated fish and plant farming. In: FAO fisheries and aquaculture technical paper food and agriculture organization of the United Nations, Rome, Italy, p 262.
  • Strawn, L.K., Gröhn, Y.T., Warchocki, S., Worobo, R.W., Bihn, E.A., & Wiedmann, M. (2013). Risk factors associated with salmonella and listeria monocytogenes contamination of produce fields. Applied Environmental Microbiology, 79, 7618–7627. https://doi.org/10.1128/AEM.02831-13
  • Taylor, E.V., Nguyen, T.A., Machesky, K.D., Koch, E., Sotir, M.J., Bohm, S. R., Folster J.P., Bokanyı, R., Kupper, A., Bıdol, S.A., Emanuel, A., Arends, K.D., Johnson, S.A., Dunn, J., Stroıka, S., Patel, M.K., & Williams, I. (2013). Multistate outbreak of Escherichia coli O145 infections associated with romaine lettuce consumption, 2010. Journal of food protection, 76(6), 939-944. https://doi.org/10.4315/0362-028X.JFP-12-503
  • Tournas, V., Stack, M.E., Mislivec, P.B., Koch, H.A., & Bandler, R. (2022, August 4). Bacteriological Analytical Manual Chapter 18: Yeasts, Molds and Mycotoxins. https://www.fda.gov/food/laboratory-methods-food/bam-chapter-18-yeasts-molds-and-mycotoxins
  • Tyson, R.V., Danyluk, M.D., Simonne, E.H., & Treadwell, D.D. (2012). Aquaponics—Sustainable vegetable and fish co-production. Proceedings of the Florida State Horticultural Society, 125, 381-385.
  • Weller, D.L., Saylor, L., & Turkon, P. (2020). Total coliform and generic E. coli levels, and Salmonella presence in eight experimental aquaponics and hydroponics systems: A brief report highlighting exploratory data. Horticulturae, 6(3), 42. https://doi.org/10.3390/horticulturae6030042
  • Willmon, E. (2018). Microbial Quality of Aquaculture Water Used for Produce Irrigation. Master’s thesis. The Graduate Faculty of Auburn University.
  • Yavuzcan Yildiz, H., Robaina, L., Pirhonen, J., Mente, E., Domínguez, D., & Parisi, G. (2017). Fish welfare in aquaponic systems: its relation to water quality with an emphasis on feed and faeces-a review. Water, 9(1), 13. https://doi.org/10.3390/w9010013
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Gökhan Tunçelli 0000-0003-1708-7272

İdil Can Tunçelli 0000-0002-9999-6658

Devrim Memiş 0000-0001-7378-0165

Proje Numarası FDK-2020-37081 and FBG-2018-31504
Yayımlanma Tarihi 15 Mart 2023
Gönderilme Tarihi 5 Ağustos 2022
Yayımlandığı Sayı Yıl 2023Cilt: 40 Sayı: 1

Kaynak Göster

APA Tunçelli, G., Can Tunçelli, İ., & Memiş, D. (2023). Evaluation of lettuce (Lactuca sativa L.) in aquaponic system in terms of food safety. Ege Journal of Fisheries and Aquatic Sciences, 40(1), 27-34. https://doi.org/10.12714/egejfas.40.1.04