Araştırma Makalesi
BibTex RIS Kaynak Göster

Treptacantha barbata’nın boya adsorpsiyonunun tahmin modellemeleri

Yıl 2022, Cilt: 39 Sayı: 4, 300 - 310, 15.12.2022
https://doi.org/10.12714/egejfas.39.4.05

Öz



Bu çalışmanın amacı, Treptacantha barbata (Stackhouse) Orellana& Sansón, 2019 (önceki ismi ile Cystoseira barbata (Stackhouse) C. Agardh, 1820) boya adsorpsiyon etkinliğini araştırmak ve modellemektir. Deneyler, başlangıç Metilen Mavisi boya konsantrasyonu (0,1-10,0 mg L-1), temas süresi (5- 1440 dakika) ve adsorban dozu (0,1-2 g) gibi parametrelere göre tasarlanmıştır. Adsorban, taramalı elektron mikroskobu-enerji dağılımlı X-ışını ve Fourier Dönüşümü Kızılötesi Spektroskopisi ile karakterize edilmiştir. T. barbata tüm deney gruplarında boya gideriminde (%69-100) oldukça başarılı bulunmuş ve qe değerleri başlangıç boya konsantrasyonundaki artışa paralel olarak artmıştır. İlk temas süresinde, özellikle 15 dakikaya kadar boyanın çok hızlı uzaklaştırıldığı tespit edilmiştir. Kesikli deneysel verilere izoterm, kinetik ve regresyon modelleri uygulanmıştır. Sonuçlar, adsorpsiyon işleminin Langmuir izoterm modeliyle (R2: 0.97) iyi bir şekilde uyduğunu ortaya koymuştur.



Kaynakça

  • Abdelhameed, R.M., Alzahrani, E., Shaltout, A.A., & Moghazy, R.M. (2020). Development of biological macroalgae lignins using copper based metal-organic framework for selective adsorption of cationic dye from mixed dyes. International Journal of Biological Macromolecules, 165, 2984–2993. DOI: 10.1016/j.ijbiomac.2020.10.157
  • Abkenar, S.D., Khoobi, M., Tarasi, R., Hosseini, M., Shafiee, A., & Ganjali, M.R. (2015). Fast removal of methylene blue from aqueous solution using magnetic-modified Fe3O4 nanoparticles. Journal of Environmental Engineering and Science, 141 (1), 04014049. DOI: 10.1061/(ASCE)EE.1943-7870.0000878
  • Ait Ahsaine, H., Zbair, M., Anfar, Z., Naciri, Y., El Haouti, R., El Alem, N., & Ezahri, M. (2018). Cationic dyes adsorption onto high surface area ‘almond shell’ activated carbon: Kinetics, equilibrium isotherms and surface statistical modeling. Materials Today Chemistry, 8, 121-132. DOI: 10.1016/j.mtchem.2018.03.004
  • Al-Ghouti, M.A., & Da'ana, D.A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. DOI: 10.1016/j.jhazmat.2020.122383
  • Alzaydien, A., S. (2009). Adsorption of methylene blue from aqueous solution onto a low-cost natural Jordanian Tripoli. American Journal of Applied Sciences, 5 (3):197-208.
  • Amin, M.T., Alazba, A.A., & Shafiq, M. (2020) Comparative removal of lead and nickel ions onto nanofibrous sheet of activated polyacrylonitrile in batch adsorption and application of conventional kinetic and isotherm models. Membranes (Basel), 11 (1). DOI: 10.3390/membranes11010010
  • Auta, M., & Hameed, B.H. (2012). Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue. Chemical Engineering Journal, 198-199, 219-227. DOI: 10.1016/j.cej.2012.05.075
  • Batmaz, R., Mohammed, N., Zaman, M., Minhas, G., Berry, M.R., & Tam, K.C. (2014). Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21 (3),1655-1665. DOI: 10.1007/s10570-014-0168-8
  • Bouzikri, S., Ouasfi, N., Benzidia, N., Salhi, A., Bakkas, S., & Khamliche, L. (2020). Marine alga “Bifurcaria bifurcata”: biosorption of Reactive Blue 19 and methylene blue from aqueous solutions. Environmental Science and Pollution Research, 27 (27), 33636-33648. DOI: 10.1007/s11356-020-07846-w
  • Broujeni, B.R., Nilchi, A., & Azadi, F. (2021). Adsorption modeling and optimization of thorium (IV) ion from aqueous solution using chitosan/TiO2 nanocomposite: Application of artificial neural network and genetic algorithm. Environmental Nanotechnology, Monitoring & Management, 15, 100400. DOI: 10.1016/j.enmm.2020.100400
  • Caparkaya, D., & Cavas, L. (2008). Biosorption of Methylene Blue by a Brown Alga Cystoseira barbatula Kützing. Acta Chimica Slovenica, 55 (3).
  • Cefalu, J.N., Joshi, T.V., Spalitta, M.J., Kadi, C.J., Diaz, J.H., Eskander, J.P., Cornett, E.M., & Kaye, A.D. (2020). Methemoglobinemia in the operating room and intensive care unit: Early recognition, pathophysiology, and management. Advances in Therapy, 37 (5): 1714-23. DOI: 10.1007/s12325-020-01282-5
  • Daneshvar, E., Vazirzadeh, A., Niazi, A., Sillanpää, M., & Bhatnagar, A. (2017). A comparative study of methylene blue biosorption using different modified brown, red and green macroalgae–Effect of pretreatment. Chemical Engineering Journal, 307, 435-446. DOI: 10.1016/j.cej.2016.08.093
  • Deng, H., Lu, J., Li, G., Zhang, G., & Wang, X. (2011). Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chemical Engineering Journal, 172(1), 326-334. DOI: 10.1016/j.cej.2011.06.013
  • El Jamal, M.M., & Ncibi, M.C. (2012). Biosorption of methylene blue by chaetophora elegans algae: Kinetics, equilibrium and thermodynamic studies. Acta Chimica Slovenica, 59 (1), 24-31.
  • El-Naggar, N.E., Hamouda, R.A., Saddiq, A.A., & Alkinani, M.H. (2021). Simultaneous bioremediation of cationic copper ions and anionic methyl orange azo dye by brown marine alga Fucus vesiculosus. Scientific Reports, 11 (1): 3555. DOI: 10.1038/s41598-021-82827-8
  • El Nemr, M.A., Ismail, I.M., Abdelmonem, N.M., El Nemr, A., & Ragab, S. (2021a). Amination of biochar surface from watermelon peel for toxic chromium removal enhancement. Chinese Journal of Chemical Engineering, 36, 199-222. DOI: 10.1016/j.cjche.2020.08.020
  • El Nemr, A., Shoaib, A.G., El Sikaily, A., Mohamed, A.E.D.A., & Hassan, A.F. (2021b). Evaluation of cationic methylene blue dye removal by high surface area mesoporous activated carbon derived from Ulva lactuca. Environmental Processes, 8, 311–332. DOI: 10.1007/s40710-020-00487-8
  • Essekri, A., Aarab, N., Hsini, A., Ajmal, Z., Laabd, M., El Ouardi, M., Abdelaziz, A.A., Rajae, L., & Albourine, A. (2020). Enhanced adsorptive removal of crystal violet dye from aqueous media using citric acid modified red-seaweed: experimental study combined with RSM process optimization. Journal of Dispersion Science and Technology, 1-14. DOI: 10.1080/01932691.2020.1857263
  • Filote, C., Volf, I., Santos, S.C.R., & Botelho, C.M.S. (2019). Bioadsorptive removal of Pb(II) from aqueous solution by the biorefinery waste of Fucus spiralis. Science of the Total Environment, 648, 1201-1209. DOI: 10.1016/j.scitotenv.2018.08.210
  • Ghosh, I., Sayanti, K., Chatterjee, T., Bar, N., & Das, S.K. (2021). Removal of methylene blue from aqueous solution using Lathyrus sativus husk: Adsorption study, MPR and ANN modelling. Process Safety and Environmental Protection, 149, 345-61. DOI: 10.1016/j.psep.2020.11.003
  • Giannakoudakis, D.A., Hosseini-Bandegharaei, A., Tsafrakidou, P., Triantafyllidis, K.S., Kornaros, M., & Anastopoulos, I. (2018). Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: A review. Journal of Environmental Management, 227, 354-364. DOI: 10.1016/j.jenvman.2018.08.064
  • Giles, C.H., Macewan, T.H., Nakhwa, S.N., & Smith, D. (1960). Studies in adsorption. Part XI. A system of classifcation of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specifc surface areas of solids, Journal of the Chemical Society, 3973–3993.
  • Gobi, K., Mashitah, M.D., & Vadivelu, V.M. (2011). Adsorptive removal of Methylene Blue using novel adsorbent from palm oil mill effluent waste activated sludge: Equilibrium, thermodynamics and kinetic studies. Chemical Engineering Journal, 171 (3):1246-1252. DOI: 10.1016/j.cej.2011.05.036
  • Hamouda, R.A., El‑Naggar, N.E.A., Doleib, N.M., & Saddiq, A.A. (2020). Bioprocessing strategies for cost‑effective simultaneous removal of chromium and malachite green by marine alga Enteromorpha intestinalis. Scientific Reports, 10 (1), 1-19. DOI: 10.1038/s41598-020-70251-3
  • Husien, S., Labena, A., El-Belely, E.F., Mahmoud, H.M., & Hamouda, A.S. (2019). Absorption of hexavalent chromium by green micro algae Chlorella sorokiniana: Live planktonic cells. Water Practice and Technology, 14 (3), 515-529. DOI: 10.2166/wpt.2019.034
  • Hannachi, Y., & Hafidh, A. (2020). Biosorption potential of Sargassum muticum algal biomass for methylene blue and lead removal from aqueous medium. International Journal of Environmental Science and Technology, 17, 3875–3890. DOI: 10.1007/s13762-020-02742-9
  • Hasan, I., Khan, R.A., Alharbi, W., Alharbi, K.H., Khanjer, M.A., & Alslame, A. (2020). Synthesis, characterization and photo-catalytic activity of guar-gum-g-alginate@ silver bionanocomposite material. RSC Advances, 10 (13), 7898-7911. DOI: 10.1039/D0RA00163E
  • Jafari, H., Mahdavinia, G.R., Kazemi, B., Javanshir, S., & Alinavaz, S. (2020). Basic dyes removal by adsorption process using magnetic Fucus vesiculosus (brown algae). Journal of Water and Environmental Nanotechnology, 5(3), 256-269. DOI: 10.22090/JWENT.2020.03.006
  • Jerold, M., & Sivasubramanian, V. (2016). Biosorption of malachite green from aqueous solution using brown marine macro algae Sargassum swartzii. Desalination and Water Treatment, 1-13. DOI: 10.1080/19443994.2016.1156582
  • Joshiba, G.J., Kumar, P.S., Govarthanan, M., Ngueagni, P.T., Abilarasu, A., & Carolin, C.F. (2021). Investigation of magnetic silica nanocomposite immobilized Pseudomonas fluorescens as a biosorbent for the effective sequestration of Rhodamine B from aqueous systems. Environmental Pollution, 269, 116173. DOI: 10.1016/j.envpol.2020.116173
  • Karthikeyan, S., Balasubramanian, R., & Iyer, C.S. (2007). Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions. Bioresource Technology, 98 (2): 452-455. DOI: 10.1016/j.biortech.2006.01.010
  • Koyuncu, H., & Kul, A.R. (2020). Removal of methylene blue dye from aqueous solution by nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent. Applied Water Science, 10 (2), 1-14. DOI: 10.1007/s13201-020-1156-9
  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society 38: 2221–2295.
  • Lebron, Y.A.R., Moreira, V.R., & de Souza Santos, L.V. (2021). Biosorption of methylene blue and eriochrome black T onto the brown macroalgae Fucus vesiculosus: equilibrium, kinetics, thermodynamics and optimization. Environmental Technology, 42 (2), 279-297. DOI: 10.1080/09593330.2019.1626914
  • Li, Y.M., Miao, X., Wei, Z.G., Cui, J., Li, S.Y., Han, R.M., Zhang, Y., & Wei, W. (2016). Iron-tannic acid nanocomplexes: facile synthesis and application for removal of methylene blue from aqueous solution. Digest Journal of Nanomaterials and Biostructures. 11 (4): 1045-1061.
  • Lodeiro, P., Barriada, J.L., Herrero, R., & De Vicente, M.S. (2006). The marine macroalga Cystoseira baccata as biosorbent for cadmium (II) and lead (II) removal: kinetic and equilibrium studies. Environmental Pollution, 142 (2), 264-273.
  • Lv, X.M., Yang, X.L., Xie, X.Y., Yang, Z.Y., Hu, K., Wu, Y.J., Jiang, Y., Liu, T., Fang, W., & Huang, X.Y. (2018). Comparative transcriptome analysis of Anguilla japonica livers following exposure to methylene blue. Aquaculture Research, 49(3), 1232-1241. DOI: 10.1111/are.13576
  • Lyra, E.S., Moreira, K.A., Porto, T.S., Carneiro da Cunha, M.N., Paz Júnior, F.B., Neto, B.B., Lima-Filho, J.L., Cavalcanti, A.Q., Converti, A., & Porto, A.L.P. (2009). Decolorization of synthetic dyes by basidiomycetes isolated from woods of the Atlantic Forest (PE), Brazil. World Journal of Microbiology and Biotechnology, 25 (8), 1499-1504. DOI: 10.1007/s11274-009-0034-2
  • Mahajan, P., & Kaushal, J. (2020). Phytoremediation of azo dye methyl red by macroalgae Chara vulgaris L.: kinetic and equilibrium studies. Environmental Science and Pollution Research. 27, 26406–26418. DOI: 10.1007/s11356-020-08977-w
  • Mahini, R., Esmaeili, H., & Foroutan, R. (2018). Adsorption of methyl violet from aqueous solution using brown algae Padina sanctae-crucis. Turkish Journal of Biochemistry, 43 (6), 623-631. DOI: 10.1515/tjb-2017-0333
  • Majhi, D. & Patra, B.N. (2020). Polyaniline and sodium alginate nanocomposite: a pH-responsive adsorbent for the removal of organic dyes from water. RSC Advances, 10 (71), 43904-43914. DOI: 10.1039/D0RA08125F
  • Marzbali, M.H., Mir, A.A., Pazoki, M., Pourjamshidian, R., & Tabeshnia, M. (2017). Removal of direct yellow 12 from aqueous solution by adsorption onto Spirulina algae as a high-efficiency adsorbent. Journal of Environmental Chemical Engineering, 5 (2), 1946-1956. DOI: 10.1016/j.jece.2017.03.018
  • Melo, B.C., Paulino, F.A.A., Cardoso, V.A., Pereira, A.G.B., Fajardo, A.R., & Rodrigues, F.H.A. (2018). Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly (acrylic acid) hydrogel. Carbohydrate Polymers, 181: 358-67. DOI: 10.1016/j.carbpol.2017.10.079
  • Mohammed, Y.M.M., & Mabrouk, M.E.M. (2020). Optimization of methylene blue degradation by Aspergillus terreus YESM 3 using response surface methodology. Water Science & Technology, 82 (10): 2007-2018. DOI: 10.2166/wst.2020.476
  • Nasoudari, E., Ameri, M., Shams, M., Ghavami, V., & Bonyadi, Z. (2020). The biosorption of Alizarin Red S by Spirulina platensis; process modelling, optimisation, kinetic and isotherm studies. International Journal of Environmental Analytical Chemistry. DOI: 10.1080/03067319.2020.1862814
  • Naushad, M., Khan, A.M., Alothman Z.A., Khan, M.R., & Kumar, M. (2015). Adsorption of methylene blue on chemically modified pine nut shells in single and binary systems: isotherms, kinetics, and thermodynamic studies. Desalination and Water Treatment, 57 (34), 15848-15861. DOI: 10.1080/19443994.2015.1074121
  • Omar, H., El-Gendy, A., & Al-Ahmary, K. (2018). Bioremoval of toxic dye by using different marine macroalgae. Turkish Journal of Botany, 42 (1), 15-27. DOI: 10.3906/bot-1703-4
  • Priyadarshini, E., Priyadarshini, S.S., & Pradhan, N. (2019). Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Applied Microbiology and Biotechnology, 103 (8), 3297-3316. DOI: 10.1007/s00253-019-09685-3
  • Radoor, S., Karayil, J., Parameswaranpillai, J., & Siengchin, S. (2020). Adsorption of methylene blue dye from aqueous solution by a novel PVA/CMC/halloysite nanoclay bio composite: Characterization, kinetics, isotherm and antibacterial properties. Journal of Environmental Health Science and Engineering. 18 (2), 1311-27. DOI: 10.1007/s40201-020-00549-x
  • Radwan, E.K., Abdel-Aty, A.M., El-Wakeel, S.T., & Abdel Ghafar, H.H. (2020). Bioremediation of potentially toxic metal and reactive dye-contaminated water by pristine and modified Chlorella vulgaris. Environmental Science and Pollution Research, 27, 21777–21789. DOI: 10.1007/s11356-020-08550-5
  • Renita, A.A., Vardhan, K.H., Kumar, P.S., Ngueagni, P.T., Abilarasu, A., Nath, S., Kumari, P., & Saravanan, R. (2021). Effective removal of malachite green dye from aqueous solution in hybrid system utilizing agricultural waste as particle electrodes. Chemosphere, 273, 129634. DOI: 10.1016/j.chemosphere.2021.129634
  • Shahryari, Z., Goharrizi, A.S., & Azadi, M. (2010). Experimental study of methylene blue adsorption from aqueous solutions onto carbon nano tubes. International Journal of Water Resources and Environmental Engineering, 2 (2), 016-028.
  • Shih, M.C. (2012). Kinetics of the batch adsorption of methylene blue from aqueous solutions onto rice husk: effect of acid-modified process and dye concentration. Desalination and Water Treatment, 37 (1-3), 200-214. DOI: 10.1080/19443994.2012.661273
  • Silva, F., Nascimento, L., Brito, M., da Silva, K., Paschoal, W., & Fujiyama, R. (2019). Biosorption of methylene blue dye using natural biosorbents made from weeds. Materials (Basel), 12 (15), 2486. DOI: 10.3390/ma12152486
  • Soltani, R.D.C., Khorramabadi, G.S., Khataee, A.R., & Jorfi, S. (2014). Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 45 (3):973-980. DOI: 10.1016/j.jtice.2013.09.014
  • Soto-Ramirez, R., Lobos, M.G., Cordova, O., Poirrier, P., & Chamy, R. (2021). Effect of growth conditions on cell wall composition and cadmium adsorption in Chlorella vulgaris: A new approach to biosorption research. Journal of Hazardous Materials, 411, 125059. DOI: 10.1016/j.jhazmat.2021.125059
  • Sun, J., Dai, X., Wang, Q., van Loosdrecht, M.C.M., & Ni, B.J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21-37. DOI: 10.1016/j.watres.2018.12.050
  • Tumin, N.D., Chuah, A.L., Zawani, Z., & Rashid, S.A. (2008). Adsorption of copper from aqueous solution by elais guineensis kernel activated carbon. Journal of Engineering Science and Technology, 3 (2): 180-189.
  • Tural, B., Ertaş, E., Enez, B., Agüloğlu Fincan, S., & Tural, S. (2017). Preparation and characterization of a novel magnetic biosorbent functionalized with biomass of Bacillus subtilis: Kinetic and isotherm studies of biosorption processes in the removal of Methylene Blue. Journal of Environmental Chemical Engineering, 5 (5):4795-4802. DOI: 10.1016/j.jece.2017.09.019
  • Üçüncü Tunca, E., Terzioğlu, K., & Türe, H. (2017). The effects of alginate microspheres on phytoremediation and growth of Lemna minor in the presence of Cd. Chemistry and Ecology, 33 (7):652-668. DOI: 10.1080/02757540.2017.1337102
  • Venkataraghavan, R., Thiruchelvi, R., & Sharmila, D. (2020). Statistical optimization of textile dye effluent adsorption by Gracilaria edulis using Plackett-Burman design and response surface methodology. Heliyon 6 (10): e05219. DOI: 10.1016/j.heliyon.2020.e05219
  • Vijayaraghavan, K., Premkumar, Y., & Jegan, J. (2016). Malachite green and crystal violet biosorption onto coco-peat: characterization and removal studies. Desalination and Water Treatment, 57 (14): 6423-6431. DOI: 10.1080/19443994.2015.1011709
  • Vu, H.C., Dwivedi, A.D., Le, T.T., Seo, S.H., Kim, E.J., & Chang, Y.S. (2017). Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr(VI) and As(V) from aqueous solutions: Role of crosslinking metal cations in pH control. Chemical Engineering Journal, 307, 220-229. DOI: 10.1016/j.cej.2016.08.058
  • Weber, W.J. (1972). Physicochemical Processes: For Water Quality Control, Wiley Interscience, NY.
  • Xia, M., Zheng, X., Du, M., Wang, Y., Ding, A., & Dou, J. (2018). The adsorption of Cs(+) from wastewater using lithium-modified montmorillonite caged in calcium alginate beads. Chemosphere, 203, 271-280. DOI: 10.1016/j.chemosphere.2018.03.129
  • Xu, T., Wang, X., Huang, Y., Lai, K., & Fan, Y. (2019). Rapid detection of trace methylene blue and malachite green in four fish tissues by ultra-sensitive surface-enhanced Raman spectroscopy coated with gold nanorods. Food Control, 106, 106720. DOI: 10.1016/j.foodcont.2019.106720
  • Xu, Y.J., Tian, X.H., Zhang, X.Z., Gong, X.H., Liu, H.H., Zhang, H.J., Huang, H., & Zhang, L.M. (2012). Simultaneous determination of malachite green, crystal violet, methylene blue and the metabolite residues in aquatic products by ultra-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Journal of Chromatographic Science, 50 (7): 591-597. DOI: 10.1093/chromsci/bms054
  • Zhang, S., Wang, Z., Zhang, Y., Pan, H., & Tao, L. (2016). Adsorption of methylene blue on organosolv lignin from rice straw. Procedia Environmental Sciences, 31, 3-11. DOI: 10.1016/j.proenv.2016.02.001
  • Zhao, M., & Liu, P. (2008). Adsorption behavior of methylene blue on halloysite nanotubes. Microporous and Mesoporous Materials, 112 (1-3), 419-424. DOI: 10.1016/j.watres.2009.10.042

Prediction models of dye adsorption by Treptacantha barbata

Yıl 2022, Cilt: 39 Sayı: 4, 300 - 310, 15.12.2022
https://doi.org/10.12714/egejfas.39.4.05

Öz



This study's objective was to develop a model to determine dye adsorption efficiency of Treptacantha barbata (Stackhouse) Orellana& Sansón, 2019 (formerly Cystoseira barbata (Stackhouse) C. Agardh, 1820). During the experiments, treatment groups, such as initial dye Methylene Blue (MB) concentration (0.1-10.0 mg L-1), contact time (5 to 1440 min) and adsorbent dosage (0.1-2 g) were applied. Scanning electron microscopy, energy dispersive X-ray, and Fourier Transform Infrared Spectroscopy were used to analyze the adsorbent. T. barbata was found to be quite successful in removing dye (69% -100%) for all experiments, and the qe values increased with the increased the initial dye concentration. Very rapid dye removal was detected during the first contact time, especially up to 15 min. Isotherms, kinetics, and regression models were applied to the batch experimental results. The results displayed that adsorption process was suitable with the Langmuir isotherm model (R2: 0.97).


Kaynakça

  • Abdelhameed, R.M., Alzahrani, E., Shaltout, A.A., & Moghazy, R.M. (2020). Development of biological macroalgae lignins using copper based metal-organic framework for selective adsorption of cationic dye from mixed dyes. International Journal of Biological Macromolecules, 165, 2984–2993. DOI: 10.1016/j.ijbiomac.2020.10.157
  • Abkenar, S.D., Khoobi, M., Tarasi, R., Hosseini, M., Shafiee, A., & Ganjali, M.R. (2015). Fast removal of methylene blue from aqueous solution using magnetic-modified Fe3O4 nanoparticles. Journal of Environmental Engineering and Science, 141 (1), 04014049. DOI: 10.1061/(ASCE)EE.1943-7870.0000878
  • Ait Ahsaine, H., Zbair, M., Anfar, Z., Naciri, Y., El Haouti, R., El Alem, N., & Ezahri, M. (2018). Cationic dyes adsorption onto high surface area ‘almond shell’ activated carbon: Kinetics, equilibrium isotherms and surface statistical modeling. Materials Today Chemistry, 8, 121-132. DOI: 10.1016/j.mtchem.2018.03.004
  • Al-Ghouti, M.A., & Da'ana, D.A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. DOI: 10.1016/j.jhazmat.2020.122383
  • Alzaydien, A., S. (2009). Adsorption of methylene blue from aqueous solution onto a low-cost natural Jordanian Tripoli. American Journal of Applied Sciences, 5 (3):197-208.
  • Amin, M.T., Alazba, A.A., & Shafiq, M. (2020) Comparative removal of lead and nickel ions onto nanofibrous sheet of activated polyacrylonitrile in batch adsorption and application of conventional kinetic and isotherm models. Membranes (Basel), 11 (1). DOI: 10.3390/membranes11010010
  • Auta, M., & Hameed, B.H. (2012). Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue. Chemical Engineering Journal, 198-199, 219-227. DOI: 10.1016/j.cej.2012.05.075
  • Batmaz, R., Mohammed, N., Zaman, M., Minhas, G., Berry, M.R., & Tam, K.C. (2014). Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21 (3),1655-1665. DOI: 10.1007/s10570-014-0168-8
  • Bouzikri, S., Ouasfi, N., Benzidia, N., Salhi, A., Bakkas, S., & Khamliche, L. (2020). Marine alga “Bifurcaria bifurcata”: biosorption of Reactive Blue 19 and methylene blue from aqueous solutions. Environmental Science and Pollution Research, 27 (27), 33636-33648. DOI: 10.1007/s11356-020-07846-w
  • Broujeni, B.R., Nilchi, A., & Azadi, F. (2021). Adsorption modeling and optimization of thorium (IV) ion from aqueous solution using chitosan/TiO2 nanocomposite: Application of artificial neural network and genetic algorithm. Environmental Nanotechnology, Monitoring & Management, 15, 100400. DOI: 10.1016/j.enmm.2020.100400
  • Caparkaya, D., & Cavas, L. (2008). Biosorption of Methylene Blue by a Brown Alga Cystoseira barbatula Kützing. Acta Chimica Slovenica, 55 (3).
  • Cefalu, J.N., Joshi, T.V., Spalitta, M.J., Kadi, C.J., Diaz, J.H., Eskander, J.P., Cornett, E.M., & Kaye, A.D. (2020). Methemoglobinemia in the operating room and intensive care unit: Early recognition, pathophysiology, and management. Advances in Therapy, 37 (5): 1714-23. DOI: 10.1007/s12325-020-01282-5
  • Daneshvar, E., Vazirzadeh, A., Niazi, A., Sillanpää, M., & Bhatnagar, A. (2017). A comparative study of methylene blue biosorption using different modified brown, red and green macroalgae–Effect of pretreatment. Chemical Engineering Journal, 307, 435-446. DOI: 10.1016/j.cej.2016.08.093
  • Deng, H., Lu, J., Li, G., Zhang, G., & Wang, X. (2011). Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chemical Engineering Journal, 172(1), 326-334. DOI: 10.1016/j.cej.2011.06.013
  • El Jamal, M.M., & Ncibi, M.C. (2012). Biosorption of methylene blue by chaetophora elegans algae: Kinetics, equilibrium and thermodynamic studies. Acta Chimica Slovenica, 59 (1), 24-31.
  • El-Naggar, N.E., Hamouda, R.A., Saddiq, A.A., & Alkinani, M.H. (2021). Simultaneous bioremediation of cationic copper ions and anionic methyl orange azo dye by brown marine alga Fucus vesiculosus. Scientific Reports, 11 (1): 3555. DOI: 10.1038/s41598-021-82827-8
  • El Nemr, M.A., Ismail, I.M., Abdelmonem, N.M., El Nemr, A., & Ragab, S. (2021a). Amination of biochar surface from watermelon peel for toxic chromium removal enhancement. Chinese Journal of Chemical Engineering, 36, 199-222. DOI: 10.1016/j.cjche.2020.08.020
  • El Nemr, A., Shoaib, A.G., El Sikaily, A., Mohamed, A.E.D.A., & Hassan, A.F. (2021b). Evaluation of cationic methylene blue dye removal by high surface area mesoporous activated carbon derived from Ulva lactuca. Environmental Processes, 8, 311–332. DOI: 10.1007/s40710-020-00487-8
  • Essekri, A., Aarab, N., Hsini, A., Ajmal, Z., Laabd, M., El Ouardi, M., Abdelaziz, A.A., Rajae, L., & Albourine, A. (2020). Enhanced adsorptive removal of crystal violet dye from aqueous media using citric acid modified red-seaweed: experimental study combined with RSM process optimization. Journal of Dispersion Science and Technology, 1-14. DOI: 10.1080/01932691.2020.1857263
  • Filote, C., Volf, I., Santos, S.C.R., & Botelho, C.M.S. (2019). Bioadsorptive removal of Pb(II) from aqueous solution by the biorefinery waste of Fucus spiralis. Science of the Total Environment, 648, 1201-1209. DOI: 10.1016/j.scitotenv.2018.08.210
  • Ghosh, I., Sayanti, K., Chatterjee, T., Bar, N., & Das, S.K. (2021). Removal of methylene blue from aqueous solution using Lathyrus sativus husk: Adsorption study, MPR and ANN modelling. Process Safety and Environmental Protection, 149, 345-61. DOI: 10.1016/j.psep.2020.11.003
  • Giannakoudakis, D.A., Hosseini-Bandegharaei, A., Tsafrakidou, P., Triantafyllidis, K.S., Kornaros, M., & Anastopoulos, I. (2018). Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: A review. Journal of Environmental Management, 227, 354-364. DOI: 10.1016/j.jenvman.2018.08.064
  • Giles, C.H., Macewan, T.H., Nakhwa, S.N., & Smith, D. (1960). Studies in adsorption. Part XI. A system of classifcation of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specifc surface areas of solids, Journal of the Chemical Society, 3973–3993.
  • Gobi, K., Mashitah, M.D., & Vadivelu, V.M. (2011). Adsorptive removal of Methylene Blue using novel adsorbent from palm oil mill effluent waste activated sludge: Equilibrium, thermodynamics and kinetic studies. Chemical Engineering Journal, 171 (3):1246-1252. DOI: 10.1016/j.cej.2011.05.036
  • Hamouda, R.A., El‑Naggar, N.E.A., Doleib, N.M., & Saddiq, A.A. (2020). Bioprocessing strategies for cost‑effective simultaneous removal of chromium and malachite green by marine alga Enteromorpha intestinalis. Scientific Reports, 10 (1), 1-19. DOI: 10.1038/s41598-020-70251-3
  • Husien, S., Labena, A., El-Belely, E.F., Mahmoud, H.M., & Hamouda, A.S. (2019). Absorption of hexavalent chromium by green micro algae Chlorella sorokiniana: Live planktonic cells. Water Practice and Technology, 14 (3), 515-529. DOI: 10.2166/wpt.2019.034
  • Hannachi, Y., & Hafidh, A. (2020). Biosorption potential of Sargassum muticum algal biomass for methylene blue and lead removal from aqueous medium. International Journal of Environmental Science and Technology, 17, 3875–3890. DOI: 10.1007/s13762-020-02742-9
  • Hasan, I., Khan, R.A., Alharbi, W., Alharbi, K.H., Khanjer, M.A., & Alslame, A. (2020). Synthesis, characterization and photo-catalytic activity of guar-gum-g-alginate@ silver bionanocomposite material. RSC Advances, 10 (13), 7898-7911. DOI: 10.1039/D0RA00163E
  • Jafari, H., Mahdavinia, G.R., Kazemi, B., Javanshir, S., & Alinavaz, S. (2020). Basic dyes removal by adsorption process using magnetic Fucus vesiculosus (brown algae). Journal of Water and Environmental Nanotechnology, 5(3), 256-269. DOI: 10.22090/JWENT.2020.03.006
  • Jerold, M., & Sivasubramanian, V. (2016). Biosorption of malachite green from aqueous solution using brown marine macro algae Sargassum swartzii. Desalination and Water Treatment, 1-13. DOI: 10.1080/19443994.2016.1156582
  • Joshiba, G.J., Kumar, P.S., Govarthanan, M., Ngueagni, P.T., Abilarasu, A., & Carolin, C.F. (2021). Investigation of magnetic silica nanocomposite immobilized Pseudomonas fluorescens as a biosorbent for the effective sequestration of Rhodamine B from aqueous systems. Environmental Pollution, 269, 116173. DOI: 10.1016/j.envpol.2020.116173
  • Karthikeyan, S., Balasubramanian, R., & Iyer, C.S. (2007). Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions. Bioresource Technology, 98 (2): 452-455. DOI: 10.1016/j.biortech.2006.01.010
  • Koyuncu, H., & Kul, A.R. (2020). Removal of methylene blue dye from aqueous solution by nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent. Applied Water Science, 10 (2), 1-14. DOI: 10.1007/s13201-020-1156-9
  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society 38: 2221–2295.
  • Lebron, Y.A.R., Moreira, V.R., & de Souza Santos, L.V. (2021). Biosorption of methylene blue and eriochrome black T onto the brown macroalgae Fucus vesiculosus: equilibrium, kinetics, thermodynamics and optimization. Environmental Technology, 42 (2), 279-297. DOI: 10.1080/09593330.2019.1626914
  • Li, Y.M., Miao, X., Wei, Z.G., Cui, J., Li, S.Y., Han, R.M., Zhang, Y., & Wei, W. (2016). Iron-tannic acid nanocomplexes: facile synthesis and application for removal of methylene blue from aqueous solution. Digest Journal of Nanomaterials and Biostructures. 11 (4): 1045-1061.
  • Lodeiro, P., Barriada, J.L., Herrero, R., & De Vicente, M.S. (2006). The marine macroalga Cystoseira baccata as biosorbent for cadmium (II) and lead (II) removal: kinetic and equilibrium studies. Environmental Pollution, 142 (2), 264-273.
  • Lv, X.M., Yang, X.L., Xie, X.Y., Yang, Z.Y., Hu, K., Wu, Y.J., Jiang, Y., Liu, T., Fang, W., & Huang, X.Y. (2018). Comparative transcriptome analysis of Anguilla japonica livers following exposure to methylene blue. Aquaculture Research, 49(3), 1232-1241. DOI: 10.1111/are.13576
  • Lyra, E.S., Moreira, K.A., Porto, T.S., Carneiro da Cunha, M.N., Paz Júnior, F.B., Neto, B.B., Lima-Filho, J.L., Cavalcanti, A.Q., Converti, A., & Porto, A.L.P. (2009). Decolorization of synthetic dyes by basidiomycetes isolated from woods of the Atlantic Forest (PE), Brazil. World Journal of Microbiology and Biotechnology, 25 (8), 1499-1504. DOI: 10.1007/s11274-009-0034-2
  • Mahajan, P., & Kaushal, J. (2020). Phytoremediation of azo dye methyl red by macroalgae Chara vulgaris L.: kinetic and equilibrium studies. Environmental Science and Pollution Research. 27, 26406–26418. DOI: 10.1007/s11356-020-08977-w
  • Mahini, R., Esmaeili, H., & Foroutan, R. (2018). Adsorption of methyl violet from aqueous solution using brown algae Padina sanctae-crucis. Turkish Journal of Biochemistry, 43 (6), 623-631. DOI: 10.1515/tjb-2017-0333
  • Majhi, D. & Patra, B.N. (2020). Polyaniline and sodium alginate nanocomposite: a pH-responsive adsorbent for the removal of organic dyes from water. RSC Advances, 10 (71), 43904-43914. DOI: 10.1039/D0RA08125F
  • Marzbali, M.H., Mir, A.A., Pazoki, M., Pourjamshidian, R., & Tabeshnia, M. (2017). Removal of direct yellow 12 from aqueous solution by adsorption onto Spirulina algae as a high-efficiency adsorbent. Journal of Environmental Chemical Engineering, 5 (2), 1946-1956. DOI: 10.1016/j.jece.2017.03.018
  • Melo, B.C., Paulino, F.A.A., Cardoso, V.A., Pereira, A.G.B., Fajardo, A.R., & Rodrigues, F.H.A. (2018). Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly (acrylic acid) hydrogel. Carbohydrate Polymers, 181: 358-67. DOI: 10.1016/j.carbpol.2017.10.079
  • Mohammed, Y.M.M., & Mabrouk, M.E.M. (2020). Optimization of methylene blue degradation by Aspergillus terreus YESM 3 using response surface methodology. Water Science & Technology, 82 (10): 2007-2018. DOI: 10.2166/wst.2020.476
  • Nasoudari, E., Ameri, M., Shams, M., Ghavami, V., & Bonyadi, Z. (2020). The biosorption of Alizarin Red S by Spirulina platensis; process modelling, optimisation, kinetic and isotherm studies. International Journal of Environmental Analytical Chemistry. DOI: 10.1080/03067319.2020.1862814
  • Naushad, M., Khan, A.M., Alothman Z.A., Khan, M.R., & Kumar, M. (2015). Adsorption of methylene blue on chemically modified pine nut shells in single and binary systems: isotherms, kinetics, and thermodynamic studies. Desalination and Water Treatment, 57 (34), 15848-15861. DOI: 10.1080/19443994.2015.1074121
  • Omar, H., El-Gendy, A., & Al-Ahmary, K. (2018). Bioremoval of toxic dye by using different marine macroalgae. Turkish Journal of Botany, 42 (1), 15-27. DOI: 10.3906/bot-1703-4
  • Priyadarshini, E., Priyadarshini, S.S., & Pradhan, N. (2019). Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Applied Microbiology and Biotechnology, 103 (8), 3297-3316. DOI: 10.1007/s00253-019-09685-3
  • Radoor, S., Karayil, J., Parameswaranpillai, J., & Siengchin, S. (2020). Adsorption of methylene blue dye from aqueous solution by a novel PVA/CMC/halloysite nanoclay bio composite: Characterization, kinetics, isotherm and antibacterial properties. Journal of Environmental Health Science and Engineering. 18 (2), 1311-27. DOI: 10.1007/s40201-020-00549-x
  • Radwan, E.K., Abdel-Aty, A.M., El-Wakeel, S.T., & Abdel Ghafar, H.H. (2020). Bioremediation of potentially toxic metal and reactive dye-contaminated water by pristine and modified Chlorella vulgaris. Environmental Science and Pollution Research, 27, 21777–21789. DOI: 10.1007/s11356-020-08550-5
  • Renita, A.A., Vardhan, K.H., Kumar, P.S., Ngueagni, P.T., Abilarasu, A., Nath, S., Kumari, P., & Saravanan, R. (2021). Effective removal of malachite green dye from aqueous solution in hybrid system utilizing agricultural waste as particle electrodes. Chemosphere, 273, 129634. DOI: 10.1016/j.chemosphere.2021.129634
  • Shahryari, Z., Goharrizi, A.S., & Azadi, M. (2010). Experimental study of methylene blue adsorption from aqueous solutions onto carbon nano tubes. International Journal of Water Resources and Environmental Engineering, 2 (2), 016-028.
  • Shih, M.C. (2012). Kinetics of the batch adsorption of methylene blue from aqueous solutions onto rice husk: effect of acid-modified process and dye concentration. Desalination and Water Treatment, 37 (1-3), 200-214. DOI: 10.1080/19443994.2012.661273
  • Silva, F., Nascimento, L., Brito, M., da Silva, K., Paschoal, W., & Fujiyama, R. (2019). Biosorption of methylene blue dye using natural biosorbents made from weeds. Materials (Basel), 12 (15), 2486. DOI: 10.3390/ma12152486
  • Soltani, R.D.C., Khorramabadi, G.S., Khataee, A.R., & Jorfi, S. (2014). Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 45 (3):973-980. DOI: 10.1016/j.jtice.2013.09.014
  • Soto-Ramirez, R., Lobos, M.G., Cordova, O., Poirrier, P., & Chamy, R. (2021). Effect of growth conditions on cell wall composition and cadmium adsorption in Chlorella vulgaris: A new approach to biosorption research. Journal of Hazardous Materials, 411, 125059. DOI: 10.1016/j.jhazmat.2021.125059
  • Sun, J., Dai, X., Wang, Q., van Loosdrecht, M.C.M., & Ni, B.J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21-37. DOI: 10.1016/j.watres.2018.12.050
  • Tumin, N.D., Chuah, A.L., Zawani, Z., & Rashid, S.A. (2008). Adsorption of copper from aqueous solution by elais guineensis kernel activated carbon. Journal of Engineering Science and Technology, 3 (2): 180-189.
  • Tural, B., Ertaş, E., Enez, B., Agüloğlu Fincan, S., & Tural, S. (2017). Preparation and characterization of a novel magnetic biosorbent functionalized with biomass of Bacillus subtilis: Kinetic and isotherm studies of biosorption processes in the removal of Methylene Blue. Journal of Environmental Chemical Engineering, 5 (5):4795-4802. DOI: 10.1016/j.jece.2017.09.019
  • Üçüncü Tunca, E., Terzioğlu, K., & Türe, H. (2017). The effects of alginate microspheres on phytoremediation and growth of Lemna minor in the presence of Cd. Chemistry and Ecology, 33 (7):652-668. DOI: 10.1080/02757540.2017.1337102
  • Venkataraghavan, R., Thiruchelvi, R., & Sharmila, D. (2020). Statistical optimization of textile dye effluent adsorption by Gracilaria edulis using Plackett-Burman design and response surface methodology. Heliyon 6 (10): e05219. DOI: 10.1016/j.heliyon.2020.e05219
  • Vijayaraghavan, K., Premkumar, Y., & Jegan, J. (2016). Malachite green and crystal violet biosorption onto coco-peat: characterization and removal studies. Desalination and Water Treatment, 57 (14): 6423-6431. DOI: 10.1080/19443994.2015.1011709
  • Vu, H.C., Dwivedi, A.D., Le, T.T., Seo, S.H., Kim, E.J., & Chang, Y.S. (2017). Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr(VI) and As(V) from aqueous solutions: Role of crosslinking metal cations in pH control. Chemical Engineering Journal, 307, 220-229. DOI: 10.1016/j.cej.2016.08.058
  • Weber, W.J. (1972). Physicochemical Processes: For Water Quality Control, Wiley Interscience, NY.
  • Xia, M., Zheng, X., Du, M., Wang, Y., Ding, A., & Dou, J. (2018). The adsorption of Cs(+) from wastewater using lithium-modified montmorillonite caged in calcium alginate beads. Chemosphere, 203, 271-280. DOI: 10.1016/j.chemosphere.2018.03.129
  • Xu, T., Wang, X., Huang, Y., Lai, K., & Fan, Y. (2019). Rapid detection of trace methylene blue and malachite green in four fish tissues by ultra-sensitive surface-enhanced Raman spectroscopy coated with gold nanorods. Food Control, 106, 106720. DOI: 10.1016/j.foodcont.2019.106720
  • Xu, Y.J., Tian, X.H., Zhang, X.Z., Gong, X.H., Liu, H.H., Zhang, H.J., Huang, H., & Zhang, L.M. (2012). Simultaneous determination of malachite green, crystal violet, methylene blue and the metabolite residues in aquatic products by ultra-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Journal of Chromatographic Science, 50 (7): 591-597. DOI: 10.1093/chromsci/bms054
  • Zhang, S., Wang, Z., Zhang, Y., Pan, H., & Tao, L. (2016). Adsorption of methylene blue on organosolv lignin from rice straw. Procedia Environmental Sciences, 31, 3-11. DOI: 10.1016/j.proenv.2016.02.001
  • Zhao, M., & Liu, P. (2008). Adsorption behavior of methylene blue on halloysite nanotubes. Microporous and Mesoporous Materials, 112 (1-3), 419-424. DOI: 10.1016/j.watres.2009.10.042
Toplam 70 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Esra Ucuncu 0000-0002-9024-8477

Pınar Akdoğan Şirin 0000-0001-8518-0044

Hasan Türe 0000-0003-4883-0751

Yayımlanma Tarihi 15 Aralık 2022
Gönderilme Tarihi 28 Haziran 2022
Yayımlandığı Sayı Yıl 2022Cilt: 39 Sayı: 4

Kaynak Göster

APA Ucuncu, E., Akdoğan Şirin, P., & Türe, H. (2022). Prediction models of dye adsorption by Treptacantha barbata. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 300-310. https://doi.org/10.12714/egejfas.39.4.05