Araştırma Makalesi
BibTex RIS Kaynak Göster

Güneydoğu Karadeniz’de dağılım gösteren kahküllü horozbina balığı Parablennius tentacularis (Brünnich, 1768)’de yaş tahmini ve en uygun büyüme modelinin seçimi

Yıl 2021, Cilt: 38 Sayı: 2, 229 - 236, 15.06.2021
https://doi.org/10.12714/egejfas.38.2.13

Öz



Bu çalışmada kapsamında, Güneydoğu Karadeniz kıyıları boyunca dağılım gösteren kahküllü horozbina balığı (Parablennius tentacularis (Brünnich, 1768)) Mayıs 2010-Mart 2012 tarihleri arasında ticari balıkçı teknelerinden ve deniz saha araştırmalarından esnasında dip trolü ile toplamda 522 birey olarak yakalanmıştır. Örneklemin boy dağılım aralığı 4,8-10,8 cm arasında değişmektedir. Eşeylerin boy (K-S test, Z=3,729, P=0,000) ve ağırlık frekans dağılımları (K-S test, Z=3,605, P=0,000) arasındaki fark istatistiksel olarak önemli bulunmuştur. Boy-ağırlık ilişki modeli erkek bireylerde W= 0,009L3,034 ile izometrik ve dişi bireylerde W= 0,006L3,226 ile pozitif allometrik olarak tanımlanmıştır. Otolit ve omur örnekleri yaşın belirlenmesinde kullanılabilecek en doğru sert yapının seçimi için karşılaştırılmış ve otolit en uygun sert yapı olarak seçilmiştir. Mevcut veri seti, en iyi büyüme modelinin tahmini için kullanılmıştır. Bu amaçla, yaygın olarak kullanılan von Bertalanffy, Gompertz, Lojistik büyüme fonksiyonları ile büyüme parametreleri tahmin edilmiştir. Bu fonksiyonlar aracılığıyla kurulan büyüme modellerinden en doğrusunu seçmek için Akaike’nin Bilgi Kriteri (AIC), Lmak./L∞ oranı ve R2 ölçütleri kullanılmıştır. Çoklu model çıkarımı ile model ortalamalı parametreler hesaplanmıştır: L’∞=15,091 cm, S.E.(L’∞)=3,966, K’=0,232 yıl-1, S.E.(K’)= 0,122. 


Destekleyen Kurum

T.C. TARIM VE ORMAN BAKANLIĞI Trabzon SU ÜRÜNLERİ MERKEZ ARAŞTIRMA ENSTİTÜSÜ MÜDÜRLÜĞÜ

Proje Numarası

TAGEM/HAYSÜD/2010/09/01/04

Teşekkür

Bu çalışma, “Karadeniz’deki Trol Balıkçılığının İzlenmesi” (TAGEM/HAYSÜD/2010/09/01/04) projesi kapsamında Ondokuz Mayıs Üniversitesi (OMU) ve Trabzon Su Ürünleri Merkez Araştırma Enstitüsü (SUMAE) işbirliği ile gerçekleştirilmiştir.

Kaynakça

  • Ahmed, Z. F., Hossain, M. Y. & Ohtomi, J. (2012). Modelling the growth of silver hatchet chela Chela cachius (Cyprinidae) from the Old Brahmaputra River in Bangladesh using multiple functions. Zoological Studies, 51(3), 336-344.
  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In 2nd international symposium on information theory (B. N. Petrov, and F. Csaki, eds.), p. 267–281. Akademiai Kiado, Budapest.
  • Akaike, H. (1981). Likelihood of a model and information criteria. Journal of Econometrics, 16(1), 3-14.DOI: 10.1016/0304-4076(81)90071-3
  • Alp, A., Kara, C., Üç kardeş, F., Carol, J. & Garcı´a-Berthou, E. (2011). Age and growth of the European catfish (Silurus glanis) in a Turkish Reservoir and comparison with introduced populations. Reviews in Fish Biology and Fisheries, 21,283–294. DOI: 10.1007/s11160-010-9168-4
  • Azevedo, J. M. N. & Homem, N. (2002). Age and growth, reproduction and diet of the red blenny Parablennius ruber (Blenniidae). Cybium, 26(2), 129-133.
  • Bagenal, T. B. & Tesch, F. W. (1978). Age and Growth. in: Methods for Assessment of Fish Production in Freshwaters, (Bagenal, T.B., Ed), Blackwell Science Publication, pp. 101-136, Oxford, UK.
  • Bat, L., Erdem, Y., Ustaoğlu, S., Yardım, Ö. & Satılmış, H.H. (2005). Türkiye’nin Orta Karadeniz Kıyısı Balıkları Üzerine Bir Araştırma. Journal of the Black Sea / Mediterranean Environment, 11, 281 –296.
  • Bayhan, B., Sever, T.M. & Kaya, M. (2008). Diversity of fish fauna in Gediz Estuary Lagoons (Izmir Bay/Aegean Sea). Jornal of Animal and Veterinary Advances, 7(9),1146-1150, ISSN: 1680-5593.
  • Burnham, K.P. & Anderson, D.R. (2002). Model selection and multimodel inference: A practical information-theoretic approach. Springer, New York, USA, 488 p.
  • Burnham, K.P., Anderson, D.R. & Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 65(1),23-35. DOI: 10.1007/s00265-010-1029-6
  • Cameron, A. C. & Frank, A.G. (1995). An R-squared measure of goodness of fit for some common nonlinear regression models, Windmeijer.
  • Cerdenares-Ladro`n De Guevara, G., Morales-Bojórquez, E. & Rodríguez-Sánchez, R. (2011). Age and growth of the sailfish Istiophorus platypterus (Istiophoridae) in the Gulf of Tehuantepec, Mexico. Marine Biology Research, 7(5),488-499. DOI: 10.1080/17451000.2010.528201
  • D’Alberto, B.M., Chin, A., Smart, J.J., Baje, L. & White, W.T. (2017). Age, growth and maturity of oceanic whitetip shark (Carcharhinus longimanus) from Papua New Guinea. Marine and Freshwater Research, 68(6), 1118-1129. DOI: 10.1071/MF16165
  • Deudero, S., Morey, G., Frau, A., Moranta, J. & Moreno, I. (2008).Temporal trends of littoral fishes at deep Posidonia oceanica seagrass meadows in a temperate coastal zone. Journal of Marine Systems, 70,182–195. DOI: 10.1016/j.jmarsys.2007.05.001
  • Giacomello, E. & Rasotto, M.B. (2005). Sexual dimorphism and male mating success in the tentacled blenny, Parablennius tentacularis (Teleostei: Blenniidae). Marine Biology, 147, 1221–1228. DOI: 10.1007/s00227-005-0023-4
  • Giacomello, E., Marchini, D. & Rasotto, M.B. (2006). A male sexually dimorphic trait provides antimicrobials to eggs in blenny fish. Biology Letters, 2,330–333. DOI: 10.1098/rsbl.2006.0492
  • Giacomello, E., Neat, F. C. & Rasotto, M. B. (2008). Mechanisms enabling sperm economy in blenniid fishes. Behavioral Ecology and Sociobiology, 62,671–680. DOI: 10.1007/s00265-007-0491-2
  • Johnson, J. B. & Omland, K. S. (2004). Model selection in ecology and Evolution. TRENDS in Ecology and Evolution, 19,2. DOI: 10.1016/j.tree.2003.10.013
  • Kara, A., Sağlam, C., & Acarlı, D. (2016). Length-weight relationships of fish captured by wire pots in Izmir Bay (eastern Aegean Sea, Turkey). In 2nd International Congress on Applied Ichthyology & Aquatic Environment (pp. 10-12).
  • Katsanevakis, S. (2006). Modelling fish growth: model selection, multi-model inference and model selection uncertainty. Fisheries Research, 81, 229-235. DOI: 10.1016/j.fishres.2006.07.002
  • Katsanevakis, S., Thessalou-Legaki, M., Karlou-Riga, C., Lefkaditou, E., Dimitriou, E., & Verriopoulos, G. (2007). Information-theory approach to allometric growth of marine organisms. Marine Biology, 151(3), 949-959. DOI: 10.1007/s00227-006-0529-4
  • Katsanevakis, S. & Maravelias, C.D. (2008). Modelling fish growth: multi-model inference as a better alternative to a priori using von Bertalanffy equation. Fish and Fisheries, 9, 178-187. DOI: 10.1111/j.1467-2979.2008.00279.x
  • Keskin, Ç. & Gaygusuz, Ö. (2010). Length-weight relationships of fishes in shallow waters of Erdek Bay (Sea of Marmara, Turkey). IUFS Journal of Biology, 69(2), 87-94.
  • Kullback, S. & Leibler, R.A. (1951). On information and sufficiency. The annals of mathematical statistics, 22, 79–86. DOI: 10.1214/aoms/1177729694
  • Lin, Y. J. & Tzeng,W. N. (2009). Modelling the growth of Japanese eel Anguilla japonica in the lower reach of the Kao-Ping River, southern Taiwan: an information theory approach. Journal of Fish Biology,75, 100–112. DOI: 10.1111/j.1095-8649.2009.02268.x
  • Mater, S., Kaya, M. & Bilecenoğlu, M. (2002). Türkiye deniz balıkları atlası. Ege Üniversitesi Basımevi. Ege Üniversitesi, Su Ürünleri Fakültesi yayınları, no.68,169 s.
  • Mercier, L., Panfili, J., Paillon, C., N’diaye, A., Mouillot, D. & Darnaude, A.M. (2011). Otolith reading and multi-model inference for improved estimation of age and growth in the gilthead seabream Sparus aurata (L.). Estuarine, Coastal and Shelf Science, 92, 534-545. DOI: 10.1016/j.ecss.2011.02.001
  • Ohnishi, S., Yamakawa, T., Okamura, H. & Akamine, T. (2012). A note on the von Bertalanffy growth function concerning the allocation of surplus energy to reproduction. Fishery Bulletin, 110,223–229.
  • Oliveira, R.F., Almada, V.C., Forsgren, E. & Goncalves, E.J. (1999). Temporal variation in male traits, nest aggregations and mating success in the peacock blenny, Salaria pavo. Journal of Fish Biology, 54,499–512. DOI: 10.1111/j.1095-8649.1999.tb00631.x
  • Oliveira, R.F., Canario, A.V.M. & Grober, M.S. (2001). Male sexual polymorphism, alternative reproductive tactics, and androgens in combtooth blennies (Pisces: Blenniidae). Hormones and Behavior, 40,266–275. DOI: 10.1006/hbeh.2001.1683
  • Pauly, D. & Munro J.L. (1984). Once more on growth comparison in fish and invertebrates, ICLARM. Fishbyte, 2, 21.
  • Pizzolon, M., Giacomello, E., Marri, L., Marchini, D., Pascoli, F., Mazzoldi, C. & Rasotto, M. B. (2010). When fathers make the difference: efficacy of male sexually selected antimicrobial glands in enhancing fish hatching success. Functional Ecology, 24, 141–148. DOI: 10.1111/j.1365 2435.2009.01608.x
  • Richtarski, U. & Patzner, R. A. (2000). Comparative morphology of male reproductive systems in Mediterranean blennies (Blenniidae). Journal of Fish Biology, 56, 22–36. DOI: 10.1111/j.1095-8649.2000.tb02084.x
  • Santos, R.S., Nash, R.D.M. & Hawkins, S.J. (1995). Age, growth and sex ratio of the Azorean rock-pool blenny, Parablennius sanguinolentus parvicornis. Journal of the Marine Biological Association of the United Kingdom, 75, 751-754. DOI: 10.1017/S0025315400039175
  • Vinyoles, D. & De Sostoa, A. (2007). Life-history traits of the endangered river blenny Salaria fluviatilis (Asso) and their implications for conservation. Journal of Fish Biology, 70, 1088–1108. DOI: 10.1111/j.1095-8649.2007.01371.x
  • Von Bertalanffy L. (1938). A quantitative theory of organic growth (inquiries on growth lows. II). Human Biology, 10, 181–213.
  • Wang, X.A. & Ma, A. (2016). Comparison of four nonlinear growth models for effective exploration of growth characteristics of turbot Scophthalmus maximus fish strain. African Journal of Biotechnology, 15(40), 2251-2258. DOI: 10.5897/AJB2016.15490
  • Yankova, M., Raykov, V., Ivanova, P., Mgeladze, M., Diasamidze, R., Agapov, S., Grinchenko, M., Öztürk, B., Oral, M., Bat, L., Düzgüneş, E., Shlyakhov, V., Boltachev, A. & Karpova, E. (2010). Black Sea Fish Check List. Black Sea Commission Publication, 58p.
  • Yıldız, T., Zengin, M., Uzer, U., Akpınar, I. O., & Karakulak, F. S. (2018). Length-weight relationships for 24 fish species collected from the western Black Sea (Turkey). Cahiers de Biologie Marine, 59, 159-165.
  • Zhu, L., Li, L. & Liang, Z. (2009). Comparison of six statistical approaches in the selection of appropriate fish growth models. Chinese Journal of Oceanology and Limnology, 27(3), 45. DOI: 10.1007/s00343-009-9236-6

Age estimation and the best model selection of the tentacled blenny Parablennius tentacularis (Brünnich, 1768) in the southeastern Black Sea

Yıl 2021, Cilt: 38 Sayı: 2, 229 - 236, 15.06.2021
https://doi.org/10.12714/egejfas.38.2.13

Öz



By the study's coverage, a total of 522 tentacled blennies (Parablennius tentacularis (Brünnich, 1768)), were caught by commercial fisheries and the bottom trawl operations in scientific field surveys between May 2010 and March 2012 from the southeastern Black Sea. The size distribution range of the sample varied between 4.8-10.8 cm. The difference between sex length (K-S test, Z=3.729, P=0.000) and weight frequency distributions (K-S test, Z=3.605, P=0.000) was found to be statistically significant. The length-weight relationship models were defined as isometric with W = 0.009L3.034 in male individuals and positive allometric with W = 0.006L3.226 in female individuals. Otolith and vertebra samples were compared for the selection of the most accurate hard structure that can be used to determine the age. Otolith was chosen as the most suitable hard structure. The current data set was used to predict the best growth model. For this purpose, the growth parameters were estimated with the widely used von Bertalanffy, Gompertz, Logistic growth functions. Akaike's Information Criterion (AIC), Lmak./L∞ ratio, and R2 criteria were used to select the most accurate growth models established through these functions. Model averaged parameters were calculated with multi-model inference (MMI): L'∞ = 15.091 cm, S.E. (L'∞) = 3.966, K'= 0.232 year-1, S.E. (K') = 0.122.  functions. Model averaged parameters were calculated with multi-model inference (MMI): L'∞ = 15.091 cm, S.E. (L'∞) = 3.966, K'= 0.232 year-1, S.E. (K') = 0.122.


 

Proje Numarası

TAGEM/HAYSÜD/2010/09/01/04

Kaynakça

  • Ahmed, Z. F., Hossain, M. Y. & Ohtomi, J. (2012). Modelling the growth of silver hatchet chela Chela cachius (Cyprinidae) from the Old Brahmaputra River in Bangladesh using multiple functions. Zoological Studies, 51(3), 336-344.
  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In 2nd international symposium on information theory (B. N. Petrov, and F. Csaki, eds.), p. 267–281. Akademiai Kiado, Budapest.
  • Akaike, H. (1981). Likelihood of a model and information criteria. Journal of Econometrics, 16(1), 3-14.DOI: 10.1016/0304-4076(81)90071-3
  • Alp, A., Kara, C., Üç kardeş, F., Carol, J. & Garcı´a-Berthou, E. (2011). Age and growth of the European catfish (Silurus glanis) in a Turkish Reservoir and comparison with introduced populations. Reviews in Fish Biology and Fisheries, 21,283–294. DOI: 10.1007/s11160-010-9168-4
  • Azevedo, J. M. N. & Homem, N. (2002). Age and growth, reproduction and diet of the red blenny Parablennius ruber (Blenniidae). Cybium, 26(2), 129-133.
  • Bagenal, T. B. & Tesch, F. W. (1978). Age and Growth. in: Methods for Assessment of Fish Production in Freshwaters, (Bagenal, T.B., Ed), Blackwell Science Publication, pp. 101-136, Oxford, UK.
  • Bat, L., Erdem, Y., Ustaoğlu, S., Yardım, Ö. & Satılmış, H.H. (2005). Türkiye’nin Orta Karadeniz Kıyısı Balıkları Üzerine Bir Araştırma. Journal of the Black Sea / Mediterranean Environment, 11, 281 –296.
  • Bayhan, B., Sever, T.M. & Kaya, M. (2008). Diversity of fish fauna in Gediz Estuary Lagoons (Izmir Bay/Aegean Sea). Jornal of Animal and Veterinary Advances, 7(9),1146-1150, ISSN: 1680-5593.
  • Burnham, K.P. & Anderson, D.R. (2002). Model selection and multimodel inference: A practical information-theoretic approach. Springer, New York, USA, 488 p.
  • Burnham, K.P., Anderson, D.R. & Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 65(1),23-35. DOI: 10.1007/s00265-010-1029-6
  • Cameron, A. C. & Frank, A.G. (1995). An R-squared measure of goodness of fit for some common nonlinear regression models, Windmeijer.
  • Cerdenares-Ladro`n De Guevara, G., Morales-Bojórquez, E. & Rodríguez-Sánchez, R. (2011). Age and growth of the sailfish Istiophorus platypterus (Istiophoridae) in the Gulf of Tehuantepec, Mexico. Marine Biology Research, 7(5),488-499. DOI: 10.1080/17451000.2010.528201
  • D’Alberto, B.M., Chin, A., Smart, J.J., Baje, L. & White, W.T. (2017). Age, growth and maturity of oceanic whitetip shark (Carcharhinus longimanus) from Papua New Guinea. Marine and Freshwater Research, 68(6), 1118-1129. DOI: 10.1071/MF16165
  • Deudero, S., Morey, G., Frau, A., Moranta, J. & Moreno, I. (2008).Temporal trends of littoral fishes at deep Posidonia oceanica seagrass meadows in a temperate coastal zone. Journal of Marine Systems, 70,182–195. DOI: 10.1016/j.jmarsys.2007.05.001
  • Giacomello, E. & Rasotto, M.B. (2005). Sexual dimorphism and male mating success in the tentacled blenny, Parablennius tentacularis (Teleostei: Blenniidae). Marine Biology, 147, 1221–1228. DOI: 10.1007/s00227-005-0023-4
  • Giacomello, E., Marchini, D. & Rasotto, M.B. (2006). A male sexually dimorphic trait provides antimicrobials to eggs in blenny fish. Biology Letters, 2,330–333. DOI: 10.1098/rsbl.2006.0492
  • Giacomello, E., Neat, F. C. & Rasotto, M. B. (2008). Mechanisms enabling sperm economy in blenniid fishes. Behavioral Ecology and Sociobiology, 62,671–680. DOI: 10.1007/s00265-007-0491-2
  • Johnson, J. B. & Omland, K. S. (2004). Model selection in ecology and Evolution. TRENDS in Ecology and Evolution, 19,2. DOI: 10.1016/j.tree.2003.10.013
  • Kara, A., Sağlam, C., & Acarlı, D. (2016). Length-weight relationships of fish captured by wire pots in Izmir Bay (eastern Aegean Sea, Turkey). In 2nd International Congress on Applied Ichthyology & Aquatic Environment (pp. 10-12).
  • Katsanevakis, S. (2006). Modelling fish growth: model selection, multi-model inference and model selection uncertainty. Fisheries Research, 81, 229-235. DOI: 10.1016/j.fishres.2006.07.002
  • Katsanevakis, S., Thessalou-Legaki, M., Karlou-Riga, C., Lefkaditou, E., Dimitriou, E., & Verriopoulos, G. (2007). Information-theory approach to allometric growth of marine organisms. Marine Biology, 151(3), 949-959. DOI: 10.1007/s00227-006-0529-4
  • Katsanevakis, S. & Maravelias, C.D. (2008). Modelling fish growth: multi-model inference as a better alternative to a priori using von Bertalanffy equation. Fish and Fisheries, 9, 178-187. DOI: 10.1111/j.1467-2979.2008.00279.x
  • Keskin, Ç. & Gaygusuz, Ö. (2010). Length-weight relationships of fishes in shallow waters of Erdek Bay (Sea of Marmara, Turkey). IUFS Journal of Biology, 69(2), 87-94.
  • Kullback, S. & Leibler, R.A. (1951). On information and sufficiency. The annals of mathematical statistics, 22, 79–86. DOI: 10.1214/aoms/1177729694
  • Lin, Y. J. & Tzeng,W. N. (2009). Modelling the growth of Japanese eel Anguilla japonica in the lower reach of the Kao-Ping River, southern Taiwan: an information theory approach. Journal of Fish Biology,75, 100–112. DOI: 10.1111/j.1095-8649.2009.02268.x
  • Mater, S., Kaya, M. & Bilecenoğlu, M. (2002). Türkiye deniz balıkları atlası. Ege Üniversitesi Basımevi. Ege Üniversitesi, Su Ürünleri Fakültesi yayınları, no.68,169 s.
  • Mercier, L., Panfili, J., Paillon, C., N’diaye, A., Mouillot, D. & Darnaude, A.M. (2011). Otolith reading and multi-model inference for improved estimation of age and growth in the gilthead seabream Sparus aurata (L.). Estuarine, Coastal and Shelf Science, 92, 534-545. DOI: 10.1016/j.ecss.2011.02.001
  • Ohnishi, S., Yamakawa, T., Okamura, H. & Akamine, T. (2012). A note on the von Bertalanffy growth function concerning the allocation of surplus energy to reproduction. Fishery Bulletin, 110,223–229.
  • Oliveira, R.F., Almada, V.C., Forsgren, E. & Goncalves, E.J. (1999). Temporal variation in male traits, nest aggregations and mating success in the peacock blenny, Salaria pavo. Journal of Fish Biology, 54,499–512. DOI: 10.1111/j.1095-8649.1999.tb00631.x
  • Oliveira, R.F., Canario, A.V.M. & Grober, M.S. (2001). Male sexual polymorphism, alternative reproductive tactics, and androgens in combtooth blennies (Pisces: Blenniidae). Hormones and Behavior, 40,266–275. DOI: 10.1006/hbeh.2001.1683
  • Pauly, D. & Munro J.L. (1984). Once more on growth comparison in fish and invertebrates, ICLARM. Fishbyte, 2, 21.
  • Pizzolon, M., Giacomello, E., Marri, L., Marchini, D., Pascoli, F., Mazzoldi, C. & Rasotto, M. B. (2010). When fathers make the difference: efficacy of male sexually selected antimicrobial glands in enhancing fish hatching success. Functional Ecology, 24, 141–148. DOI: 10.1111/j.1365 2435.2009.01608.x
  • Richtarski, U. & Patzner, R. A. (2000). Comparative morphology of male reproductive systems in Mediterranean blennies (Blenniidae). Journal of Fish Biology, 56, 22–36. DOI: 10.1111/j.1095-8649.2000.tb02084.x
  • Santos, R.S., Nash, R.D.M. & Hawkins, S.J. (1995). Age, growth and sex ratio of the Azorean rock-pool blenny, Parablennius sanguinolentus parvicornis. Journal of the Marine Biological Association of the United Kingdom, 75, 751-754. DOI: 10.1017/S0025315400039175
  • Vinyoles, D. & De Sostoa, A. (2007). Life-history traits of the endangered river blenny Salaria fluviatilis (Asso) and their implications for conservation. Journal of Fish Biology, 70, 1088–1108. DOI: 10.1111/j.1095-8649.2007.01371.x
  • Von Bertalanffy L. (1938). A quantitative theory of organic growth (inquiries on growth lows. II). Human Biology, 10, 181–213.
  • Wang, X.A. & Ma, A. (2016). Comparison of four nonlinear growth models for effective exploration of growth characteristics of turbot Scophthalmus maximus fish strain. African Journal of Biotechnology, 15(40), 2251-2258. DOI: 10.5897/AJB2016.15490
  • Yankova, M., Raykov, V., Ivanova, P., Mgeladze, M., Diasamidze, R., Agapov, S., Grinchenko, M., Öztürk, B., Oral, M., Bat, L., Düzgüneş, E., Shlyakhov, V., Boltachev, A. & Karpova, E. (2010). Black Sea Fish Check List. Black Sea Commission Publication, 58p.
  • Yıldız, T., Zengin, M., Uzer, U., Akpınar, I. O., & Karakulak, F. S. (2018). Length-weight relationships for 24 fish species collected from the western Black Sea (Turkey). Cahiers de Biologie Marine, 59, 159-165.
  • Zhu, L., Li, L. & Liang, Z. (2009). Comparison of six statistical approaches in the selection of appropriate fish growth models. Chinese Journal of Oceanology and Limnology, 27(3), 45. DOI: 10.1007/s00343-009-9236-6
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji , Hidrobiyoloji, Hayvan Bilimi
Bölüm Makaleler
Yazarlar

Ayşe Van 0000-0002-8100-4462

Aysun Gümüş 0000-0002-0217-6494

Melek Özpiçak 0000-0003-3506-4242

Serdar Süer 0000-0002-4254-4845

Proje Numarası TAGEM/HAYSÜD/2010/09/01/04
Yayımlanma Tarihi 15 Haziran 2021
Gönderilme Tarihi 21 Ekim 2020
Yayımlandığı Sayı Yıl 2021Cilt: 38 Sayı: 2

Kaynak Göster

APA Van, A., Gümüş, A., Özpiçak, M., Süer, S. (2021). Güneydoğu Karadeniz’de dağılım gösteren kahküllü horozbina balığı Parablennius tentacularis (Brünnich, 1768)’de yaş tahmini ve en uygun büyüme modelinin seçimi. Ege Journal of Fisheries and Aquatic Sciences, 38(2), 229-236. https://doi.org/10.12714/egejfas.38.2.13

Cited By