Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of mercury on some enzymes in the gill and muscle tissues of oreochromis niloticus

Yıl 2017, Cilt: 34 Sayı: 2, 133 - 137, 12.06.2017
https://doi.org/10.12714/egejfas.2017.34.2.03

Öz



The toxic effects
of the metals on the aquatic ecosystems can be found by measuring enzyme
activities of fish tissues. This study aimed to analyze the results of mercury
(Hg) exposure on the change of the asetylcolinestrase (AChE), glutation
peroxidase (GPx) and glutamic piruvate transaminase (GPT) activities in gills
and muscles of Oreochromis niloticus
(Linnaeus, 1758). The fish were exposed to 0.1 and 0.01 ppm Hg for periods of 7
and 21 days. The enzyme activities in the tissues were determined by the use of
ultraviolet spectroscopy. The AChE activity decreased while the GPx activity
increased in both muscle and gills as a result to exposure to Hg in
experimental group when compared to the control group. The GPT activity in
gills were found to increase in the first 7 days of exposure and decreased
after the exposure of 21 days. The data obtained revealed that AChE, GPx and
GPT activities in the gill and muscle tissues of Oreochromis niloticus were
observed to change as a result of the exposures of both low and high mercury
concentrations.



Kaynakça

  • Alves, L. M., Lemos, M.F.L., Correiaa, J.P.S., Costaa N.A.R. & Novais S.C. (2015). The potential of cholinesterases as tools for biomonitoring studies with sharks: Biochemical characterization in brain and muscle tissues of Prionace glauca. Journal of Experimental Marine Biology and Ecology, 465:49–55 doi: 10.1016/j.jembe.2015.01.006
  • Badiou, A. & Belzunces L.P. (2008). Is acetylcholinesterase a pertinent biomarker to detect exposure of pyrethroids? A study case with deltamethrin Chemico-Biological Interactions, 25:175(1-3):406-9. doi: 10.1016/j.cbi.2008.05.040
  • Berntssen, M.H.G, Aatland, A. & Handy, R.D. (2003). Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar). Aquatic Toxicology, 65:55-72. doi: /10.1016/S0166-445X(03)00104-8
  • Beutler, E. (1984). Red cell metabolism: A manual of biochemical methods, 2nd ed., New York, Grune and Stratton.
  • Bensefa-Colas, L., Andujar, P. & Descatha. A. (2011). Mercury poisoning Revue de Medecine Interne, Elsevier Masson, 32(7):416-24.
  • Brancoa, V., Canariob, J., Luc, J., H, A., Carvalho, C. (2012) Mercury and selenium interaction in vivo: Effects on thioredoxin reductase and glutathione peroxidase. Free Radical Biology & Medicine 52: 781–793 Chemosphere 87: 1215– 1221
  • Liao, C.Y., Fu, J.J., Shi, J.B., Zhou, Q.F., Yuan, C.G., Jiang G.B., (2006). Methylmercury Accumulation, Histopathology Effects, and Cholinesterase Activity Alterations in Medaka (Oryzias Latipes) Following Sublethal Exposure to Methylmercury Chloride. 22(2): 225–233. doi:10.1016/j.etap.2006.03.009
  • Costa, J.R.M., Mela, M., Assis, H. C. S., Pelletier, E., Randi, M. A. F., & Oliveira-Ribeiro, C.A. (2007). Enzymatic inhibition and morphological changes in Hoplias malabaricusfrom dietary exposure to lead (II) or methylmercury. Ecotoxicology and Environmental Safety, 67: 82–88.
  • De La Torre, F., Salıbıan, A., & Ferrarı, L., (1999). Enzyme Activities as Biomarkers of Freshwater Pollution: Responses of Fish Branchial (Na +K) ATPase and Liver Transaminases. Environmental Toxicology, doi: 14: 313–319. 10.1002/(SICI)1522- 7278(199907)14:3<313::AID-TOX4>3.0.CO;2-J
  • De La Torre, F., Salibian, A., & Ferrarı, L, (2000). Biomarkers Assessment in Juvenile Cyprinus carpio Exposed to Waterborne Cadmium. Environmental Pollution, 109:277-282.
  • Ellman, G.L., Courtney, K.D., Andres, V. & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetycholinesterase activity. Biochemical Pharmacology, 7: 88- 95.
  • Elumalai, M., Antunes, C. & Guilhermino, L., (2007). Enzymatic biomarkers in the crab Carcinus maenas from the Minho River estuary (NW Portugal) exposed to zinc and mercury. Chemosphere 66: 1249–1255. doi: 10.1016/j.chemosphere.2006.07.030
  • Frasco, M.F., Fournier, D., Carvalho, F. & Guilhermino, L. (2008). Does mercury interact with the inhibitory effect of dichlorvos on Palaemon serratus (Crustacea: Decapoda) cholinesterase? Science of The Total Environment, 404: 88–93. doi: 10.1016/j.scitotenv.2008.06.012
  • Harayashiki, C.A., Reichelt-Brushett, AJ., Liu, L. & Butcher, P. (2016). Behavioural and biochemical alterations in Penaeus monodon post-larvae diet-exposed to inorganic mercury. Chemosphere, doi: 164:241-247. 10.1016/j.Chemosphere.2016.08.085
  • Hasspieler, B.M., Behar, I.V. & DiGiulio, R.T. (1994) Glutathionedependent defense in channel catfish (Ictalurus punctatus) and brown bullhead (Ameriurus nebulosus). Ecotoxicology and Environmental Safety, 28:82–90.
  • Hussain, S., Atkinson, A., Thompson, S.J. & Khan, AT. (1999). Accumulation of mercury and it is effect on antioxidant enzymes in brain, liver and kidneys of mice. Journal of Environmental Science and Health B, 34:645-660. doi:10.1080/03601239909373219
  • Karthikeyan, S., Palaniappan, P.L.R.M. and Sabhanayakan, S. (2007) Influence of pH and
  • water hardness upon Nickel accumulation in edible fish Cirrhinus mrigala. Journal of Environmental Biology, 28:484-492.
  • Kumaresan, T & Karuppasamy, R. (2011). Impact of industrial effluents on some biomarker enzymes in selected tissues of Arius maculates from Uppanar Estuary, Cuddalore Dıstrıct, Tamılnadu. Asian Journal of Science and Technology Vol. 1, Issue 11, 070-075
  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193:266-275.
  • Mazrouh, M.M. (2016). Effects of Some Heavy Metals in Different Organs and Some Hepatic Enzymes for European eel (Anguilla anguilla) at Lake Edku. International Journal of Science and Research, 5(2):1872-1876.
  • Mary, S.C.H, S.Silvan & Elumalai, EK. (2014). Toxicology study on lead nitrate induced fresh water fish Cirrhinus mrigala (Hamilton). European Journal of Academic Essays 1(7): 5-8
  • Mary, S.C.H, Bhuvaneswari, D & Anandan, R. (2015). Biochemical and histopathological studies on lead nitrate induced toxicity in fresh water fish grass carp (Ctenopharyngodon idella). European Journal of Experimental Biology, 5(11):24-30. Pelagia Research Library.
  • Mekkawy, I.A.A., Mahmoud, U.M., Wassif, E.T. & M. Naguib, (2011). Effects of cadmium on some haematological and biochemical characteristics of Oreochromis niloticus (Linnaeus, 1758) dietary supplemented with tomato paste and vitamin E. Fish Physiology and Biochemistry, 37(1): 71-84. doi:10.1007/s10695-010- 9418-3
  • Monteiro D.A, Rantin F.T. & Kalinin A.L. (2010). Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxa, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology, 19:105–123 doi: 10.1007/s10695-010-9418-3
  • Reitman, S. & Frankel, S., (1957). A colorimetrik method for the determination of serum glutamic oxalacetic and glutamic pyruvik transaminases. American Journal of Clinical Pathology, 28: 56-63.
  • Romeo, M., Gharbi-Bouraoui, S., Gnassia-Barelli, M., Dellali, M. & Aissa, P., (2006). Responses of Hexaplex trunculus to selected pollutants. Science of The Total Environment, 359:135–144.
  • Saravanan, M., Kumar, K.P. & Ramesh, M. (2011). Haematological and biochemical responses of freshwater teleost fish Cyprinus carpio (Actinopterygii: Cypriniformes) during acute and chronic sublethal exposure to lindane. Pesticide Biochemistry and Physiology, 100(3): 206–211. doi: 10.1016/j.pestbp.2011.04.002
  • Sevcikova, M., Modra, H., Slaninova, A. & Svobodova, Z. (2011) Metals as a cause of oxidative stress in fish: a review. Veterinary Medicine 56(11):537–546
  • Tiwari, R., Wast, N., Siddiqui, A., Gaherwal S. & Prakash, M.M. (2014). Mercury and Selenium Induced Changes in Kidney Biochemistry of Clarias batrachus. European Journal of Applied Sciences 6 (4): 64-71. doi: 10.5829/idosi.ejas.2014.6.4.9160
  • Varo, I., Nunes, B., Amat, F., Torreblanca, A., Guilhermino, L. & Navarro, J.C., (2007). Effect of sublethal concentrations of copper sulphate on seabream Sparus aurata fingerlings. Aquatic Living Resources, 20:263–270. doi:10.1051/alr:2007039 Varo, I., Pastor, A., Ramo, J. & Torreblanca, A. (2012). Long-term effect of temperature on bioaccumulation of dietary metals and metallothionein induction in Sparus aurata. Chemosphere 87(11):1215-21. doi: 10.1016/j.chemosphere.2012.01.020
  • Vieira, L.R., Gravato, C., Soares, A.M.V.M, Morgado, F. & Guilhermino L. (2009). Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behavior. Chemosphere, doi: 76:1416–1427. 10.1016/j.chemosphere.2009.06.005
  • Yüzereroğlu T.A. (2011). Oreochromıs nılotıcus’da Bakır, Kadmiyum Ve Bakırkadmiyum Etkileşiminde Metallerin Doku Ve Organlarda Birikimi, Eliminasyonu Ve Antioksidant Enzim Aktivitelerine Etkileri. Çukurova Üniversitesi Fen Bilimleri Enstitüsü.
  • Zheng, J.L., Zeng, L., Xu, M.Y., Shen, B.& Wu, C.W. (2016). Different effects of low- and high-dose waterborne zinc on Zn accumulation, ROS levels, oxidative damage and antioxidant responses in the liver of large yellow croaker Pseudosciaena crocea. Journal of Physiology and Biochemistry, doi:10.1007/s10695-016-0275-6
  • Zikic, R.V., A.S. Stajn, S.Z. Pavlovic, B.I. Ognjanovic & Z.S. Saicic, (2001). Activities of superoxide dismutase and catalase in erythrocytes and plasma transaminases of goldfish (Carassius auratus gibelio Bloch.) exposed to cadmium. Physiological Research, 50(1): 105-111

Oreochromis niloticus'un solungaç ve kas dokularında civanın bazı enzimlere etkisi

Yıl 2017, Cilt: 34 Sayı: 2, 133 - 137, 12.06.2017
https://doi.org/10.12714/egejfas.2017.34.2.03

Öz



Akuatik ekosistemler üzerine metallerin toksik etkileri
balıklarda enzim aktivitelerinin ölçülmesiyle değerlendirilebilmektedir. Bu
çalışmada civanın (Hg) Oreochromis
niloticus
(Linnaeus, 1758)'un solungaç ve kas dokularında asetilkolinestraz
(AChE), glutatyon peroksidaz (GPx) ve glutamik piruvat transaminaz (GPT)
aktivitelerine etkisi incelenmiştir. Balıklar 7 ve 21 günlük sürelerle 0,1 ve
0,01 ppm Hg konsantrasyonlarının etkisine maruz bırakılmıştır. Dokuların enzim
aktiviteleri ultraviyole spektrofotometrik yöntem ile belirlenmiştir. Civa
etkisinde AChE aktivitesi kontrol grubuna göre solungaç ve kas dokularında
genel olarak azalırken GPx aktivitesi artmıştır. Kas GPT aktivitesi her iki
sürede de kontrol grubuna göre artmıştır. Solungaçta GPT aktivitesi ise ilk 7
günlük sürede artarken 21 günlük sürede azalmıştır. Araştırma sonuçları düşük
ve yüksek civa konsantrayonlarının Oreochromis niloticus'un solungaç ve kas
dokularında AChE, GPx ve GPT aktivitelerinin değişmesine neden olduğunu
göstermiştir.



Kaynakça

  • Alves, L. M., Lemos, M.F.L., Correiaa, J.P.S., Costaa N.A.R. & Novais S.C. (2015). The potential of cholinesterases as tools for biomonitoring studies with sharks: Biochemical characterization in brain and muscle tissues of Prionace glauca. Journal of Experimental Marine Biology and Ecology, 465:49–55 doi: 10.1016/j.jembe.2015.01.006
  • Badiou, A. & Belzunces L.P. (2008). Is acetylcholinesterase a pertinent biomarker to detect exposure of pyrethroids? A study case with deltamethrin Chemico-Biological Interactions, 25:175(1-3):406-9. doi: 10.1016/j.cbi.2008.05.040
  • Berntssen, M.H.G, Aatland, A. & Handy, R.D. (2003). Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar). Aquatic Toxicology, 65:55-72. doi: /10.1016/S0166-445X(03)00104-8
  • Beutler, E. (1984). Red cell metabolism: A manual of biochemical methods, 2nd ed., New York, Grune and Stratton.
  • Bensefa-Colas, L., Andujar, P. & Descatha. A. (2011). Mercury poisoning Revue de Medecine Interne, Elsevier Masson, 32(7):416-24.
  • Brancoa, V., Canariob, J., Luc, J., H, A., Carvalho, C. (2012) Mercury and selenium interaction in vivo: Effects on thioredoxin reductase and glutathione peroxidase. Free Radical Biology & Medicine 52: 781–793 Chemosphere 87: 1215– 1221
  • Liao, C.Y., Fu, J.J., Shi, J.B., Zhou, Q.F., Yuan, C.G., Jiang G.B., (2006). Methylmercury Accumulation, Histopathology Effects, and Cholinesterase Activity Alterations in Medaka (Oryzias Latipes) Following Sublethal Exposure to Methylmercury Chloride. 22(2): 225–233. doi:10.1016/j.etap.2006.03.009
  • Costa, J.R.M., Mela, M., Assis, H. C. S., Pelletier, E., Randi, M. A. F., & Oliveira-Ribeiro, C.A. (2007). Enzymatic inhibition and morphological changes in Hoplias malabaricusfrom dietary exposure to lead (II) or methylmercury. Ecotoxicology and Environmental Safety, 67: 82–88.
  • De La Torre, F., Salıbıan, A., & Ferrarı, L., (1999). Enzyme Activities as Biomarkers of Freshwater Pollution: Responses of Fish Branchial (Na +K) ATPase and Liver Transaminases. Environmental Toxicology, doi: 14: 313–319. 10.1002/(SICI)1522- 7278(199907)14:3<313::AID-TOX4>3.0.CO;2-J
  • De La Torre, F., Salibian, A., & Ferrarı, L, (2000). Biomarkers Assessment in Juvenile Cyprinus carpio Exposed to Waterborne Cadmium. Environmental Pollution, 109:277-282.
  • Ellman, G.L., Courtney, K.D., Andres, V. & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetycholinesterase activity. Biochemical Pharmacology, 7: 88- 95.
  • Elumalai, M., Antunes, C. & Guilhermino, L., (2007). Enzymatic biomarkers in the crab Carcinus maenas from the Minho River estuary (NW Portugal) exposed to zinc and mercury. Chemosphere 66: 1249–1255. doi: 10.1016/j.chemosphere.2006.07.030
  • Frasco, M.F., Fournier, D., Carvalho, F. & Guilhermino, L. (2008). Does mercury interact with the inhibitory effect of dichlorvos on Palaemon serratus (Crustacea: Decapoda) cholinesterase? Science of The Total Environment, 404: 88–93. doi: 10.1016/j.scitotenv.2008.06.012
  • Harayashiki, C.A., Reichelt-Brushett, AJ., Liu, L. & Butcher, P. (2016). Behavioural and biochemical alterations in Penaeus monodon post-larvae diet-exposed to inorganic mercury. Chemosphere, doi: 164:241-247. 10.1016/j.Chemosphere.2016.08.085
  • Hasspieler, B.M., Behar, I.V. & DiGiulio, R.T. (1994) Glutathionedependent defense in channel catfish (Ictalurus punctatus) and brown bullhead (Ameriurus nebulosus). Ecotoxicology and Environmental Safety, 28:82–90.
  • Hussain, S., Atkinson, A., Thompson, S.J. & Khan, AT. (1999). Accumulation of mercury and it is effect on antioxidant enzymes in brain, liver and kidneys of mice. Journal of Environmental Science and Health B, 34:645-660. doi:10.1080/03601239909373219
  • Karthikeyan, S., Palaniappan, P.L.R.M. and Sabhanayakan, S. (2007) Influence of pH and
  • water hardness upon Nickel accumulation in edible fish Cirrhinus mrigala. Journal of Environmental Biology, 28:484-492.
  • Kumaresan, T & Karuppasamy, R. (2011). Impact of industrial effluents on some biomarker enzymes in selected tissues of Arius maculates from Uppanar Estuary, Cuddalore Dıstrıct, Tamılnadu. Asian Journal of Science and Technology Vol. 1, Issue 11, 070-075
  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193:266-275.
  • Mazrouh, M.M. (2016). Effects of Some Heavy Metals in Different Organs and Some Hepatic Enzymes for European eel (Anguilla anguilla) at Lake Edku. International Journal of Science and Research, 5(2):1872-1876.
  • Mary, S.C.H, S.Silvan & Elumalai, EK. (2014). Toxicology study on lead nitrate induced fresh water fish Cirrhinus mrigala (Hamilton). European Journal of Academic Essays 1(7): 5-8
  • Mary, S.C.H, Bhuvaneswari, D & Anandan, R. (2015). Biochemical and histopathological studies on lead nitrate induced toxicity in fresh water fish grass carp (Ctenopharyngodon idella). European Journal of Experimental Biology, 5(11):24-30. Pelagia Research Library.
  • Mekkawy, I.A.A., Mahmoud, U.M., Wassif, E.T. & M. Naguib, (2011). Effects of cadmium on some haematological and biochemical characteristics of Oreochromis niloticus (Linnaeus, 1758) dietary supplemented with tomato paste and vitamin E. Fish Physiology and Biochemistry, 37(1): 71-84. doi:10.1007/s10695-010- 9418-3
  • Monteiro D.A, Rantin F.T. & Kalinin A.L. (2010). Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxa, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology, 19:105–123 doi: 10.1007/s10695-010-9418-3
  • Reitman, S. & Frankel, S., (1957). A colorimetrik method for the determination of serum glutamic oxalacetic and glutamic pyruvik transaminases. American Journal of Clinical Pathology, 28: 56-63.
  • Romeo, M., Gharbi-Bouraoui, S., Gnassia-Barelli, M., Dellali, M. & Aissa, P., (2006). Responses of Hexaplex trunculus to selected pollutants. Science of The Total Environment, 359:135–144.
  • Saravanan, M., Kumar, K.P. & Ramesh, M. (2011). Haematological and biochemical responses of freshwater teleost fish Cyprinus carpio (Actinopterygii: Cypriniformes) during acute and chronic sublethal exposure to lindane. Pesticide Biochemistry and Physiology, 100(3): 206–211. doi: 10.1016/j.pestbp.2011.04.002
  • Sevcikova, M., Modra, H., Slaninova, A. & Svobodova, Z. (2011) Metals as a cause of oxidative stress in fish: a review. Veterinary Medicine 56(11):537–546
  • Tiwari, R., Wast, N., Siddiqui, A., Gaherwal S. & Prakash, M.M. (2014). Mercury and Selenium Induced Changes in Kidney Biochemistry of Clarias batrachus. European Journal of Applied Sciences 6 (4): 64-71. doi: 10.5829/idosi.ejas.2014.6.4.9160
  • Varo, I., Nunes, B., Amat, F., Torreblanca, A., Guilhermino, L. & Navarro, J.C., (2007). Effect of sublethal concentrations of copper sulphate on seabream Sparus aurata fingerlings. Aquatic Living Resources, 20:263–270. doi:10.1051/alr:2007039 Varo, I., Pastor, A., Ramo, J. & Torreblanca, A. (2012). Long-term effect of temperature on bioaccumulation of dietary metals and metallothionein induction in Sparus aurata. Chemosphere 87(11):1215-21. doi: 10.1016/j.chemosphere.2012.01.020
  • Vieira, L.R., Gravato, C., Soares, A.M.V.M, Morgado, F. & Guilhermino L. (2009). Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behavior. Chemosphere, doi: 76:1416–1427. 10.1016/j.chemosphere.2009.06.005
  • Yüzereroğlu T.A. (2011). Oreochromıs nılotıcus’da Bakır, Kadmiyum Ve Bakırkadmiyum Etkileşiminde Metallerin Doku Ve Organlarda Birikimi, Eliminasyonu Ve Antioksidant Enzim Aktivitelerine Etkileri. Çukurova Üniversitesi Fen Bilimleri Enstitüsü.
  • Zheng, J.L., Zeng, L., Xu, M.Y., Shen, B.& Wu, C.W. (2016). Different effects of low- and high-dose waterborne zinc on Zn accumulation, ROS levels, oxidative damage and antioxidant responses in the liver of large yellow croaker Pseudosciaena crocea. Journal of Physiology and Biochemistry, doi:10.1007/s10695-016-0275-6
  • Zikic, R.V., A.S. Stajn, S.Z. Pavlovic, B.I. Ognjanovic & Z.S. Saicic, (2001). Activities of superoxide dismutase and catalase in erythrocytes and plasma transaminases of goldfish (Carassius auratus gibelio Bloch.) exposed to cadmium. Physiological Research, 50(1): 105-111
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Gülbin Firidin

Yayımlanma Tarihi 12 Haziran 2017
Gönderilme Tarihi 15 Kasım 2016
Yayımlandığı Sayı Yıl 2017Cilt: 34 Sayı: 2

Kaynak Göster

APA Firidin, G. (2017). Effects of mercury on some enzymes in the gill and muscle tissues of oreochromis niloticus. Ege Journal of Fisheries and Aquatic Sciences, 34(2), 133-137. https://doi.org/10.12714/egejfas.2017.34.2.03