Research Article
BibTex RIS Cite

Investigation of toxic effects of BPA and BPA analogues (BPS and BPAF) on Spirulina sp., Desmodesmus subspicatus and Chlorella vulgaris

Year 2023, Volume: 40 Issue: 4, 286 - 291, 15.12.2023
https://doi.org/10.12714/egejfas.40.4.07

Abstract

Bisphenols (BPs) are produced for many applications for used in industry. BPs have been found all part of aquatic environments such as sediment and surface water that is poses a risk to the aquatic ecosystem. Restricting the use of BPA, environmental concentrations of bisphenol S, and bisphenol AF begin to increase. The present study aims to indicate that toxicity BPA and BPA analogues (BPS and BPAF) by algal growth inhibition test for the green algae Chlorella vulgaris, Spirulina sp., Desmodesmus subspicatus. In this way, result of this study present the nominal effective concentrations of BPA analogues and the suitability of the species for use as a biomarker in ecotoxicology tests. IC50 values (growth rate inhibition by 50%, respectively) for three toxicants were determined separately. Results of this study showed the effects of these chemicals on photosynthesis (primer production). The result of algal growth inhibition test showed that BPAF (72h EC50 3.80 mg/L) was found to be more toxic than BPS (3d EC50 6.31 m L-1) for Spirulina sp. BPS (3d EC50 2.43 mg/L) showed the most toxic effect on the growth of C. vulgaris, followed by BPAF with 3d EC50 3.32 mg/L. BPS (3d EC50 0.88 mg/L) and BPAF (3d EC50 6.48 mg/L) were found to be toxic for D. subspicatus, respectively, from highest to lowest toxicity. These results indicate that bisphenol analogues are hazardous to primer production. Therefore, it is necessary to study their combined effects as well as to study how they act individually.

Ethical Statement

Ethical approval is not required for this study.

Supporting Institution

This study was supported by the Turkish Scientific and Technological Research Institution (Grant number: 119Y246).

Project Number

119Y246

References

  • Abdel-Hamid, M. I. (1996). Development and application of a simple procedure for toxicity testing using immobilised algae. Water Science and Technology, 33(6), 129 138. https://doi.org/10.1016/0273 1223(96)00289-2
  • Abraham, A., & Chakraborty , P. (2019). A review on sources and health impacts of bisphenol A. Reviews on Environmental Health, 35(2), 201-210. https://doi.org/10.1515/reveh-2019-0034
  • Barboza, L.G.A., Cunha, S.C., Monteiro, C., Fernandes, J.O., & Guilhermino, L. (2020). Bisphenol A and its analogues in the muscle and liver of fish from the North East Atlantic Ocean in relation to microplastic contamination. Exposure and risk to human consumers. Journal of Hazardous Material, 122 419. https://doi.org/10.1016/j.jhazmat.2020.122419
  • Chen, D., Kannan, K., Tan, H.L., Zheng, Z.G., Feng, Y.L., Wu, Y., & Widelka, M. (2016). Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity – A review. Environmental Science & Technology, 50, 5438 5453. https://doi.org/10.1021/acs.est.5b05387
  • Chunyang, L., & Kurunthachalam, K. (2013). Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. Journal of Agricultural and Food Chemistry, 61, 4655– 4662. https://doi.org/10.1021/jf400445n
  • Colborn, T., Dumanoski, D., & Myers, J.P. (1997). Our stolen future: Are we threatening our fertility, intelligence, and survival?--a scientific detective story. Penguin.
  • Czarny, K., Krawczyk, B., & Szczukocki, D. (2021). Toxic effects of bisphenol A and its analogues on cyanobacteria Anabaena variabilis and Microcystis aeruginosa. Chemosphere, 263, 128-299. https://doi.org/10.1016/j.chemosphere.2020.128299
  • Czarny-Krzymińska, K., Krawczyk, B., & Szczukocki, D. (2022). Toxicity of bisphenol A and its structural congeners to microalgae Chlorella vulgaris and Desmodesmus armatus. Journal of Applied Phycology, 34(3), 1397–1410. https://doi.org/10.1007/s10811-022-02704-3
  • Ding, T., Li, W., Yang, M., Yang, B., & Li, J. (2020). Toxicity and biotransformation of bisphenol S in the freshwater green alga Chlorella vulgaris. Science of the Total Environment, 747, 141–144. https://doi.org/10.1016/j.scitotenv.2020.141144
  • European Commission. (2018). Regulation (EU) 2018/213. https://eur-lex.europa.eu/eli/reg/2018/213/oj
  • Ferreira, R., & Graça, M. (2002). A comparative study of the sensitivity of selected aquatic plants to mining effluents. Limnetica, 21(1-2), 129-134. https://doi.org/10.23818/limn.21.12
  • Frenzilli, G., Martorell-Ribera, J., Bernardeschi, M., Scarcelli, V., Jönsson, E., Diano, N., Moggio, M., Guidi, P., Sturve, J., & Asker, N. (2021). Bisphenol A and bisphenol S induce endocrine and chromosomal alterations in brown trout. Frontiers in Endocrinology, 12, 645519. https://doi.org/10.3389/fendo.2021.645519
  • Fromme, H., Küchler, T., Otto, T., Pilz, K., Müller, J., & Wenzel, A. (2002). The occurrence of phthalates and bisphenol A and F in the environment. Water Research, 36(6), 1429-1438. https://doi.org/10.1016/S0043-1354(01)00367-0
  • Grignard, E., Lapenna, S., & Bremer, S. (2012). Weak estrogenic transcriptional activities of Bisphenol A and Bisphenol S. Toxicology in Vitro, 26(5), 727-731. https://doi.org/10.1016/j.tiv.2012.03.013
  • Hammer, K., Carson, C., Riley, T., & Nielsen, J. (2006). A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food and chemical toxicology, 44(5), 616-625. https://doi.org/10.1016/j.fct.2005.09.001 Hocking, R. (1996). Methods and Applications of Linear Models: Regression and the analysis of variance. New York: Wiley.
  • Huang, Y.Q., Wong, C.K.C., Zheng, J.S., Bouwman, H., Barra, R., Wahlström, B., Neretin, L., & Wong, M.H. (2012). Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts. Environment International, 42, 91 99. https://doi.org/10.1016/j.envint.2011.04.010
  • Ji, K., Hong, S., Kho, Y., & Choi, K. (2013). Effects of bisphenol S exposure on endocrine functions and reproduction of zebrafish. Environmental Science & Technology, 47(15), 8793 8800. https://doi.org/10.1016/j.ecoenv.2008.05.012
  • Kang, J.H., Aasi, D., & Katayama, Y. (2007). Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms. Critical Reviews in Toxicology, 37(7), 607 625. https://doi.org/10.1080/10408440701493103
  • Liao, C., Liu, F., & Kannan, K. (2012). Bisphenol S, a new bisphenol analogue, in paper products and currency bills and its association with bisphenol Aresidues. Environmental Science & Technology, 46, 6515–6522. https://doi.org/10.1021/es300876n
  • Libralato, G., Avezzù, F., & Ghirardini, A. V. (2011). Lignin and tannin toxicity to Phaeodactylum tricornutum (Bohlin). Journal of Hazardous Materials, 194, 435-439. https://doi.org/10.1016/j.jhazmat.2011.07.103
  • Liu, D., Liu, J., Guo, M., Xu, H., Zhang, S., Shi, L., & Yao, C. (2016). Occurrence, distribution, and risk assessment of alkylphenols, bisphenol A, and tetrabromobisphenol A in surface water, suspended particulate matter, and sediment in Taihu Lake and its tributaries. Marine Pollution Bulletin, 112(1 2), 142 150. https://doi.org/10.1016/j.marpolbul.2016.08.026
  • Liu, J., Zhang, L., Lu, G., Jiang, R., Yan, Z., & Li, Y. (2021). Occurrence, toxicity and ecological risk of Bisphenol A analogues in aquatic environment–A review. Ecotoxicology and Environmental Safety, 208, 111-481. https://doi.org/10.1016/j.ecoenv.2020.111481
  • Madkour, F. F., Kamil, A. E. W., & Nasr, H. S. (2012). Production and nutritive value of Spirulina platensis in reduced cost media. The Egyptian Journal of Aquatic Research, 38(1), 51 57. https://doi.org/10.1016/j.ejar.2012.09.003
  • Morales, M., de la Fuente, M., & Martín-Folgar, R. (2020). BPA and its analogues (BPS and BPF) modify the expression of genes involved in the endocrine pathway and apoptosis and a multi drug resistance gene of the aquatic midge Chironomus riparius (Diptera). Environmental Pollution, 265, 114806. https://doi.org/10.1016/j.envpol.2020.114806
  • Moreman, J., Lee, O., Trznadel, M., David, A., Kudoh, T., & Tyler, C. R. (2017). Acute toxicity, teratogenic, and estrogenic effects of bisphenol A and its alternative replacements bisphenol S, bisphenol F, and bisphenol AF in zebrafish embryo-larvae. Environmental Science & Technology, 51(21), 12796-12805. https://doi.org/10.1021/acs.est.7b03283
  • OECD (2011). OECD Guidelines for the testing of chemicals. Freshwater alga and cyanobacteria, growth inhibition test. Organisation Economic Co-operation Development, 1-25.
  • Rochester, J.R., & Bolden, A.L. (2015). Bisphenol S and F: A systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environmental Health Perspectives, 123, 643–650. https://doi.org/10.1289/ehp.1408989
  • Seoane, M., Cid, A., & Esperanza, M. (2021). Toxicity of bisphenol A on marine microalgae: Single-and multispecies bioassays based on equivalent initial cell biovolume. Science of the Total Environment, 767, 144363. https://doi.org/10.1016/j.scitotenv.2020.144363
  • Song, S., Ruan, T., Wang, T., Liu, R., & Jiang, G. (2012). Distribution and preliminary exposure assessment of Bisphenol AF (BPAF) in various environmental matrices around a manufacturing plant in China. Environmental Science & Technology, 46, 13136-13143. https://doi.org/10.1021/es303960k
  • The European Commission (2013). Commission directive 2011/8/EU of 28 January 2011 amending directive 2002/72/EC regarding the restriction of use of bisphenol A in plastic infant feeding bottles. Official Journal of the European Union, L26, 11-14.
  • Tišler, T., Krel, A., Gerželj, U., Erjavec, B., Dolenc, M., & Pintar, A. (2016). Hazard identification and risk characterization of bisphenols A, F and AF to aquatic organisms. Environmental Pollution, 212, 472-479. https://doi.org/10.1016/j.envpol.2016.02.045
  • Uibel, N.C. (2016). Effects of bisphenol-a and styrene on fertilization and development of the purple sea urchin (Strongylocentrotus purpuratus). Master's Theses, The Faculty of California Polytechnic State University. https://doi.org/10.15368/theses.2016.50
  • Wang, R., Tan, T., Liang, H., Huang, Y., Dong, S., Wang, P., & Su, X. (2021). Occurrence and distribution of bisphenol compounds in different categories of animal feeds used in China. Emerging Contaminants, 7, 179-186. https://doi.org/10.1016/j.emcon.2021.08.001
  • Zhao , X., Qiu , W., Zheng , Y., Xiong , J., Gao , C., & Hu , S. (2019). Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China. Ecotoxicology and Environmental Safety, 180, 43-52. https://doi.org/10.1016/j.ecoenv.2019.04.083

Bisfenol analogları BPS ve BPAF'ın Spirulina sp., D.subspicatus ve C.vulgaris üzerindeki akut toksik etkilerinin araştırılması

Year 2023, Volume: 40 Issue: 4, 286 - 291, 15.12.2023
https://doi.org/10.12714/egejfas.40.4.07

Abstract

Bisfenol analogları (BP'ler), yüzey suyu, tortu, kanalizasyon ve çamurda sıklıkla tespit edilen bisfenol A'nın (BPA) analoğu olarak endüstride yaygın olarak kullanılmaktadır. Bisfenollerin doğal ortamda bulunması sucul ekosistem için risk oluşturmaktadır. Bu çalışmada BPA, BPS ve BPAF’nin Chlorella vulgaris, Spirulina sp., Desmodesmus subspicatus üzerine akut toksik etkileri incelenmiştir. Spirulina sp. için BPAF (3d EC50 3,80 mg L-1) BPS (3d EC50 6,31 m L-1)’ye göre daha toksik bulunmuştur. Chlorella vulgaris’in büyümesi üzerine en toksik etkiyi BPS (3d EC50 2,43 mg/L) gösterirken onu 3d EC50 3,32 mg/L ile BPAF izlemiştir. Desmodesmus subspicatus için en yüksek toksisiteden en düşük toksisiteye doğru sırasıyla, BPS (3d EC50 1,09 mg/L) ve BPAF (3d EC50 1,89 mg/L) toksik bulunmuştur. BPS ve BPAF karışımının Desmodesmus subspicatus üzerine toksisitesi incelendi. Bu karışımın toksisitesi (3d EC50 1,44 mg L-1) BPS’den az, BPAF’den yüksek bulunmuştur. Bu sonuçlar sucul ekosistemdeki canlılar için risk oluşturduğunu göstermektedir. Bisfenol analoglarının çevresel risk değerlendirilmesini mümkün kılabilmek için BPA’ya alternatif bisfenol analoglarının sucul ortamdaki ayrı ayrı etkilerinin yanı sıra birleşik etkilerinin de daha fazla incelenmesine ihtiyaç vardır.

Project Number

119Y246

References

  • Abdel-Hamid, M. I. (1996). Development and application of a simple procedure for toxicity testing using immobilised algae. Water Science and Technology, 33(6), 129 138. https://doi.org/10.1016/0273 1223(96)00289-2
  • Abraham, A., & Chakraborty , P. (2019). A review on sources and health impacts of bisphenol A. Reviews on Environmental Health, 35(2), 201-210. https://doi.org/10.1515/reveh-2019-0034
  • Barboza, L.G.A., Cunha, S.C., Monteiro, C., Fernandes, J.O., & Guilhermino, L. (2020). Bisphenol A and its analogues in the muscle and liver of fish from the North East Atlantic Ocean in relation to microplastic contamination. Exposure and risk to human consumers. Journal of Hazardous Material, 122 419. https://doi.org/10.1016/j.jhazmat.2020.122419
  • Chen, D., Kannan, K., Tan, H.L., Zheng, Z.G., Feng, Y.L., Wu, Y., & Widelka, M. (2016). Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity – A review. Environmental Science & Technology, 50, 5438 5453. https://doi.org/10.1021/acs.est.5b05387
  • Chunyang, L., & Kurunthachalam, K. (2013). Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. Journal of Agricultural and Food Chemistry, 61, 4655– 4662. https://doi.org/10.1021/jf400445n
  • Colborn, T., Dumanoski, D., & Myers, J.P. (1997). Our stolen future: Are we threatening our fertility, intelligence, and survival?--a scientific detective story. Penguin.
  • Czarny, K., Krawczyk, B., & Szczukocki, D. (2021). Toxic effects of bisphenol A and its analogues on cyanobacteria Anabaena variabilis and Microcystis aeruginosa. Chemosphere, 263, 128-299. https://doi.org/10.1016/j.chemosphere.2020.128299
  • Czarny-Krzymińska, K., Krawczyk, B., & Szczukocki, D. (2022). Toxicity of bisphenol A and its structural congeners to microalgae Chlorella vulgaris and Desmodesmus armatus. Journal of Applied Phycology, 34(3), 1397–1410. https://doi.org/10.1007/s10811-022-02704-3
  • Ding, T., Li, W., Yang, M., Yang, B., & Li, J. (2020). Toxicity and biotransformation of bisphenol S in the freshwater green alga Chlorella vulgaris. Science of the Total Environment, 747, 141–144. https://doi.org/10.1016/j.scitotenv.2020.141144
  • European Commission. (2018). Regulation (EU) 2018/213. https://eur-lex.europa.eu/eli/reg/2018/213/oj
  • Ferreira, R., & Graça, M. (2002). A comparative study of the sensitivity of selected aquatic plants to mining effluents. Limnetica, 21(1-2), 129-134. https://doi.org/10.23818/limn.21.12
  • Frenzilli, G., Martorell-Ribera, J., Bernardeschi, M., Scarcelli, V., Jönsson, E., Diano, N., Moggio, M., Guidi, P., Sturve, J., & Asker, N. (2021). Bisphenol A and bisphenol S induce endocrine and chromosomal alterations in brown trout. Frontiers in Endocrinology, 12, 645519. https://doi.org/10.3389/fendo.2021.645519
  • Fromme, H., Küchler, T., Otto, T., Pilz, K., Müller, J., & Wenzel, A. (2002). The occurrence of phthalates and bisphenol A and F in the environment. Water Research, 36(6), 1429-1438. https://doi.org/10.1016/S0043-1354(01)00367-0
  • Grignard, E., Lapenna, S., & Bremer, S. (2012). Weak estrogenic transcriptional activities of Bisphenol A and Bisphenol S. Toxicology in Vitro, 26(5), 727-731. https://doi.org/10.1016/j.tiv.2012.03.013
  • Hammer, K., Carson, C., Riley, T., & Nielsen, J. (2006). A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food and chemical toxicology, 44(5), 616-625. https://doi.org/10.1016/j.fct.2005.09.001 Hocking, R. (1996). Methods and Applications of Linear Models: Regression and the analysis of variance. New York: Wiley.
  • Huang, Y.Q., Wong, C.K.C., Zheng, J.S., Bouwman, H., Barra, R., Wahlström, B., Neretin, L., & Wong, M.H. (2012). Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts. Environment International, 42, 91 99. https://doi.org/10.1016/j.envint.2011.04.010
  • Ji, K., Hong, S., Kho, Y., & Choi, K. (2013). Effects of bisphenol S exposure on endocrine functions and reproduction of zebrafish. Environmental Science & Technology, 47(15), 8793 8800. https://doi.org/10.1016/j.ecoenv.2008.05.012
  • Kang, J.H., Aasi, D., & Katayama, Y. (2007). Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms. Critical Reviews in Toxicology, 37(7), 607 625. https://doi.org/10.1080/10408440701493103
  • Liao, C., Liu, F., & Kannan, K. (2012). Bisphenol S, a new bisphenol analogue, in paper products and currency bills and its association with bisphenol Aresidues. Environmental Science & Technology, 46, 6515–6522. https://doi.org/10.1021/es300876n
  • Libralato, G., Avezzù, F., & Ghirardini, A. V. (2011). Lignin and tannin toxicity to Phaeodactylum tricornutum (Bohlin). Journal of Hazardous Materials, 194, 435-439. https://doi.org/10.1016/j.jhazmat.2011.07.103
  • Liu, D., Liu, J., Guo, M., Xu, H., Zhang, S., Shi, L., & Yao, C. (2016). Occurrence, distribution, and risk assessment of alkylphenols, bisphenol A, and tetrabromobisphenol A in surface water, suspended particulate matter, and sediment in Taihu Lake and its tributaries. Marine Pollution Bulletin, 112(1 2), 142 150. https://doi.org/10.1016/j.marpolbul.2016.08.026
  • Liu, J., Zhang, L., Lu, G., Jiang, R., Yan, Z., & Li, Y. (2021). Occurrence, toxicity and ecological risk of Bisphenol A analogues in aquatic environment–A review. Ecotoxicology and Environmental Safety, 208, 111-481. https://doi.org/10.1016/j.ecoenv.2020.111481
  • Madkour, F. F., Kamil, A. E. W., & Nasr, H. S. (2012). Production and nutritive value of Spirulina platensis in reduced cost media. The Egyptian Journal of Aquatic Research, 38(1), 51 57. https://doi.org/10.1016/j.ejar.2012.09.003
  • Morales, M., de la Fuente, M., & Martín-Folgar, R. (2020). BPA and its analogues (BPS and BPF) modify the expression of genes involved in the endocrine pathway and apoptosis and a multi drug resistance gene of the aquatic midge Chironomus riparius (Diptera). Environmental Pollution, 265, 114806. https://doi.org/10.1016/j.envpol.2020.114806
  • Moreman, J., Lee, O., Trznadel, M., David, A., Kudoh, T., & Tyler, C. R. (2017). Acute toxicity, teratogenic, and estrogenic effects of bisphenol A and its alternative replacements bisphenol S, bisphenol F, and bisphenol AF in zebrafish embryo-larvae. Environmental Science & Technology, 51(21), 12796-12805. https://doi.org/10.1021/acs.est.7b03283
  • OECD (2011). OECD Guidelines for the testing of chemicals. Freshwater alga and cyanobacteria, growth inhibition test. Organisation Economic Co-operation Development, 1-25.
  • Rochester, J.R., & Bolden, A.L. (2015). Bisphenol S and F: A systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environmental Health Perspectives, 123, 643–650. https://doi.org/10.1289/ehp.1408989
  • Seoane, M., Cid, A., & Esperanza, M. (2021). Toxicity of bisphenol A on marine microalgae: Single-and multispecies bioassays based on equivalent initial cell biovolume. Science of the Total Environment, 767, 144363. https://doi.org/10.1016/j.scitotenv.2020.144363
  • Song, S., Ruan, T., Wang, T., Liu, R., & Jiang, G. (2012). Distribution and preliminary exposure assessment of Bisphenol AF (BPAF) in various environmental matrices around a manufacturing plant in China. Environmental Science & Technology, 46, 13136-13143. https://doi.org/10.1021/es303960k
  • The European Commission (2013). Commission directive 2011/8/EU of 28 January 2011 amending directive 2002/72/EC regarding the restriction of use of bisphenol A in plastic infant feeding bottles. Official Journal of the European Union, L26, 11-14.
  • Tišler, T., Krel, A., Gerželj, U., Erjavec, B., Dolenc, M., & Pintar, A. (2016). Hazard identification and risk characterization of bisphenols A, F and AF to aquatic organisms. Environmental Pollution, 212, 472-479. https://doi.org/10.1016/j.envpol.2016.02.045
  • Uibel, N.C. (2016). Effects of bisphenol-a and styrene on fertilization and development of the purple sea urchin (Strongylocentrotus purpuratus). Master's Theses, The Faculty of California Polytechnic State University. https://doi.org/10.15368/theses.2016.50
  • Wang, R., Tan, T., Liang, H., Huang, Y., Dong, S., Wang, P., & Su, X. (2021). Occurrence and distribution of bisphenol compounds in different categories of animal feeds used in China. Emerging Contaminants, 7, 179-186. https://doi.org/10.1016/j.emcon.2021.08.001
  • Zhao , X., Qiu , W., Zheng , Y., Xiong , J., Gao , C., & Hu , S. (2019). Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China. Ecotoxicology and Environmental Safety, 180, 43-52. https://doi.org/10.1016/j.ecoenv.2019.04.083
There are 34 citations in total.

Details

Primary Language English
Subjects Environmental Sciences
Journal Section Articles
Authors

Duygu Turan 0000-0003-2909-7240

Özlem Çakal Arslan 0000-0001-7777-3886

Project Number 119Y246
Early Pub Date December 8, 2023
Publication Date December 15, 2023
Submission Date February 8, 2023
Published in Issue Year 2023Volume: 40 Issue: 4

Cite

APA Turan, D., & Çakal Arslan, Ö. (2023). Investigation of toxic effects of BPA and BPA analogues (BPS and BPAF) on Spirulina sp., Desmodesmus subspicatus and Chlorella vulgaris. Ege Journal of Fisheries and Aquatic Sciences, 40(4), 286-291. https://doi.org/10.12714/egejfas.40.4.07