Research Article
BibTex RIS Cite

Investigation of the structure and hardness properties of Anodonta anatina mussel shells

Year 2023, Volume: 40 Issue: 2, 132 - 139, 15.06.2023
https://doi.org/10.12714/egejfas.40.2.07

Abstract

In this study, the shell structure of the freshwater mussel Anodonta anatina (Linnaeus, 1758) which has a widespread population in Gölbaşı Lake (Hatay) and is not economically exploited, was microscopically examined at a morphological level. It was determined that the shells of Anodonta anatina, which are not under significant fishing pressure, are mostly found discarded along the shores of the lake. This mussel species is important as a composite biological material with multifunctional roles in freshwater ecology. Considering the potential use of freshwater mussel shells as a biological material, an assessment of the shell structure, physical properties, mechanical strength, shell microstructure, and morphological characteristics of A. anatina was conducted. When cross-sections of the shell taken from the umbo, middle periostracum, and the region close to the pallial edge were examined in the dorsal-ventral direction, it was determined that the periostracum layer in the umbo region had a more prismatic and polygonal structure. The interior of the shell was found to consist of a shiny nacreous layer. In nacreous shell sections, it was observed that the nacreous layer contained more distinct layers near the pallial edge. Vickers microhardness tests were performed on individual shells, and it was found that the hardness value of the inner layer was the highest (625.5 ±172.7 HV), while the outer layer had a lower hardness value (531.5 ±110.7 HV). Based on XRF data, it was shown that the seashell powder is mainly composed of calcium oxide (98.8% wt., CaO) as a biological material.

References

  • Barthelat, F., Rim, J., & Espinosa, H. (2009). A review on the structure and mechanical properties of mollusk shells – Perspectives on synthetic biomimetic materials. Applied Scanning Probe Methods XIII, (pp.17-44). Berlin: Springer. https://doi.org/10.1007/978-3-540-85049-6_2
  • Carter, J.G. (1991). Evolutionary significance of shell microstructure in the palaeotaxodonta, pteriomorphia and ısofilibranchia (Bivalvia: Mollusca). Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, 135-296. https://doi.org/10.1007/978-1-4899-5740-5_10
  • Carter, J. G., Harries, P., Malchus, N., Sartori, A., Anderson, L., Bieler, R., Bogan, A., Coan, E., Cope, J., Cragg, S., Garcia-March, J., Hylleberg, J., Kelley, P., Kleemann, K., Kriz, J., McRoberts, C., Mikkelsen, P.,
  • Pojeta, Jr., J., Skelton, P.W., Temkin, I., Yancey, T., & Zieritz, A. (2012). Illustrated Glossary of the Bivalvia. Kansas, Treatise Online. https://doi.org/10.17161/to.v0i0.4322
  • Chakraborty, A., Parveen, S., Chanda, D. K., & Aditya, G. (2020). An insight into the structure, composition and hardness of a biological material: the shell of freshwater mussels. Royal Society of Chemistry Advances, 10(49), 29543-29554. https://doi.org/10.1039/d0ra04271d
  • Checa, A. (2000). A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). Tissue and Cell, 32(5), 405-416. https://doi.org/10.1054/tice.2000.0129
  • De Paula, S. M., & Silveira, M. (2009). Studies on molluscan shells: Contributions from microscopic and analytical methods. Micron, 40(7), 669-690. https://doi.org/10.1016/j.micron.2009.05.006
  • Dhanaraj, K., & Suresh, G. (2018). Conversion of waste sea shell (Anadara granosa) into valuable nanohydroxyapatite (nHAp) for biomedical applications. Vacuum, 152, 222-230. https://doi.org/10.1016/j.vacuum.2018.03.021
  • Frenzel, M., & Harper, E.M. (2011). Micro-structure and chemical composition of vateritic deformities occurring in the bivalve Corbicula fluminea (Müller, 1774). Journal of Structural Biology, 174(2), 321-332. https://doi.org/10.1016/j.jsb.2011.02.002
  • Gao, Z., Yang, H., & Liu, Q. (2019). Natural seashell waste as an efficient and low‐cost catalyst for the synthesis of arylmethylenemalonitriles. Clean – Soil, Air, Water, 47(10), 1900129. https://doi.org/10.1002/clen.201900129
  • Graf, D.L., & Cummings, K.S. (2007). Review of the systematics and global diversity of freshwater mussel species (Bivalvia: Unionoida). Journal of Molluscan Studies, 73(4), 291-314. https://doi.org/10.1093/mollus/eym029
  • Istin, M., & Kirschner, L.B. (1968). On the origin of the bioelectrical potential generated by the freshwater clam mantle. Journal of General Physiology, 51(4), 478-496. https://doi.org/10.1085/jgp.51.4.478
  • Kinzelbach, R. (1989). Freshwater mussels (genus Anodonta) from Anatolia and adjacent areas (Bivalvia, Unionidae). Zoology in the Middle East, 3(1), 59-72. https://doi.org/10.1080/09397140.1989.10637576
  • Lee, S.W., Kim, G.H., & Choi, C.S. (2008). Characteristic crystal orientation of folia in oyster shell, Crassostrea gigas. Materials Science and Engineering: C, 28(2), 258-263. https://doi.org/10.1016/j.msec.2007.01.001
  • Lemos, A., Rocha, J., Quaresma, S., Kannan, S., Oktar, F., Agathopoulos, S., & Ferreira, J. (2006). Hydroxyapatite nano-powders produced hydrothermally from nacreous material. Journal of the European Ceramic Society, 26(16), 3639-3646. https://doi.org/10.1016/j.jeurceramsoc.2005.12.011
  • Leung, H., & Sinha, S.K. (2009). Scratch and indentation tests on seashells. Tribology International, 42(1), 40-49. https://doi.org/10.1016/j.triboint.2008.05.015
  • Liang, Y., Zhao, Q., Li, X., Zhang, Z., & Ren, L. (2016). Study of the microstructure and mechanical properties of white clam shell. Micron, 87, 10-17. https://doi.org/10.1016/j.micron.2016.04.007
  • Lopes-Lima, M., Lopes, A., Casaca, P., Nogueira, I., Checa, A., & Machado, J. (2008). Seasonal variations of pH, pCO2, pO2, HCO3 − and Ca2+ in the haemolymph: implications on the calcification physiology in Anodonta cygnea. Journal of Comparative Physiology B, 179(3), 279-286. https://doi.org/10.1007/s00360-008-0311-7
  • Lopes-Lima, M., Gürlek, M. E., Kebapçı, M., Şereflişan, H., Yanık, T., Mirzajani, A., Neubert, E., Prié, V., Teixeira, A., Gomes-dos-Santos, A., Barros-García, D., Bolotov, I.N., Kondakov, A.V., Vikhrev, I.V., Tomilova, A.A., Özcan, T., Altun, A., Gonçalves, D.V., Bogan, A.E., & Froufe, E. (2021). Diversity, biogeography, evolutionary relationships, and conservation of Eastern Mediterranean freshwater mussels (Bivalvia: Unionidae). Molecular Phylogenetics and Evolution, 163, 107261. https://doi.org/10.1016/j.ympev.2021.107261
  • Lowenstam, H.A., & Weiner, S. (1989). On Biomineralization. New York, Oxford Academic. https://doi.org/10.1093/oso/9780195049770.001.0001
  • Lv, J., Jiang, Y., & Zhang, D., (2015). Structural and mechanical characterization of Atrina pectinata and freshwater mussel shells. Journal of Bionic Engineering, 12(2), 276-284. https://doi.org/10.1016/s1672-6529(14)60120-7
  • Marie, B., Joubert, C., Tayalé, A., Zanella-Cléon, I., Belliard, C., Piquemal, D., Cochennec-Laureau, N., Marin, F., Gueguen, Y., & Montagnani, C. (2012). Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proceedings of the National Academy of Sciences, 109(51), 20986-20991. https://doi.org/10.1073/pnas.1210552109
  • Marin, F. (2012). The formation and mineralization of mollusk shell. Frontiers in Bioscience, S4 (3), 1099-1125. https://doi.org/10.2741/s321
  • Meng, Y., Guo, Z., Fitzer, S.C., Upadhyay, A., Chan, V.B.S., Li, C., Cusack, M., Yao, H., Yeung, K.W.K., & Thiyagarajan, V. (2018). Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: A hierarchical analysis. Biogeosciences, 15(22), 6833-6846. https://doi.org/10.5194/bg-15-6833-2018
  • Moustafa, H., Youssef, A.M., Duquesne, S., & Darwish, N.A. (2015). Characterization of bio-filler derived from seashell wastes and its effect on the mechanical, thermal, and flame retardant properties of ABS composites. Polymer Composites, 38(12), 2788-2797. https://doi.org/10.1002/pc.23878
  • Nakamura Filho, A., Almeida, A.C.D., Riera, H.E., Araújo, J.L.F.D., Gouveia, V.J.P., Carvalho, M.D.D., & Cardoso, A.V. (2014). Polymorphism of CaCO3 and microstructure of the shell of a Brazilian invasive mollusc (Limnoperna fortunei). Materials Research, 17(1), 15-22. https://doi.org/10.1590/s1516-14392014005000044
  • Özer, A., & Öksüz, K. (2019). The effect of yttrium oxide in hydroxyapatite/aluminum oxide hybrid biocomposite materials: Phase, mechanical and morphological evaluation. Materialwissenschaft und Werkstofftechnik, 50(11), 1382-1390. https://doi.org/10.1002/mawe.201800141
  • Piwoni-Piórewicz, A., Kukliński, P., Strekopytov, S., Humphreys-Williams, E., Najorka, J., & Iglikowska, A. (2017). Size effect on the mineralogy and chemistry of Mytilus trossulus shells from the southern Baltic Sea: implications for environmental monitoring. Environmental Monitoring and Assessment, 189(4). https://doi.org/10.1007/s10661-017-5901-y
  • Pratoomchat, B., Sawangwong, P., Pakkong, P., & Machado, J. (2002). Organic and inorganic compound variations in haemolymph, epidermal tissue and cuticle over the molt cycle in Scylla serrata (Decapoda). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 131(2), 243-255. https://doi.org/10.1016/s1095-6433(01)00447-0
  • Salas, C., Marina, P., Checa, A. G., & Rueda, J.L. (2011). The periostracum of Digitaria digitaria (Bivalvia: Astartidae): formation and structure. Journal of Molluscan Studies, 78(1), 34-43. https://doi.org/10.1093/mollus/eyr040
  • Schönitzer, V., & Weiss, I.M. (2007). The structure of mollusc larval shells formed in the presence of the chitin synthase inhibitor Nikkomycin Z. BMC Structural Biology, 7(1), 1-24. https://doi.org/10.1186/1472-6807-7-71
  • Şereflişan H.O. (2003). Investigations on Reproductive Biology and Aquaculture Potential of Unio terminalis delicatus Inhabiting Gölbaşi Lake (Hatay). Doctoral dissertation, Çukurova University, Türkiye. (In Turkish with English abstract)
  • Şereflişan, H., Menderes, E., & Soylu, S. (2009a). Description of glochidia of three species of freshwater mussels (Unionidae) from southeastern Turkey. Malacologia, 51(1), 165-172. https://doi.org/10.4002/040.051.0112
  • Şereflişan, H., Çek, E., & Şereflişan, M. (2009b). Histological studies on gametogenesis, hermaphroditism and the gametogenic cycle of Anodonta gabillotia pseudodopsis (Locard, 1883) in the Lake Gölbaşi, Turkey (Bivalvia: Unionidae). Journal of Shellfish Research, 28(2), 337-344. https://doi.org/10.2983/035.028.0216
  • Tomilova, A.A., Lyubas, A.A., Kondakov, A.V., Konopleva, E.S., Vikhrev, I.V., Gofarov, M.Y., Ozcan, T., Altun, A., Ozcan, G., Gürlek, M. E., Şereflişan, H., Kebapçi, M., Froufe, E., Lopes-Lima, M., & Bolotov, I.N. (2020). An endemic freshwater mussel species from the Orontes River basin in Turkey and Syria represents duck mussel’s intraspecific lineage: Implications for conservation. Limnologica, 84, 125811. https://doi.org/10.1016/j.limno.2020.125811
  • Türkmen, M., Naz, M. & Dinler, Z.M. (2006). Zooplankton species composition and biomass of Lake Gölbaşı (Hatay, Türkiye). Ege Journal of Fisheries and Aquatic Sciences, 23(1), 163-167.
  • Vaughn, C.C. (2017). Ecosystem services provided by freshwater mussels. Hydrobiologia, 810(1), 15-27. https://doi.org/10.1007/s10750-017-3139-x Wegner, G. (2005). Biomineralization: Progress in Biology, Molecular Biology and Application. U.S.A, Wiley. https://doi.org/10.1002/cbic.200500033
  • Weiss, I. M., & Schönitzer, V. (2006). The distribution of chitin in larval shells of the bivalve mollusk Mytilus galloprovincialis. Journal of Structural Biology, 153(3), 264-277. https://doi.org/10.1016/j.jsb.2005.11.006
  • Xu, Z.H., & Li, X. (2011). Deformation strengthening of biopolymer in nacre. Advanced Functional Materials, 21(20), 3883-3888. https://doi.org/10.1002/adfm.201100167
  • Yang, W., Zhang, G., Liu, H., & Li, X. (2011). Microstructural characterization and hardness behavior of a biological Saxidomus purpuratus shell. Journal of Materials Science & Technology, 27(2), 139-146. https://doi.org/10.1016/s1005-0302(11)60039-x
  • Zhang, R., Xie, L., & Yan, Z. (2019). Biomineralization Mechanism of the Pearl Oyster, Pinctada fucata. Singapore, Springer. https://doi.org/10.1007/978-981-13-1459-9
  • Ziegler, A., Hagedorn, M., Ahearn, G.A., & Carefoot, T.H. (2006). Calcium translocations during the moulting cycle of the semiterrestrial isopod Ligia hawaiiensis (Oniscidea, Crustacea). Journal of Comparative Physiology B, 177(1), 99–108. https://doi.org/10.1007/s00360-006-0112-9

Anodonta anatina midye kabuklarının yapısı ve sertlik özelliklerinin araştırılması

Year 2023, Volume: 40 Issue: 2, 132 - 139, 15.06.2023
https://doi.org/10.12714/egejfas.40.2.07

Abstract

Bu çalışmada, Gölbaşı Gölü'nde (Hatay) yaygın bir popülasyonu bulunan ve ekonomik olarak değerlendirilmeyen tatlı su midyesi Anodonta anatina’nın (Linnaeus, 1758) kabuk yapısı, morfolojik olarak mikro düzeyde incelenmiştir. Midye avcılığı bakımından üzerinde av baskısı olmayan A. anatina'nın kabukları çoğunlukla gölün kıyısında âtıl olarak bulunduğu tespit edilmiştir. Bu midye türü, tatlı su ekolojisi açısından, çok işlevli rollerle ilişkili kompozit bir biyolojik malzeme olma yönünde önem taşımaktadır. Biyolojik bir materyal olarak tatlı su midye kabuğunun olası kullanımı göz önüne alındığında, model tür olarak A. anatina’nın kabuk yapısı, fiziksel özellikleri, mekanik dayanımları, kabuk mikro yapıları ve morfolojik özelliklerinin değerlendirmesi yapılmıştır. Kabuğun dorsal-ventral yönde umbo, orta periostrakum ve pallial kenara yakın bölgeden alınan enine kesitleri incelendiğinde, umbo bölgesindeki periostrakum tabakanın daha prizmatik ve poligonal olduğu tespit edilmiştir. Kabuğun iç kısımlarının parlak sedef tabakasından oluştuğu ve sedefli kabuk kesitlerinde, sedefli tabakanın pallial kenara yakın bölgede daha belirgin sedef katmanları içerdiği belirlenmiştir. Midye kabukları üzerinde, Vickers mikrosertlik testleri yapılmış, iç tabakanın sertlik değerinin en yüksek (625,5 ±172,7 HV) ve dış tabakanın sertlik değerinin iç tabakaya göre daha düşük (531,5 ±110,7 HV) olduğu belirlenmiştir. A. anatina kabuk tozlarının kimyasal bileşimi, X-ışını floresans spektroskopisi ile kalsinasyon işleminden sonra analiz edilmiştir. XRF verilerine dayanarak, biyolojik bir malzeme olan kabuk tozlarının ana bileşiminin kalsiyum oksitten (CaO, ağırlıkça %98,8) oluştuğu belirlenmiştir.

References

  • Barthelat, F., Rim, J., & Espinosa, H. (2009). A review on the structure and mechanical properties of mollusk shells – Perspectives on synthetic biomimetic materials. Applied Scanning Probe Methods XIII, (pp.17-44). Berlin: Springer. https://doi.org/10.1007/978-3-540-85049-6_2
  • Carter, J.G. (1991). Evolutionary significance of shell microstructure in the palaeotaxodonta, pteriomorphia and ısofilibranchia (Bivalvia: Mollusca). Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, 135-296. https://doi.org/10.1007/978-1-4899-5740-5_10
  • Carter, J. G., Harries, P., Malchus, N., Sartori, A., Anderson, L., Bieler, R., Bogan, A., Coan, E., Cope, J., Cragg, S., Garcia-March, J., Hylleberg, J., Kelley, P., Kleemann, K., Kriz, J., McRoberts, C., Mikkelsen, P.,
  • Pojeta, Jr., J., Skelton, P.W., Temkin, I., Yancey, T., & Zieritz, A. (2012). Illustrated Glossary of the Bivalvia. Kansas, Treatise Online. https://doi.org/10.17161/to.v0i0.4322
  • Chakraborty, A., Parveen, S., Chanda, D. K., & Aditya, G. (2020). An insight into the structure, composition and hardness of a biological material: the shell of freshwater mussels. Royal Society of Chemistry Advances, 10(49), 29543-29554. https://doi.org/10.1039/d0ra04271d
  • Checa, A. (2000). A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). Tissue and Cell, 32(5), 405-416. https://doi.org/10.1054/tice.2000.0129
  • De Paula, S. M., & Silveira, M. (2009). Studies on molluscan shells: Contributions from microscopic and analytical methods. Micron, 40(7), 669-690. https://doi.org/10.1016/j.micron.2009.05.006
  • Dhanaraj, K., & Suresh, G. (2018). Conversion of waste sea shell (Anadara granosa) into valuable nanohydroxyapatite (nHAp) for biomedical applications. Vacuum, 152, 222-230. https://doi.org/10.1016/j.vacuum.2018.03.021
  • Frenzel, M., & Harper, E.M. (2011). Micro-structure and chemical composition of vateritic deformities occurring in the bivalve Corbicula fluminea (Müller, 1774). Journal of Structural Biology, 174(2), 321-332. https://doi.org/10.1016/j.jsb.2011.02.002
  • Gao, Z., Yang, H., & Liu, Q. (2019). Natural seashell waste as an efficient and low‐cost catalyst for the synthesis of arylmethylenemalonitriles. Clean – Soil, Air, Water, 47(10), 1900129. https://doi.org/10.1002/clen.201900129
  • Graf, D.L., & Cummings, K.S. (2007). Review of the systematics and global diversity of freshwater mussel species (Bivalvia: Unionoida). Journal of Molluscan Studies, 73(4), 291-314. https://doi.org/10.1093/mollus/eym029
  • Istin, M., & Kirschner, L.B. (1968). On the origin of the bioelectrical potential generated by the freshwater clam mantle. Journal of General Physiology, 51(4), 478-496. https://doi.org/10.1085/jgp.51.4.478
  • Kinzelbach, R. (1989). Freshwater mussels (genus Anodonta) from Anatolia and adjacent areas (Bivalvia, Unionidae). Zoology in the Middle East, 3(1), 59-72. https://doi.org/10.1080/09397140.1989.10637576
  • Lee, S.W., Kim, G.H., & Choi, C.S. (2008). Characteristic crystal orientation of folia in oyster shell, Crassostrea gigas. Materials Science and Engineering: C, 28(2), 258-263. https://doi.org/10.1016/j.msec.2007.01.001
  • Lemos, A., Rocha, J., Quaresma, S., Kannan, S., Oktar, F., Agathopoulos, S., & Ferreira, J. (2006). Hydroxyapatite nano-powders produced hydrothermally from nacreous material. Journal of the European Ceramic Society, 26(16), 3639-3646. https://doi.org/10.1016/j.jeurceramsoc.2005.12.011
  • Leung, H., & Sinha, S.K. (2009). Scratch and indentation tests on seashells. Tribology International, 42(1), 40-49. https://doi.org/10.1016/j.triboint.2008.05.015
  • Liang, Y., Zhao, Q., Li, X., Zhang, Z., & Ren, L. (2016). Study of the microstructure and mechanical properties of white clam shell. Micron, 87, 10-17. https://doi.org/10.1016/j.micron.2016.04.007
  • Lopes-Lima, M., Lopes, A., Casaca, P., Nogueira, I., Checa, A., & Machado, J. (2008). Seasonal variations of pH, pCO2, pO2, HCO3 − and Ca2+ in the haemolymph: implications on the calcification physiology in Anodonta cygnea. Journal of Comparative Physiology B, 179(3), 279-286. https://doi.org/10.1007/s00360-008-0311-7
  • Lopes-Lima, M., Gürlek, M. E., Kebapçı, M., Şereflişan, H., Yanık, T., Mirzajani, A., Neubert, E., Prié, V., Teixeira, A., Gomes-dos-Santos, A., Barros-García, D., Bolotov, I.N., Kondakov, A.V., Vikhrev, I.V., Tomilova, A.A., Özcan, T., Altun, A., Gonçalves, D.V., Bogan, A.E., & Froufe, E. (2021). Diversity, biogeography, evolutionary relationships, and conservation of Eastern Mediterranean freshwater mussels (Bivalvia: Unionidae). Molecular Phylogenetics and Evolution, 163, 107261. https://doi.org/10.1016/j.ympev.2021.107261
  • Lowenstam, H.A., & Weiner, S. (1989). On Biomineralization. New York, Oxford Academic. https://doi.org/10.1093/oso/9780195049770.001.0001
  • Lv, J., Jiang, Y., & Zhang, D., (2015). Structural and mechanical characterization of Atrina pectinata and freshwater mussel shells. Journal of Bionic Engineering, 12(2), 276-284. https://doi.org/10.1016/s1672-6529(14)60120-7
  • Marie, B., Joubert, C., Tayalé, A., Zanella-Cléon, I., Belliard, C., Piquemal, D., Cochennec-Laureau, N., Marin, F., Gueguen, Y., & Montagnani, C. (2012). Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proceedings of the National Academy of Sciences, 109(51), 20986-20991. https://doi.org/10.1073/pnas.1210552109
  • Marin, F. (2012). The formation and mineralization of mollusk shell. Frontiers in Bioscience, S4 (3), 1099-1125. https://doi.org/10.2741/s321
  • Meng, Y., Guo, Z., Fitzer, S.C., Upadhyay, A., Chan, V.B.S., Li, C., Cusack, M., Yao, H., Yeung, K.W.K., & Thiyagarajan, V. (2018). Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: A hierarchical analysis. Biogeosciences, 15(22), 6833-6846. https://doi.org/10.5194/bg-15-6833-2018
  • Moustafa, H., Youssef, A.M., Duquesne, S., & Darwish, N.A. (2015). Characterization of bio-filler derived from seashell wastes and its effect on the mechanical, thermal, and flame retardant properties of ABS composites. Polymer Composites, 38(12), 2788-2797. https://doi.org/10.1002/pc.23878
  • Nakamura Filho, A., Almeida, A.C.D., Riera, H.E., Araújo, J.L.F.D., Gouveia, V.J.P., Carvalho, M.D.D., & Cardoso, A.V. (2014). Polymorphism of CaCO3 and microstructure of the shell of a Brazilian invasive mollusc (Limnoperna fortunei). Materials Research, 17(1), 15-22. https://doi.org/10.1590/s1516-14392014005000044
  • Özer, A., & Öksüz, K. (2019). The effect of yttrium oxide in hydroxyapatite/aluminum oxide hybrid biocomposite materials: Phase, mechanical and morphological evaluation. Materialwissenschaft und Werkstofftechnik, 50(11), 1382-1390. https://doi.org/10.1002/mawe.201800141
  • Piwoni-Piórewicz, A., Kukliński, P., Strekopytov, S., Humphreys-Williams, E., Najorka, J., & Iglikowska, A. (2017). Size effect on the mineralogy and chemistry of Mytilus trossulus shells from the southern Baltic Sea: implications for environmental monitoring. Environmental Monitoring and Assessment, 189(4). https://doi.org/10.1007/s10661-017-5901-y
  • Pratoomchat, B., Sawangwong, P., Pakkong, P., & Machado, J. (2002). Organic and inorganic compound variations in haemolymph, epidermal tissue and cuticle over the molt cycle in Scylla serrata (Decapoda). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 131(2), 243-255. https://doi.org/10.1016/s1095-6433(01)00447-0
  • Salas, C., Marina, P., Checa, A. G., & Rueda, J.L. (2011). The periostracum of Digitaria digitaria (Bivalvia: Astartidae): formation and structure. Journal of Molluscan Studies, 78(1), 34-43. https://doi.org/10.1093/mollus/eyr040
  • Schönitzer, V., & Weiss, I.M. (2007). The structure of mollusc larval shells formed in the presence of the chitin synthase inhibitor Nikkomycin Z. BMC Structural Biology, 7(1), 1-24. https://doi.org/10.1186/1472-6807-7-71
  • Şereflişan H.O. (2003). Investigations on Reproductive Biology and Aquaculture Potential of Unio terminalis delicatus Inhabiting Gölbaşi Lake (Hatay). Doctoral dissertation, Çukurova University, Türkiye. (In Turkish with English abstract)
  • Şereflişan, H., Menderes, E., & Soylu, S. (2009a). Description of glochidia of three species of freshwater mussels (Unionidae) from southeastern Turkey. Malacologia, 51(1), 165-172. https://doi.org/10.4002/040.051.0112
  • Şereflişan, H., Çek, E., & Şereflişan, M. (2009b). Histological studies on gametogenesis, hermaphroditism and the gametogenic cycle of Anodonta gabillotia pseudodopsis (Locard, 1883) in the Lake Gölbaşi, Turkey (Bivalvia: Unionidae). Journal of Shellfish Research, 28(2), 337-344. https://doi.org/10.2983/035.028.0216
  • Tomilova, A.A., Lyubas, A.A., Kondakov, A.V., Konopleva, E.S., Vikhrev, I.V., Gofarov, M.Y., Ozcan, T., Altun, A., Ozcan, G., Gürlek, M. E., Şereflişan, H., Kebapçi, M., Froufe, E., Lopes-Lima, M., & Bolotov, I.N. (2020). An endemic freshwater mussel species from the Orontes River basin in Turkey and Syria represents duck mussel’s intraspecific lineage: Implications for conservation. Limnologica, 84, 125811. https://doi.org/10.1016/j.limno.2020.125811
  • Türkmen, M., Naz, M. & Dinler, Z.M. (2006). Zooplankton species composition and biomass of Lake Gölbaşı (Hatay, Türkiye). Ege Journal of Fisheries and Aquatic Sciences, 23(1), 163-167.
  • Vaughn, C.C. (2017). Ecosystem services provided by freshwater mussels. Hydrobiologia, 810(1), 15-27. https://doi.org/10.1007/s10750-017-3139-x Wegner, G. (2005). Biomineralization: Progress in Biology, Molecular Biology and Application. U.S.A, Wiley. https://doi.org/10.1002/cbic.200500033
  • Weiss, I. M., & Schönitzer, V. (2006). The distribution of chitin in larval shells of the bivalve mollusk Mytilus galloprovincialis. Journal of Structural Biology, 153(3), 264-277. https://doi.org/10.1016/j.jsb.2005.11.006
  • Xu, Z.H., & Li, X. (2011). Deformation strengthening of biopolymer in nacre. Advanced Functional Materials, 21(20), 3883-3888. https://doi.org/10.1002/adfm.201100167
  • Yang, W., Zhang, G., Liu, H., & Li, X. (2011). Microstructural characterization and hardness behavior of a biological Saxidomus purpuratus shell. Journal of Materials Science & Technology, 27(2), 139-146. https://doi.org/10.1016/s1005-0302(11)60039-x
  • Zhang, R., Xie, L., & Yan, Z. (2019). Biomineralization Mechanism of the Pearl Oyster, Pinctada fucata. Singapore, Springer. https://doi.org/10.1007/978-981-13-1459-9
  • Ziegler, A., Hagedorn, M., Ahearn, G.A., & Carefoot, T.H. (2006). Calcium translocations during the moulting cycle of the semiterrestrial isopod Ligia hawaiiensis (Oniscidea, Crustacea). Journal of Comparative Physiology B, 177(1), 99–108. https://doi.org/10.1007/s00360-006-0112-9
There are 42 citations in total.

Details

Primary Language English
Subjects Environmental Sciences, Maritime Engineering (Other), Chemical Engineering, Water Invertebrates
Journal Section Articles
Authors

Kerim Emre Öksüz 0000-0001-7424-5930

Hülya Şereflişan 0000-0002-2510-3714

Early Pub Date June 10, 2023
Publication Date June 15, 2023
Submission Date November 29, 2022
Published in Issue Year 2023Volume: 40 Issue: 2

Cite

APA Öksüz, K. E., & Şereflişan, H. (2023). Investigation of the structure and hardness properties of Anodonta anatina mussel shells. Ege Journal of Fisheries and Aquatic Sciences, 40(2), 132-139. https://doi.org/10.12714/egejfas.40.2.07