Research Article
BibTex RIS Cite

Farklı su sıcaklıklarındaki pullu sazan (Cyprinus carpio Linnaeus, 1758)’ da polenin antioksidan etkisinin araştırılması

Year 2023, Volume: 40 Issue: 1, 69 - 76, 15.03.2023
https://doi.org/10.12714/egejfas.40.1.10

Abstract

Bu çalışmada farklı su sıcaklıklarında yemlerine polen ilave edilmiş pullu sazanda bazı immunolojik ve antioksidan parametrelerdeki değişimlerin araştırılması amaçlandı. Balıklar su sıcaklığı 18 oC, 23 oC ve 28 oC’ ye ayarlanmış akvaryumlara stoklandı. Balıklara % 2,5 oranında polen içeren yemler 14 gün süreyle verildi. Balıklardan alınan kan ve doku örneklerinde immunolojik ve oksidan/antioksidan parametreler analiz edildi.
Kontrol grubu (23 ºC) ile kıyaslandığında, 18 ºC' deki grubun NBT aktivitesinde istatistiksel olarak önemli bir artış belirlendi. 28 ºC' deki grubun NBT aktivitesinde belirlenen azalma istatistiksel olarak önemsiz bulundu. 18 ºC' deki grubun total protein ve total immunoglobulin düzeyleri azalırken, 28 ºC' deki grupta her iki parametre için belirlenen artış önemsiz bulundu. Kontrol grubu (23 ºC)' na kıyasla 18 ºC ve 28 ºC sıcaklıkta tutulan ve polen uygulanan grupların NBT aktivitesi ile total protein ve total immunoglobulin düzeylerinin kontrol grubundan istatistiksel olarak önemli herhangi bir farklılık göstermediği belirlendi. Kontrol grubu (23 ºC)' na kıyasla, 18 ºC ve 28 ºC' deki grupların doku MDA düzeyleri arttı. Sıcaklıktaki değişimle eşzamanlı olarak polen uygulanan grupların MDA düzeyleri 18 ºC ve 28 ºC' deki gruplardan daha düşüktü. Kontrol grubu (23 ºC) ile kıyaslandığında, 18 ºC ve 28 ºC' deki grupların doku GSH düzeyleri ve GST aktiviteleri azaldı. Sıcaklıktaki değişimle eşzamanlı olarak polen uygulanan gruplarda GSH düzeyleri ve GST aktiviteleri 18 ºC ve 28 ºC' deki gruplardan daha yüksekti. Sonuç olarak balıklarda sıcaklık farklılıklarından kaynaklanan stres polenle önlenebilir.

Supporting Institution

Fırat Üniversitesi Bilimsel Araştırma Projeleri (FÜBAP) Yönetim Birimi

Project Number

SÜF.16.07

Thanks

BBu çalışma; Yüksek Mühendis Merve TAŞKAN' ın yüksek lisans tezinden özetlenmiş ve Fırat Üniversitesi Bilimsel Araştırma Projeleri (FÜBAP) Yönetim Birimi tarafından SÜF.16.07. nolu proje olarak desteklenmiştir. Polen örneklerinin palinolojik olarak identifikasyonu için Erciyes Üniversitesi Seyrani Ziraat Fakültesi' nden Prof. Dr. Sibel SİLİCİ’ ye teşekkür ederiz.

References

  • Abbass, A.A., El-Asely, A.M., & Kandiel, M.M.M. (2012). Effects of dietary propolis and pollen on growth performance, fecundity and some hematological parameters of Oreochromis niloticus. Turkish Journal of Fisheries and Aquatic Sciences, 12, 851-859. https://doi.org/10.4194/1303-2712-v12_4_13
  • Alfonso, S., Gesto, M., & Sadoul, B. (2020). Temperature increase and its effects on fish stress physiology in the context of global warming. Journal of Fish Biology, 98, 1496-1508. https://doi.org/10.1111/jfb.14599
  • Arda, M., Seçer, S., & Sarıeyyüpoğlu, M. (2017). Fish Diseases. (Balık Hastalıkları). Ankara: Medisan Yayınevi (in Turkish).
  • Belló, A.R.R., Fortes, E., Belló-Klein, A., Belló, A.A., Llesuy, S.F., Robaldo, R.B., & Bianchini, A. (2000). Lipid Peroksidataion induced by Clinostomum detruncatum in muscle of the freshwater fish Rhamdia quelen. Diseases of Aquatic Organisms, 42, 233-236. https://doi.org/10.3354/dao042233
  • Bragadottir, M. 2001. Endogenous antioxidants in fish. The Degree of Master of Science in food science, Department of Food Science, University of Iceland.
  • Buchtíková, S., Šimková, A., Rohlenová, K., Flajšhans, M., Lojek, A., Lilius, E.M., & Hyršl, P. (2011). The seasonal changes in innate immunity of the common carp (Cyprinus carpio). Aquaculture, 318, 169-175. https://doi.org/10.1016/j.aquaculture.2011.05.013
  • Çankaya, N., & Korkmaz, A. (2008). Pollen. (Polen). Samsun: Samsun İl Tarım Müdürlüğü Çiftçi Eğitimi ve Yayım Şubesi Yayını (in Turkish)
  • Çelikkale, M.S. (1994). Freshwater Fish Culture. (İç Su Balıkları Yetiştiriciliği). Trabzon: Karadeniz Teknik Üniversitesi Yayınları, (in Turkish).
  • Darson, M. (1981). Role and characterization of fish antibody. Developmental Biological Standardisation, 49, 307-319.
  • Dastan, S.D., Gulhan, M.F., Selamoglu, Z., & Dastan, T. (2017). The determination of different effective concentration of ethanolic extract of bee pollen on biochemical analysis in liver, spleen and heart tissues of rainbow trout, Oncorhynchus mykiss (Walbaum, 1792). Iranian Journal of Fisheries Sciences, 16(1), 326-340.
  • Diker, S. (1998). Immunology. (İmmunoloji). Ankara: Medisan Yayınevi.
  • Dittmar, J., Janssen, H., Kuske, A., Kurtz, J., & Scharsack, J.P. (2014). Heat and immunity: an experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus aculeatus). Journal of Animal Ecology, 83, 744-757. https://doi.org/10.1111/1365-2656.12175
  • El-Asely, A.M., Abbass, A.A., & Austin, B. (2014). Honey bee pollen improves growth, immunity and protection of Nile tilapia (Oreochromis niloticus) against infection with Aeromonas hydrophila. Fish and Shellfish Immunology, 40, 500-506. https://doi.org/10.1016/j.fsi.2014.07.017
  • Ellman, G.L. (1959). Tissue sulphydryl groups. Archives of Biochemistry and Biophysics, 82, 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
  • Eraslan, G., Kanbur, M., & Silici, S., 2009. Effect of carbaryl on some biochemical changes in rats: The ameliorative effect of bee pollen, Food and Chemical Toxicology, 47, 86-91. https://doi.org/10.1016/j.fct.2008.10.013
  • Ferreira, D., Unfer, T.C., Rocha, H.C., Kreutz, L.C., Gessi Koakoski, G., & Barcellos, L.J.G. (2012). Antioxidant activity of bee products added to water in tebuconazole-exposed fish. Neotropical Ichthyology, 10(1), 215-220. https://doi.org/10.1590/S1679-62252012000100021
  • Habig, W.H., Pabst, M.J., & Jakoby, W.B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry, 249 (22), 7130-7139.
  • Hamed, R.R., Farid, N.M., Elowa, S.H.E., & Abdalla, A.M. (2003). Glutathione related enzyme levels of freshwater fish as bioindicators of pollution. The Environmentalist, 23, 313–322. https://doi.org/10.1023/B:ENVR.0000031409.09024.cc
  • Harlioğlu, M.M., Çakmak, M.N., Köprücü, K., Aksu, Ö., Harlioğlu, A.G., Mişe Yonar, S., Çakmak Duran, T., Özcan, S., & Gündoğdu, H. (2012). The effect of dietary n-3 series fatty acids on the number of pleopadal egg and stage 1 juvenile in freshwater crayfish, Astacus leptodactylus Eschscholtz. Aquaculture Research, 44, 860-868. https://doi.org/10.1111/j.1365-2109.2012.03090.x
  • Hayes, J.D., & McLellan, L.I. (1999). Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stres. Free Radical Research, 31, 273-300. https://doi.org/10.1080/10715769900300851
  • Heise, K., Puntarulo, S., Nikinmaa, M., Abele, D., & Pörtner, H.O. (2006). Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout Zoarces viviparus L.. Journal of Experimental Biology, 209, 353-363. https://doi.org/10.1242/jeb.01977
  • Holland, M.C.H., & Lambris, J.D. (2002). The complement system in teleosts. Fish and Shellfish Immunology, 12, 399-420. https://doi.org/10.1006/fsim.2001.0408
  • Hwang, D.F., & Lin, T.K. (2002). Effect of temperature on dietary vitamin C requirement and lipid in common carp. Comparative Biochemistry and Physiology B, 131(1), 1-7. https://doi.org/10.1016/s1096-4959(01)00449-3
  • Jeney, G., Galeotti, M., Volpatti, D., Jeney, Z., & Anderson, D. P., 1997. Prevention of stress in rainbow trout (Oncorhynchus mykiss) fed diets containing different doses of glucan. Aquaculture, 154, 1-15. https://doi.org/10.1016/S0044-8486(97)00042-2
  • Kaur, M., Atif, F., Ali, M., Rehman, H., & Raisuddin, S., 2005. Heat stress-induced alterations of antioxidants in the freshwater fish Channa punctata Bloch. Journal of Fish Biology, 67, 1653-1665. https://doi.org/10.1111/j.1095-8649.2005.00872.x
  • Langston, A.L., Hoare, R., Stefansson, M., Fitzgerald, R., Wergeland, H., & Mulcahy, M. (2002). The effect of temperature on non-specific defence parameters of three strains of juvenile Atlantic halibut (Hippoglossus hippoglossus L.). Fish and Shellfish Immunology, 12, 61-76. https://doi.org/10.1006/fsim.2001.0354
  • Leja, M., Mareczek, A., Wyżgolik, G., Klepacz-Baniak, J., & Czekońska, K. (2007). Antioxidative properties of bee pollen in selected plant species, Food Chemistry, 100(1), 237-240. https://doi.org/10.1016/j.foodchem.2005.09.047
  • Lou, B., Xu, D., Xu, H., Zhan, W., Mao, G., & Shi, H. (2011). Effect of high water temperature on growth, survival and antioxidant enzyme activities in the Japanese flounder Paralichthys olivaceus. African Journal of Agricultural Research, 6(12), 2875-2882.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randal, R.J. (1951). Protein measurement with Folin phenol reagent. Journal of Biochemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6 Lushchak, V.I. (2011). Environmentally induced oxidative stress in aquatic animals, Aquatic Toxicology, 101(1), 13-30. https://doi.org/10.1016/j.aquatox.2010.10.006
  • Lushchak, V.I., & Bagnyukova, T.V., (2007). Hypoxia induces oxidative stress in tissues of a goby, the rotan Perccottus glenii. Comparative Biochemistry and Physiology B, 148(4), 390-397. https://doi.org/10.1016/j.cbpb.2007.07.007
  • Makrinos, D.L., & Bowden, T.J. (2016). Natural environmental impacts on teleost immune function. Fish and Shellfish Immunology, 53, 50-57. https://doi.org/10.1016/j.fsi.2016.03.008
  • Malek, R.L., Sajadi, H., Abraham, J., Grundy, M.A., & Gerhard, G.S. (2004). The effects of temperature reduction on gene expression and oxidative stress in skeletal muscle from adult zebrafish. Comparative Biochemistry and Physiology C, 138(3), 363-373. https://doi.org/10.1016/j.cca.2004.08.014
  • Martinez-Álvarez, R.M., Morales, A.E., & Sanz, A. (2005). Antioxidant defenses in fish: Biotic and abiotic factors. Fish Biology and Fisheries, 15, 75-88.
  • Mişe Yonar, S., Sakin, F., Yonar, M.E., Ispir, U., & Kirici, M. (2011). Oxidative Stress Biomarkers of Exposure to Deltamethrin in Rainbow Trout Fry (Oncorhynchus mykiss). Fresenius Environmental Bulletin, 20(8), 1931-1935.
  • Mişe Yonar, S., Ural, MŞ., Silici, S., & Yonar, M.E. (2014). Malathion-induced changes in the haematological profile, the immune response, and the oxidative/antioxidant status of Cyprinus carpio carpio: Protective role of propolis. Ecotoxicology and Environmental Safety, 102, 202-209. https://doi.org/10.1016/j.ecoenv.2014.01.007
  • Mişe Yonar, S., Yonar, M.E., Sağlam, N., & S. Silici, S. (2013). Farklı su sıcaklıklarında tutulmuş pullu sazan (Cyprinus carpio carpio linnaeus, 1758)’nın karaciğer ve böbreğindeki bazı antioksidan parametreler üzerine propolisin etkisi. Menba, Kastomunu Üniversitesi Su Ürünleri Fakültesi Dergisi, 1, 11-16.
  • Mişe Yonar, S., Yonar, M.E., & Ural, M.Ş. (2017a). Antioxidant effect of curcumin against exposure to malathion in Cyprinus carpio. Cellular and Molecular Biology, 63(3), 68-72. https://doi.org/10.14715/cmb/2017.63.3.13
  • Mişe Yonar, S., Köprücü, K., Yonar, M.E., & Silici, S. (2017b). Effects of dietary propolis on the number and size of pleopadal egg, oxidative stress and antioxidant status of freshwater crayfish (Astacus leptodactylus Eschscholtz). Animal Reproduction Science, 184, 149-159. https://doi.org/10.1016/j.anireprosci.2017.07.010
  • Mişe Yonar, S., Yonar, M.E., Pala, A., Sağlam, N., & Sakin, F. (2020). Effect of trichlorfon on some haematological and biochemical changes in Cyprinus carpio: The ameliorative effect of lycopene. Aquaculture Reports, 16, 100246. https://doi.org/10.1016/j.aqrep.2019.100246
  • Morales, A.E., Pèrez-Jimènez, A., Hidalgo, M.C., Abellán, E., & Gabriel C.G. (2004). Oxidative stres and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comporative Biochemistry and Physiology C, 139(1-3), 153-161. https://doi.org/10.1016/j.cca.2004.10.008
  • Mourente, G., Diaz-Salvago, E., Bell, J.G., & Tocher, D.R. (2002). Increased activities of hepatic antioxidant defence enzymes in juvenile gilthead sea bream (Sparus aurata L.) fed dietary oxidised oil: attenuation by dietary vitamin E. Aquaculture, 214, 343-361. https://doi.org/10.1016/S0044-8486(02)00064-9
  • Ndong, D., Chen, Y., Lin, Y., Vaseeharan, B., & Chen, J. (2007). The immune response of tilapia Oreochromis mossambicus and its susceptibility to Streptococcus iniae under stress in low and high temperatures. Fish and Shellfish Immunology, 22, 686-694. https://doi.org/10.1016/j.fsi.2006.08.015
  • Nikoskelainen, S., Bylund, G., & Lilius, E.M. (2004). Effect of environmental temperature on rainbow trout (Oncorhynchus mykiss) innate immunity. Development and Comparative Immunology, 28, 581-592. https://doi.org/10.1016/j.dci.2003.10.003
  • Parihar, M.S., & Dubey, A.K. (1995). Lipid peroxidation and ascorbic acid status in respiratory organs of male and female freshwater catfish Heteropneustes fossilis exposed to temperature increase. Comparative Biochemistry and Physiology C, 112(3), 309-313. https://doi.org/10.1016/0742-8413(95)02025-x
  • Parihar, M.S. Javeri, T., Hemnani, T., Dubey, A.K., & Prakash, P. (1997). Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the fresh water catfish (Heteropneustes fossilis) to short-term elevated temperature. Journal of Thermal Biology, 22, 151-156. https://doi.org/10.1016/S0306-4565(97)00006-5
  • Placer, Z.A. Cushman, L., & Johnson, B.C. (1966). Estimation of products of lipid peroxidation (malonyl dialdehyde) in biological fluids. Analytical Biochemistry, 16, 359-364. https://doi.org/10.1016/0003-2697(66)90167-9
  • Puangkaew, J., Kiron, V., Satoh, S., & Watanabe, T. (2005). Antioxidant defense of rainbow trout (Oncorhynchus mykiss) in relation to dietary n-3 highly unsaturated fatty acids and vitamin E contents. Comparative Biochemistry and Phsiology C, 140, 187-196. https://doi.org/10.1016/j.cca.2005.01.016
  • Roche, H., & Boge, G. (1996). Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Marine Environmental Research, 41, 27-43. https://doi.org/10.1016/0141-1136(95)00015-1
  • Sakin, F., Ispir, Ü., Mişe Yonar, S., Yonar, M.E., & Taysi, R. (2011). Effect of short-term cypermethrin exposure on oxidant-antioxidant balance in the whole body of rainbow trout fry (Oncorhynchus mykiss). Fresenius Environmental Bulletin, 20(10a), 2806-2809.
  • Sakin, F., Mişe Yonar, S., Yonar, M.E., & Saglam, N. (2012). Changes in selected immunological parameters and oxidative stress responses in different organs of Oncorhynchus mykiss exposed to ivermectin. Revista de Chimie, 63(10), 989-995.
  • Siwicki, A., & Studnicka, M. (1987). The phagocytic ability of neutrophils and serum lysozyme activity in experimentally infected carp Cyprinus carpio L. Journal of Fish Biology, 31(A), 57-60. https://doi.org/10.1111/j.1095-8649.1987.tb05293.x
  • Siwicki, A.K., Anderson, D.P., & Rumsey, G.L. (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Veterinary Immunology and Immunopathology, 41, 125–139. https://doi.org/10.1016/0165-2427(94)90062-0
  • Tort, L., Rotllant, J., & Roviva, L. (1998). Immunological suppression in gilthead sea bream Sparus aurata of the north-west Mediterranean at low temperatures. Comparative Biochemistry and Physiology Part A, 120, 175-179. https://doi.org/10.1016/S1095-6433(98)10027-2
  • Tort, L., Rotllant, J., Liarte, C., Acerete, L., Hernández, A., Ceulemans, S., Coutteau, P., & Padros, F. (2004). Effect of temperature decrease on feeding rates, immune indicators and histopathological changes of gilthead sea bream Sparus aurata fed with an experimental diet. Aquaculture, 229, 55-65. https://doi.org/10.1016/S0044-8486(03)00403-4
  • Vinagre, C., Madeira, D., Narciso, L., Cabral, H.N., & Diniz, M. (2012). Effect of temperature on oxidative stress in fish: Lipid peroxidation and catalase activity in the muscle of juvenile seabass, Dicentrarchus labrax. Ecological Indicators, 23, 274-279. https://doi.org/10.1016/j.ecolind.2012.04.009
  • Welker, T.L., & Congleton, J.L. (2004). Oxidative stress in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum). Aquaculture Research, 35, 881-887. https://doi.org/10.1111/j.1365-2109.2004.01080.x
  • Xu, X., Sun, L., Dong, J., & Zhang, H. (2009). Breaking the cells of rape bee pollen and consecutvive extraction of functional oil with superficial carbon oxide, Innovative Food Science and Emerging Technologies, 10, 42-46. https://doi.org/10.1016/j.ifset.2008.08.004
  • Yang, X., Guo, D., Zhang, J., & Wu, M. (2007). Characterization and anti-tumor activity of pollen polysaccharide. International Immunopharmacology, 7(3), 401-408. https://doi.org/10.1016/j.intimp.2006.11.001

Investigation of antioxidant effect of pollen in scaly carp (Cyprinus carpio Linnaeus, 1758) in different water temperature

Year 2023, Volume: 40 Issue: 1, 69 - 76, 15.03.2023
https://doi.org/10.12714/egejfas.40.1.10

Abstract

In this study, it was aimed to investigate changes in some immunological and antioxidant parameters in scaly carp (Cyprinus carpio) added pollen to their feed in different water temperatures. Fish were stocked to glass aquariums adjusted to 18 °C, 23 °C and 28 °C water temperature. Fish were given diets containing % 2,5 pollen for 14 days. Blood and tissue samples were analysed to determine the immunological parameters and oxidant/antioxidant status.
When compared to the control group (23 ºC), a statistically significant increase in the NBT activity of the groups at 18 ºC was observed. Decrease in the NBT activity of the group at 28 º C was statistically insignificant. The total protein and total immunoglobulin levels of the group at 18 º C were decreased, while increase in both parameters at 28 º C was not significant. When compared to the control group (23 ºC), the NBT activity, the total protein and total immunoglobulin levels in the groups that maintained at the same temperature with the control group (23 º C) and applied pollen did not show any statistically significant difference. The tissue MDA levels were increased in the groups at 18 °C and 28 °C when compared to the control group (23 º C). The tissue MDA levels of the groups treated pollen simultaneously with the change in temperature were lower than the groups at 18 °C and 28 °C. The tissue GSH levels and GST activities were decreased in the groups at 18 °C and 28 °C when compared to the control group (23 º C). The tissue GSH levels and GST activities of the groups treated pollen simultaneously with the change in temperature were higher than the groups at 18 °C and 28 °C. In conclusion, stress caused by temperature differences in fish may be prevented by pollen.

Project Number

SÜF.16.07

References

  • Abbass, A.A., El-Asely, A.M., & Kandiel, M.M.M. (2012). Effects of dietary propolis and pollen on growth performance, fecundity and some hematological parameters of Oreochromis niloticus. Turkish Journal of Fisheries and Aquatic Sciences, 12, 851-859. https://doi.org/10.4194/1303-2712-v12_4_13
  • Alfonso, S., Gesto, M., & Sadoul, B. (2020). Temperature increase and its effects on fish stress physiology in the context of global warming. Journal of Fish Biology, 98, 1496-1508. https://doi.org/10.1111/jfb.14599
  • Arda, M., Seçer, S., & Sarıeyyüpoğlu, M. (2017). Fish Diseases. (Balık Hastalıkları). Ankara: Medisan Yayınevi (in Turkish).
  • Belló, A.R.R., Fortes, E., Belló-Klein, A., Belló, A.A., Llesuy, S.F., Robaldo, R.B., & Bianchini, A. (2000). Lipid Peroksidataion induced by Clinostomum detruncatum in muscle of the freshwater fish Rhamdia quelen. Diseases of Aquatic Organisms, 42, 233-236. https://doi.org/10.3354/dao042233
  • Bragadottir, M. 2001. Endogenous antioxidants in fish. The Degree of Master of Science in food science, Department of Food Science, University of Iceland.
  • Buchtíková, S., Šimková, A., Rohlenová, K., Flajšhans, M., Lojek, A., Lilius, E.M., & Hyršl, P. (2011). The seasonal changes in innate immunity of the common carp (Cyprinus carpio). Aquaculture, 318, 169-175. https://doi.org/10.1016/j.aquaculture.2011.05.013
  • Çankaya, N., & Korkmaz, A. (2008). Pollen. (Polen). Samsun: Samsun İl Tarım Müdürlüğü Çiftçi Eğitimi ve Yayım Şubesi Yayını (in Turkish)
  • Çelikkale, M.S. (1994). Freshwater Fish Culture. (İç Su Balıkları Yetiştiriciliği). Trabzon: Karadeniz Teknik Üniversitesi Yayınları, (in Turkish).
  • Darson, M. (1981). Role and characterization of fish antibody. Developmental Biological Standardisation, 49, 307-319.
  • Dastan, S.D., Gulhan, M.F., Selamoglu, Z., & Dastan, T. (2017). The determination of different effective concentration of ethanolic extract of bee pollen on biochemical analysis in liver, spleen and heart tissues of rainbow trout, Oncorhynchus mykiss (Walbaum, 1792). Iranian Journal of Fisheries Sciences, 16(1), 326-340.
  • Diker, S. (1998). Immunology. (İmmunoloji). Ankara: Medisan Yayınevi.
  • Dittmar, J., Janssen, H., Kuske, A., Kurtz, J., & Scharsack, J.P. (2014). Heat and immunity: an experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus aculeatus). Journal of Animal Ecology, 83, 744-757. https://doi.org/10.1111/1365-2656.12175
  • El-Asely, A.M., Abbass, A.A., & Austin, B. (2014). Honey bee pollen improves growth, immunity and protection of Nile tilapia (Oreochromis niloticus) against infection with Aeromonas hydrophila. Fish and Shellfish Immunology, 40, 500-506. https://doi.org/10.1016/j.fsi.2014.07.017
  • Ellman, G.L. (1959). Tissue sulphydryl groups. Archives of Biochemistry and Biophysics, 82, 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
  • Eraslan, G., Kanbur, M., & Silici, S., 2009. Effect of carbaryl on some biochemical changes in rats: The ameliorative effect of bee pollen, Food and Chemical Toxicology, 47, 86-91. https://doi.org/10.1016/j.fct.2008.10.013
  • Ferreira, D., Unfer, T.C., Rocha, H.C., Kreutz, L.C., Gessi Koakoski, G., & Barcellos, L.J.G. (2012). Antioxidant activity of bee products added to water in tebuconazole-exposed fish. Neotropical Ichthyology, 10(1), 215-220. https://doi.org/10.1590/S1679-62252012000100021
  • Habig, W.H., Pabst, M.J., & Jakoby, W.B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry, 249 (22), 7130-7139.
  • Hamed, R.R., Farid, N.M., Elowa, S.H.E., & Abdalla, A.M. (2003). Glutathione related enzyme levels of freshwater fish as bioindicators of pollution. The Environmentalist, 23, 313–322. https://doi.org/10.1023/B:ENVR.0000031409.09024.cc
  • Harlioğlu, M.M., Çakmak, M.N., Köprücü, K., Aksu, Ö., Harlioğlu, A.G., Mişe Yonar, S., Çakmak Duran, T., Özcan, S., & Gündoğdu, H. (2012). The effect of dietary n-3 series fatty acids on the number of pleopadal egg and stage 1 juvenile in freshwater crayfish, Astacus leptodactylus Eschscholtz. Aquaculture Research, 44, 860-868. https://doi.org/10.1111/j.1365-2109.2012.03090.x
  • Hayes, J.D., & McLellan, L.I. (1999). Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stres. Free Radical Research, 31, 273-300. https://doi.org/10.1080/10715769900300851
  • Heise, K., Puntarulo, S., Nikinmaa, M., Abele, D., & Pörtner, H.O. (2006). Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout Zoarces viviparus L.. Journal of Experimental Biology, 209, 353-363. https://doi.org/10.1242/jeb.01977
  • Holland, M.C.H., & Lambris, J.D. (2002). The complement system in teleosts. Fish and Shellfish Immunology, 12, 399-420. https://doi.org/10.1006/fsim.2001.0408
  • Hwang, D.F., & Lin, T.K. (2002). Effect of temperature on dietary vitamin C requirement and lipid in common carp. Comparative Biochemistry and Physiology B, 131(1), 1-7. https://doi.org/10.1016/s1096-4959(01)00449-3
  • Jeney, G., Galeotti, M., Volpatti, D., Jeney, Z., & Anderson, D. P., 1997. Prevention of stress in rainbow trout (Oncorhynchus mykiss) fed diets containing different doses of glucan. Aquaculture, 154, 1-15. https://doi.org/10.1016/S0044-8486(97)00042-2
  • Kaur, M., Atif, F., Ali, M., Rehman, H., & Raisuddin, S., 2005. Heat stress-induced alterations of antioxidants in the freshwater fish Channa punctata Bloch. Journal of Fish Biology, 67, 1653-1665. https://doi.org/10.1111/j.1095-8649.2005.00872.x
  • Langston, A.L., Hoare, R., Stefansson, M., Fitzgerald, R., Wergeland, H., & Mulcahy, M. (2002). The effect of temperature on non-specific defence parameters of three strains of juvenile Atlantic halibut (Hippoglossus hippoglossus L.). Fish and Shellfish Immunology, 12, 61-76. https://doi.org/10.1006/fsim.2001.0354
  • Leja, M., Mareczek, A., Wyżgolik, G., Klepacz-Baniak, J., & Czekońska, K. (2007). Antioxidative properties of bee pollen in selected plant species, Food Chemistry, 100(1), 237-240. https://doi.org/10.1016/j.foodchem.2005.09.047
  • Lou, B., Xu, D., Xu, H., Zhan, W., Mao, G., & Shi, H. (2011). Effect of high water temperature on growth, survival and antioxidant enzyme activities in the Japanese flounder Paralichthys olivaceus. African Journal of Agricultural Research, 6(12), 2875-2882.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randal, R.J. (1951). Protein measurement with Folin phenol reagent. Journal of Biochemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6 Lushchak, V.I. (2011). Environmentally induced oxidative stress in aquatic animals, Aquatic Toxicology, 101(1), 13-30. https://doi.org/10.1016/j.aquatox.2010.10.006
  • Lushchak, V.I., & Bagnyukova, T.V., (2007). Hypoxia induces oxidative stress in tissues of a goby, the rotan Perccottus glenii. Comparative Biochemistry and Physiology B, 148(4), 390-397. https://doi.org/10.1016/j.cbpb.2007.07.007
  • Makrinos, D.L., & Bowden, T.J. (2016). Natural environmental impacts on teleost immune function. Fish and Shellfish Immunology, 53, 50-57. https://doi.org/10.1016/j.fsi.2016.03.008
  • Malek, R.L., Sajadi, H., Abraham, J., Grundy, M.A., & Gerhard, G.S. (2004). The effects of temperature reduction on gene expression and oxidative stress in skeletal muscle from adult zebrafish. Comparative Biochemistry and Physiology C, 138(3), 363-373. https://doi.org/10.1016/j.cca.2004.08.014
  • Martinez-Álvarez, R.M., Morales, A.E., & Sanz, A. (2005). Antioxidant defenses in fish: Biotic and abiotic factors. Fish Biology and Fisheries, 15, 75-88.
  • Mişe Yonar, S., Sakin, F., Yonar, M.E., Ispir, U., & Kirici, M. (2011). Oxidative Stress Biomarkers of Exposure to Deltamethrin in Rainbow Trout Fry (Oncorhynchus mykiss). Fresenius Environmental Bulletin, 20(8), 1931-1935.
  • Mişe Yonar, S., Ural, MŞ., Silici, S., & Yonar, M.E. (2014). Malathion-induced changes in the haematological profile, the immune response, and the oxidative/antioxidant status of Cyprinus carpio carpio: Protective role of propolis. Ecotoxicology and Environmental Safety, 102, 202-209. https://doi.org/10.1016/j.ecoenv.2014.01.007
  • Mişe Yonar, S., Yonar, M.E., Sağlam, N., & S. Silici, S. (2013). Farklı su sıcaklıklarında tutulmuş pullu sazan (Cyprinus carpio carpio linnaeus, 1758)’nın karaciğer ve böbreğindeki bazı antioksidan parametreler üzerine propolisin etkisi. Menba, Kastomunu Üniversitesi Su Ürünleri Fakültesi Dergisi, 1, 11-16.
  • Mişe Yonar, S., Yonar, M.E., & Ural, M.Ş. (2017a). Antioxidant effect of curcumin against exposure to malathion in Cyprinus carpio. Cellular and Molecular Biology, 63(3), 68-72. https://doi.org/10.14715/cmb/2017.63.3.13
  • Mişe Yonar, S., Köprücü, K., Yonar, M.E., & Silici, S. (2017b). Effects of dietary propolis on the number and size of pleopadal egg, oxidative stress and antioxidant status of freshwater crayfish (Astacus leptodactylus Eschscholtz). Animal Reproduction Science, 184, 149-159. https://doi.org/10.1016/j.anireprosci.2017.07.010
  • Mişe Yonar, S., Yonar, M.E., Pala, A., Sağlam, N., & Sakin, F. (2020). Effect of trichlorfon on some haematological and biochemical changes in Cyprinus carpio: The ameliorative effect of lycopene. Aquaculture Reports, 16, 100246. https://doi.org/10.1016/j.aqrep.2019.100246
  • Morales, A.E., Pèrez-Jimènez, A., Hidalgo, M.C., Abellán, E., & Gabriel C.G. (2004). Oxidative stres and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comporative Biochemistry and Physiology C, 139(1-3), 153-161. https://doi.org/10.1016/j.cca.2004.10.008
  • Mourente, G., Diaz-Salvago, E., Bell, J.G., & Tocher, D.R. (2002). Increased activities of hepatic antioxidant defence enzymes in juvenile gilthead sea bream (Sparus aurata L.) fed dietary oxidised oil: attenuation by dietary vitamin E. Aquaculture, 214, 343-361. https://doi.org/10.1016/S0044-8486(02)00064-9
  • Ndong, D., Chen, Y., Lin, Y., Vaseeharan, B., & Chen, J. (2007). The immune response of tilapia Oreochromis mossambicus and its susceptibility to Streptococcus iniae under stress in low and high temperatures. Fish and Shellfish Immunology, 22, 686-694. https://doi.org/10.1016/j.fsi.2006.08.015
  • Nikoskelainen, S., Bylund, G., & Lilius, E.M. (2004). Effect of environmental temperature on rainbow trout (Oncorhynchus mykiss) innate immunity. Development and Comparative Immunology, 28, 581-592. https://doi.org/10.1016/j.dci.2003.10.003
  • Parihar, M.S., & Dubey, A.K. (1995). Lipid peroxidation and ascorbic acid status in respiratory organs of male and female freshwater catfish Heteropneustes fossilis exposed to temperature increase. Comparative Biochemistry and Physiology C, 112(3), 309-313. https://doi.org/10.1016/0742-8413(95)02025-x
  • Parihar, M.S. Javeri, T., Hemnani, T., Dubey, A.K., & Prakash, P. (1997). Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the fresh water catfish (Heteropneustes fossilis) to short-term elevated temperature. Journal of Thermal Biology, 22, 151-156. https://doi.org/10.1016/S0306-4565(97)00006-5
  • Placer, Z.A. Cushman, L., & Johnson, B.C. (1966). Estimation of products of lipid peroxidation (malonyl dialdehyde) in biological fluids. Analytical Biochemistry, 16, 359-364. https://doi.org/10.1016/0003-2697(66)90167-9
  • Puangkaew, J., Kiron, V., Satoh, S., & Watanabe, T. (2005). Antioxidant defense of rainbow trout (Oncorhynchus mykiss) in relation to dietary n-3 highly unsaturated fatty acids and vitamin E contents. Comparative Biochemistry and Phsiology C, 140, 187-196. https://doi.org/10.1016/j.cca.2005.01.016
  • Roche, H., & Boge, G. (1996). Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Marine Environmental Research, 41, 27-43. https://doi.org/10.1016/0141-1136(95)00015-1
  • Sakin, F., Ispir, Ü., Mişe Yonar, S., Yonar, M.E., & Taysi, R. (2011). Effect of short-term cypermethrin exposure on oxidant-antioxidant balance in the whole body of rainbow trout fry (Oncorhynchus mykiss). Fresenius Environmental Bulletin, 20(10a), 2806-2809.
  • Sakin, F., Mişe Yonar, S., Yonar, M.E., & Saglam, N. (2012). Changes in selected immunological parameters and oxidative stress responses in different organs of Oncorhynchus mykiss exposed to ivermectin. Revista de Chimie, 63(10), 989-995.
  • Siwicki, A., & Studnicka, M. (1987). The phagocytic ability of neutrophils and serum lysozyme activity in experimentally infected carp Cyprinus carpio L. Journal of Fish Biology, 31(A), 57-60. https://doi.org/10.1111/j.1095-8649.1987.tb05293.x
  • Siwicki, A.K., Anderson, D.P., & Rumsey, G.L. (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Veterinary Immunology and Immunopathology, 41, 125–139. https://doi.org/10.1016/0165-2427(94)90062-0
  • Tort, L., Rotllant, J., & Roviva, L. (1998). Immunological suppression in gilthead sea bream Sparus aurata of the north-west Mediterranean at low temperatures. Comparative Biochemistry and Physiology Part A, 120, 175-179. https://doi.org/10.1016/S1095-6433(98)10027-2
  • Tort, L., Rotllant, J., Liarte, C., Acerete, L., Hernández, A., Ceulemans, S., Coutteau, P., & Padros, F. (2004). Effect of temperature decrease on feeding rates, immune indicators and histopathological changes of gilthead sea bream Sparus aurata fed with an experimental diet. Aquaculture, 229, 55-65. https://doi.org/10.1016/S0044-8486(03)00403-4
  • Vinagre, C., Madeira, D., Narciso, L., Cabral, H.N., & Diniz, M. (2012). Effect of temperature on oxidative stress in fish: Lipid peroxidation and catalase activity in the muscle of juvenile seabass, Dicentrarchus labrax. Ecological Indicators, 23, 274-279. https://doi.org/10.1016/j.ecolind.2012.04.009
  • Welker, T.L., & Congleton, J.L. (2004). Oxidative stress in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum). Aquaculture Research, 35, 881-887. https://doi.org/10.1111/j.1365-2109.2004.01080.x
  • Xu, X., Sun, L., Dong, J., & Zhang, H. (2009). Breaking the cells of rape bee pollen and consecutvive extraction of functional oil with superficial carbon oxide, Innovative Food Science and Emerging Technologies, 10, 42-46. https://doi.org/10.1016/j.ifset.2008.08.004
  • Yang, X., Guo, D., Zhang, J., & Wu, M. (2007). Characterization and anti-tumor activity of pollen polysaccharide. International Immunopharmacology, 7(3), 401-408. https://doi.org/10.1016/j.intimp.2006.11.001
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Zoology
Journal Section Articles
Authors

Merve Taşkan 0000-0002-5105-7010

M. Enis Yonar 0000-0001-9519-4247

Project Number SÜF.16.07
Publication Date March 15, 2023
Submission Date May 16, 2022
Published in Issue Year 2023Volume: 40 Issue: 1

Cite

APA Taşkan, M., & Yonar, M. E. (2023). Farklı su sıcaklıklarındaki pullu sazan (Cyprinus carpio Linnaeus, 1758)’ da polenin antioksidan etkisinin araştırılması. Ege Journal of Fisheries and Aquatic Sciences, 40(1), 69-76. https://doi.org/10.12714/egejfas.40.1.10