Review
BibTex RIS Cite

Metal nanopartiküllerin mikroalgler aracılığı ile yeşil sentezi

Year 2023, Volume: 40 Issue: 1, 81 - 89, 15.03.2023
https://doi.org/10.12714/egejfas.40.1.12

Abstract

Yeşil sentez olarak adlandırılan, nanopartiküllerin biyolojik kaynaklar aracılığı ile sentezlenmesine olan ilgi son yıllarda artış göstermiştir. Bunun temel nedeni geleneksel yöntemler olan fiziksel ve kimyasal yöntemlerde indirgeyici ve stabilize edici ajanlar olarak yüksek miktarlarda toksik kimyasala ihtiyaç duyuluyor olmasıdır. Daha çevre dostu ve insan sağlığı için tehdit oluşturmayan bitki, fungus, bakteri, alg gibi organizmalar yeşil nanopartikül sentezi için alternatif kaynaklardır. Sucul mikroorganizmalar olan mikroalgler üretmiş oldukları proteinler, vitaminler, pigmentler, yağ asitleri, hücre içi- hücre dışı polisakkaritler gibi fonksiyonel özelliğe sahip metabolitler sayesinde uzun yıllardır gıda, kozmetik ve ilaç endüstrilerinde formülasyonlara eklenmektedir. Bunların yanı sıra, son yıllarda yapılan çalışmalarla nanopartikül sentezinde de yüksek potansiyele sahip oldukları görülmüştür. Özellikle metal iyonlarının depolanmasını ve detoksifikasyonunu yapabildiklerinden ve metal iyonlarını elementel hale indirgeyen hücre içi ve hücre dışı metabolitlerce zengin olduklarından, metal nanopartiküllerin sentezi için yüksek potansiyele sahiptirler. Son yıllarda mikroalglerden nanopartikül sentezine odaklanmış olan yayın sayısı artmış ve pek çok mikroalg türünün gümüş, altın, titanyum, çinko, demir vb. metal nanopartikülleri hücre içi ve hücre dışı yollarla sentezleme potansiyeli araştırılmıştır.
Bu derleme makale kapsamında, nanopartikül sentezi için çalışılmış olan mikroalg ve siyanobakteri türleri, kullanılan farklı sentez yöntemleri, nanopartiküllerin sentez mekanizması, temel karakterizasyon yöntemleri ve yeşil sentezle üretilen nanopartiküllerin antimikrobiyal aktivitelerine odaklanılmıştır

Supporting Institution

TÜBİTAK

Project Number

117M052

Thanks

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TUBİTAK) tarafından 117M052 numaralı 1001 projesi kapsamında finansal olarak desteklenmiştir.

References

  • Abdel-Raouf, N., Alharbi, R.M., El-Anazi, N.M., Alkhulaifi, M.M., & Ibraheem, I.B.M. (2018). Rapid biosynthesis of silver nanoparticles using the marine red alga Laurencia catarinensis and their characterization. Beni-Suef University Journal of Basic and Applied Sciences, 7, 150–157. https://doi.org/10.1016/j.bjbas.2017.10.003
  • Ahn, E.Y., Hang, J., & Youmie, P. (2019). Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Materials Science & Engineering, 101, 204–216. https://doi.org/10.1016/j.msec.2019.03.095
  • Agarwal, H., Amatullah, N., Soumya, M., & VenkatKumar, S. (2019). Eco-friendly synthesis of zinc oxide nanoparticles using Cinnamomum Tamala leaf extract and its promising effect towards the antibacterial activity. Journal of Drug Delivery Science and Technology, 53, 101212. https://doi.org/10.1016/j.jddst.2019.101212
  • Algotiml, R., Ali, G.A., Roshdi, S., Hussein, H.A., Mahmoud, Z.E., & Khaled, E. (2022). Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles. Scientific Reports, 12, 2421. https://doi.org/10.1038/s41598-022-06412-3
  • Ali, M.A., Temoor, A., Wenge, W., Afsana, H., Rahila, H., Mahidul, I.M., Yanli, W., Qianli, A., Guochang, S., & Bin, L. (2020). Advancements in Plant and Microbe-Based Synthesis of Metallic Nanoparticles and Their Antimicrobial Activity against Plant Pathogens. Nanomaterials, 10, 1146. https://doi.org/10.3390/nano10061146
  • Besinis, A., De Peralta, T., & Handy, R.D. (2014). The antibacterial effects of silver, titaniumdioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology, 8, 1–16. https://doi.org/10.3109/17435390.2012.742935
  • Bhattacharyaa, P., Swarnakar, S., Ghosh, S., Majumdar, S., & Banerjee, S. (2019). Disinfection of drinking water via algae mediated green synthesized copper oxide nanoparticles and its toxicity evaluation. Journal of Environmental Chemical Engineering, 7, 102867. https://doi.org/10.1016/j.jece.2018.102867
  • Borowitzka, M.A. (2013). High-Value products from microalgae—their development and commercialisation. Journal of Applied Phycology, 25, 743–756. https://doi.org/10.1007/s10811-013-9983-9
  • Caliskan, G., Mutaf, T., Agba, H.C., & Elibol, M. (2022). green synthesis and characterization of titanium nanoparticles using microalga, Phaeodactylum tricornutum. Geomicrobıology Journal, 39 (1), 83–96. https://doi.org/10.1080/01490451.2021.2008549
  • Dahoumane, S.A., Mechouet, M., Alvarez, F.J., Agathos, S.N., & Jeffryes, C. (2016). Microalgae: an outstanding tool in nanotechnology. Bionatura, 1(4), 196-201. https://doi.org/10.21931/RB/2016.01.04.7
  • Dhandapani, K.V., Devipriya, A., Arumugam Dhanesh, G., Purandaradas, A., Bala Sundaram, M., Purushothaman, K., & Babujanarthanam, R. (2020). Green route for the synthesis of zinc oxide nanoparticles from Melia azedarach leaf extract and evaluation of their antioxidant and antibacterial activities. Biocatalysis and Agricultural Biotechnology, 24, 101517. https://doi.org/10.1016/j.bcab.2020.101517
  • Dizaj, S.M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M.H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering, 44, 278–284. https://doi.org/10.1016/j.msec.2014.08.031
  • Djurišić, A.B., Leung, Y.H., Alan, M.C., Xu, X.Y., Lee, P.K.H., Degger, N., & Wu, R.S.S. (2014). Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small, 11(1), 26-44. https://doi.org/10.1002/smll.201303947
  • Gallón, S.M.N., Alpaslan, E., Wang, M., Larese-Casanova,P., Londono, M.E., Atehortua, L., Pavon, J.J., & Webster, T.J. (2019). Characterization and study of the antibacterial mechanisms of silver nanoparticles prepared with microalgal exopolysaccharides. Materials Science & Engineering, 99, 685-695. https://doi.org/10.1016/j.msec.2019.01.134
  • Hassellöv, M., Readman, J.W., Ranville, J.F., & Tiede, K. (2008). Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology, 17, 344-361. https://doi.org/10.1007/s10646-008-0225-x
  • Hulla, J., Sahu, S.C., & Hayes, A.W. (2015). Nanotechnology: history and future. Human and Experimental Toxicology, 34(12), 1318-1321. https://doi.org/10.1177/0960327115603588
  • Khezri, S., Kia, E.M., Seyedsaleh, M.M., Abedinzadeh, S., & Dastras, M. (2016). Application of nanotechnology in food ındustry and related health concern challenges. International Journal of Advanced Biotechnology and Research, 7(2), 1370-1382.
  • Lutzu, G.A., Zhang, L., Zhang, Z., & Liu, T. (2017). Feasibility of attached cultivation for polysaccharides production by Porphyridium cruentum. Bioprocess Biosystems Engineering, 40, 73-83. https://doi.org/10.1007/s00449-016-1676-8
  • Merin, D.D., Prakash, S., & Bhimba, B.V. (2010). Antibacterial screening of silver nanoparticles synthesized by marine microalgae. Asian Pacific Journal of Tropical Medicine, 3(10), 797-799. https://doi.org/10.1016/S1995-7645(10)60191-5
  • Mora-Godinez, S., Abril-Martinez, F., & Pacheco, A. (2022). Green synthesis of silver nanoparticles using microalgae acclimated to high CO2. Materials Today: Proceedings, 48, 5-9. https://doi.org/10.1016/j.matpr.2020.04.761
  • Mu, L., & Sprando, L. (2010). Application of nanotechnology in cosmetics. Pharmaceutical Research, 27, 1746-1749. https://doi.org/10.1007/s11095-010-0139-1
  • Narayanan, K.B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156, 1-13. https://doi.org/10.1016/j.cis.2010.02.001
  • Nayak, P.S., Arakha, M., Kumar, A., Asthana, S., Mallick, B.C., & Jha, S. (2016). An approach towards continuous production of silver nanoparticles using Bacillus thuringiensis. The Royal Society of Chemistry, 6, 8232-8242.
  • Önem, B. (2016). Çinko, civa ve kalay toksisitesinin Arthrospıra platensıs gomont alginin gelişimi ve antioksidan enzimlerinin üzerine etkisi. (Yüksek lisans tezi). Sakarya Üniversitesi, Sakarya.
  • Pal, S.L., Jana, U., Manna, P.K., Mohanta, G.P., & Manavalan, R. (2011). Nanoparticle: An overview of preparation and characterization. Journal of Applied Pharmaceutical Science, 01(06), 228-234.
  • Pantidos, N., & Horsfall, L.E. (2014). Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Nanomedicine & Nanotechnology, 5, 5. https://doi.org/10.4172/2157-7439.1000233
  • Patel, V., Berthold, D., Puranik, P., & Gantar, M. (2015). Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnology Reports, 5, 112-119. https://doi.org/10.1016/j.btre.2014.12.001
  • Raab, C., Simko, M., Fiedeler, U., Nentwitch, M., & Gazso, A. (2011). Production of nanoparticles and nanomaterials. Nano Trust Dossiers, 006.
  • Rai, M., & Posten, C. (2013). Green biosynthesis of nanoparticles: Mechanism and applications. UK: Berforts Information Press Ltd.
  • Rajkumar, R., Ezhumalai, G., &Gnanadesigan, M. (2021). A green approach for the synthesis of silver nanoparticles by Chlorella vulgaris and its application in photocatalytic dye degradation activity. Environmental Technology & Innovation, 21, 101282. https://doi.org/10.1016/j.eti.2020.101282
  • Saifuddin, N., Wong, C.W., & Nur Yasumira, A.A. (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave ırradiation, E-Journal of Chemistry, 6(1), 61-70. https://doi.org/10.1155/2009/734264
  • Salunke, B.K., Sawant, S.S., Lee, S., & Kim, B.S. (2016). Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World Journal of Microbiololgy and Biotechnology, 32 (5), 88. https://doi.org/10.1007/s11274-016-2044-1
  • Sathishkumar, R.S., Sundaramanickam, A., Srinath, R., Ramesh, T., Saranya, K., Meena, M., & Surya, P. (2019). Green synthesis of silver nanoparticles by bloom forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity. Journal of Saudi Chemical Society, 23, 1180–1191. https://doi.org/10.1016/j.jscs.2019.07.008
  • Shah, M.S., Fawcett, D., Sharma, S., Tripathy, S.K., & Poinem, G.E.J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8, 7278-7308. https://doi.org/10.3390/ma8115377
  • Sharma, B., Purkayastha, D.D., Hazra, S., Thajamanbi, M., Bhattacharjee, C.R., Ghosh, N.N., & Rout, J. (2014). Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C.Ag. and antioxidant activity of biomatrix loaded nanoparticles. Bioprocess Biosystrm Engineering, 37(12), 2559-65. https://doi.org/10.1007/s00449-014-1233-2
  • Sharma, A., Sharma, S., Sharma, K., Chetri, S.P.K., Vashishtha, A., Singh, P., Kumar, R., Rathi, B., & Agrawal, V. (2016). Algae as crucial organisms in advancing nanotechnology: a systematic review. Journal of Applied Phycology, 28, 1759-1774. https://doi.org/10.1007/s10811-015-0715-1
  • Silva Ferreira, V., ConzFerreira, M.E., Lima, L.M.T.R., Frases, S., de Souza, W., & Sant’Anna, C. (2017). Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. Enzyme and Microbial Technology, 97, 114–121. https://doi.org/10.1016/j.enzmictec.2016.10.018
  • Singh, P., Kim, Y.J., Zhang, D., & Yang, D.C. (2016). Biological synthesis of nanoparticles from plants and microorganisms, Trends in Biotechnology, 34(7), 588-599. https://doi.org/10.1016/j.tibtech.2016.02.006
  • Singh, N.A. (2017). Nanotechnology ınnovations, Industrial Applications and Patents. Environmentel Chemistry Letters, 15:185-191. https://doi.org/10.1007/s10311-017-0612-8
  • Skladanowski, M., Wypij, M., Laskowski, D., Golinska, P., Dahm, H., & Rai, M. (2017). Silver and gold nanoparticles synthesized from streptomyces sp. ısolated from acid forest soil with special reference to its antibacterial activity against pathogens. Journal of Cluster Science, 28, 58-79. https://doi.org/10.1007/s10876-016-1043-6
  • Thakkar, K.N., Mhatre, S.S., & Parikh, R.Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 257-262. https://doi.org/10.1016/j.nano.2009.07.002
  • Tüylek, Z. (2017). Drug Delivery Systems and Nanotechnological Interaction, Bozok Tıp Dergisi, 7(3), 89-98. (in Turkish with English abstract)
  • Wishkerman, A., Arad, M. S. (2017). Production of silver nanoparticles by the diatom Phaeodactylum tricornutum. Nanotechnology VIII, 1048. https://doi.org/10.1117/12.2264706
  • Wong, Y.W.H., Yuen, C.W.M., Leung, M.Y.S., Ku, S.K.A., & Lam, H.L.I. (2006). Selected applications of nanotechnology ın textiles. AUTEX Research Journal, 6(1).
  • Yildirim, O., Tunay, D., Ozkaya, B., & Demir, A. (2021). Effect of green synthesized silver oxide nanoparticle on biological hydrogen production. International Journal of Hydrogen Energy, In Press. https://doi.org/10.1016/j.ijhydene.2021.11.176
  • Zayadi, R.A., & Bakar, F.A. (2020). Comparative study on stability, antioxidant and catalytic activities of biostabilized colloidal gold nanoparticles using microalgae and cyanobacteria. Journal of Environmental Chemical Engineering, 8, 103843. https://doi.org/10.1016/j.jece.2020.103843
  • Zhang, Y., Gao, G., Qirong, Q., & Cui, D. (2012). Chloroplasts-mediated biosynthesis of nanoscale au-ag alloy for 2-butanone assay based on electrochemical sensor. Nanoscale Research Letters, 7(475). http://www.nanoscalereslett.com/content/7/1/475

Green synthesis of metal nanoparticles by microalgae

Year 2023, Volume: 40 Issue: 1, 81 - 89, 15.03.2023
https://doi.org/10.12714/egejfas.40.1.12

Abstract

Green synthesis of metal nanoparticles through biological resources has attracted attention in recent years. The main reason for that, a lot of toxic chemicals as reducing and stabilizing agents are used in physical and chemical methods which are known as conventional methods. Organisms such as plants, fungi, bacteria, and algae are alternative sources for green nanoparticle synthesis because of their more eco-friendly nature and not be a threat to human health. Microalgae as aquatic microorganisms have been added into the formulations of food, cosmetics, and pharmaceutical for many years, due to their high value-added metabolites such as proteins, vitamins, pigments, fatty acids, intracellular and extracellular polysaccharides. In addition, microalgae have a high potential in biogenic nanoparticle synthesis because of their metal ions accumulation capability, phytoremediation potential, and rich in intracellular and extracellular metabolites that will reduce metal ions to elemental state. In recent years, the number of studies, focused on silver, gold, titanium, zinc, iron, etc. nanoparticle synthesis from many microalgae species by intracellular and extracellular pathways has increased.
This review article aims to provide a brief outline of microalgae and cyanobacteria species studied in the context of nanoparticle synthesis, different approaches for nanoparticle synthesis from microalgae, the mechanism of nanoparticle synthesis, and basic characterization principles and antimicrobial activities of nanoparticles produced by green synthesis.

Project Number

117M052

References

  • Abdel-Raouf, N., Alharbi, R.M., El-Anazi, N.M., Alkhulaifi, M.M., & Ibraheem, I.B.M. (2018). Rapid biosynthesis of silver nanoparticles using the marine red alga Laurencia catarinensis and their characterization. Beni-Suef University Journal of Basic and Applied Sciences, 7, 150–157. https://doi.org/10.1016/j.bjbas.2017.10.003
  • Ahn, E.Y., Hang, J., & Youmie, P. (2019). Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Materials Science & Engineering, 101, 204–216. https://doi.org/10.1016/j.msec.2019.03.095
  • Agarwal, H., Amatullah, N., Soumya, M., & VenkatKumar, S. (2019). Eco-friendly synthesis of zinc oxide nanoparticles using Cinnamomum Tamala leaf extract and its promising effect towards the antibacterial activity. Journal of Drug Delivery Science and Technology, 53, 101212. https://doi.org/10.1016/j.jddst.2019.101212
  • Algotiml, R., Ali, G.A., Roshdi, S., Hussein, H.A., Mahmoud, Z.E., & Khaled, E. (2022). Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles. Scientific Reports, 12, 2421. https://doi.org/10.1038/s41598-022-06412-3
  • Ali, M.A., Temoor, A., Wenge, W., Afsana, H., Rahila, H., Mahidul, I.M., Yanli, W., Qianli, A., Guochang, S., & Bin, L. (2020). Advancements in Plant and Microbe-Based Synthesis of Metallic Nanoparticles and Their Antimicrobial Activity against Plant Pathogens. Nanomaterials, 10, 1146. https://doi.org/10.3390/nano10061146
  • Besinis, A., De Peralta, T., & Handy, R.D. (2014). The antibacterial effects of silver, titaniumdioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology, 8, 1–16. https://doi.org/10.3109/17435390.2012.742935
  • Bhattacharyaa, P., Swarnakar, S., Ghosh, S., Majumdar, S., & Banerjee, S. (2019). Disinfection of drinking water via algae mediated green synthesized copper oxide nanoparticles and its toxicity evaluation. Journal of Environmental Chemical Engineering, 7, 102867. https://doi.org/10.1016/j.jece.2018.102867
  • Borowitzka, M.A. (2013). High-Value products from microalgae—their development and commercialisation. Journal of Applied Phycology, 25, 743–756. https://doi.org/10.1007/s10811-013-9983-9
  • Caliskan, G., Mutaf, T., Agba, H.C., & Elibol, M. (2022). green synthesis and characterization of titanium nanoparticles using microalga, Phaeodactylum tricornutum. Geomicrobıology Journal, 39 (1), 83–96. https://doi.org/10.1080/01490451.2021.2008549
  • Dahoumane, S.A., Mechouet, M., Alvarez, F.J., Agathos, S.N., & Jeffryes, C. (2016). Microalgae: an outstanding tool in nanotechnology. Bionatura, 1(4), 196-201. https://doi.org/10.21931/RB/2016.01.04.7
  • Dhandapani, K.V., Devipriya, A., Arumugam Dhanesh, G., Purandaradas, A., Bala Sundaram, M., Purushothaman, K., & Babujanarthanam, R. (2020). Green route for the synthesis of zinc oxide nanoparticles from Melia azedarach leaf extract and evaluation of their antioxidant and antibacterial activities. Biocatalysis and Agricultural Biotechnology, 24, 101517. https://doi.org/10.1016/j.bcab.2020.101517
  • Dizaj, S.M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M.H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering, 44, 278–284. https://doi.org/10.1016/j.msec.2014.08.031
  • Djurišić, A.B., Leung, Y.H., Alan, M.C., Xu, X.Y., Lee, P.K.H., Degger, N., & Wu, R.S.S. (2014). Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small, 11(1), 26-44. https://doi.org/10.1002/smll.201303947
  • Gallón, S.M.N., Alpaslan, E., Wang, M., Larese-Casanova,P., Londono, M.E., Atehortua, L., Pavon, J.J., & Webster, T.J. (2019). Characterization and study of the antibacterial mechanisms of silver nanoparticles prepared with microalgal exopolysaccharides. Materials Science & Engineering, 99, 685-695. https://doi.org/10.1016/j.msec.2019.01.134
  • Hassellöv, M., Readman, J.W., Ranville, J.F., & Tiede, K. (2008). Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology, 17, 344-361. https://doi.org/10.1007/s10646-008-0225-x
  • Hulla, J., Sahu, S.C., & Hayes, A.W. (2015). Nanotechnology: history and future. Human and Experimental Toxicology, 34(12), 1318-1321. https://doi.org/10.1177/0960327115603588
  • Khezri, S., Kia, E.M., Seyedsaleh, M.M., Abedinzadeh, S., & Dastras, M. (2016). Application of nanotechnology in food ındustry and related health concern challenges. International Journal of Advanced Biotechnology and Research, 7(2), 1370-1382.
  • Lutzu, G.A., Zhang, L., Zhang, Z., & Liu, T. (2017). Feasibility of attached cultivation for polysaccharides production by Porphyridium cruentum. Bioprocess Biosystems Engineering, 40, 73-83. https://doi.org/10.1007/s00449-016-1676-8
  • Merin, D.D., Prakash, S., & Bhimba, B.V. (2010). Antibacterial screening of silver nanoparticles synthesized by marine microalgae. Asian Pacific Journal of Tropical Medicine, 3(10), 797-799. https://doi.org/10.1016/S1995-7645(10)60191-5
  • Mora-Godinez, S., Abril-Martinez, F., & Pacheco, A. (2022). Green synthesis of silver nanoparticles using microalgae acclimated to high CO2. Materials Today: Proceedings, 48, 5-9. https://doi.org/10.1016/j.matpr.2020.04.761
  • Mu, L., & Sprando, L. (2010). Application of nanotechnology in cosmetics. Pharmaceutical Research, 27, 1746-1749. https://doi.org/10.1007/s11095-010-0139-1
  • Narayanan, K.B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156, 1-13. https://doi.org/10.1016/j.cis.2010.02.001
  • Nayak, P.S., Arakha, M., Kumar, A., Asthana, S., Mallick, B.C., & Jha, S. (2016). An approach towards continuous production of silver nanoparticles using Bacillus thuringiensis. The Royal Society of Chemistry, 6, 8232-8242.
  • Önem, B. (2016). Çinko, civa ve kalay toksisitesinin Arthrospıra platensıs gomont alginin gelişimi ve antioksidan enzimlerinin üzerine etkisi. (Yüksek lisans tezi). Sakarya Üniversitesi, Sakarya.
  • Pal, S.L., Jana, U., Manna, P.K., Mohanta, G.P., & Manavalan, R. (2011). Nanoparticle: An overview of preparation and characterization. Journal of Applied Pharmaceutical Science, 01(06), 228-234.
  • Pantidos, N., & Horsfall, L.E. (2014). Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Nanomedicine & Nanotechnology, 5, 5. https://doi.org/10.4172/2157-7439.1000233
  • Patel, V., Berthold, D., Puranik, P., & Gantar, M. (2015). Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnology Reports, 5, 112-119. https://doi.org/10.1016/j.btre.2014.12.001
  • Raab, C., Simko, M., Fiedeler, U., Nentwitch, M., & Gazso, A. (2011). Production of nanoparticles and nanomaterials. Nano Trust Dossiers, 006.
  • Rai, M., & Posten, C. (2013). Green biosynthesis of nanoparticles: Mechanism and applications. UK: Berforts Information Press Ltd.
  • Rajkumar, R., Ezhumalai, G., &Gnanadesigan, M. (2021). A green approach for the synthesis of silver nanoparticles by Chlorella vulgaris and its application in photocatalytic dye degradation activity. Environmental Technology & Innovation, 21, 101282. https://doi.org/10.1016/j.eti.2020.101282
  • Saifuddin, N., Wong, C.W., & Nur Yasumira, A.A. (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave ırradiation, E-Journal of Chemistry, 6(1), 61-70. https://doi.org/10.1155/2009/734264
  • Salunke, B.K., Sawant, S.S., Lee, S., & Kim, B.S. (2016). Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World Journal of Microbiololgy and Biotechnology, 32 (5), 88. https://doi.org/10.1007/s11274-016-2044-1
  • Sathishkumar, R.S., Sundaramanickam, A., Srinath, R., Ramesh, T., Saranya, K., Meena, M., & Surya, P. (2019). Green synthesis of silver nanoparticles by bloom forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity. Journal of Saudi Chemical Society, 23, 1180–1191. https://doi.org/10.1016/j.jscs.2019.07.008
  • Shah, M.S., Fawcett, D., Sharma, S., Tripathy, S.K., & Poinem, G.E.J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8, 7278-7308. https://doi.org/10.3390/ma8115377
  • Sharma, B., Purkayastha, D.D., Hazra, S., Thajamanbi, M., Bhattacharjee, C.R., Ghosh, N.N., & Rout, J. (2014). Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C.Ag. and antioxidant activity of biomatrix loaded nanoparticles. Bioprocess Biosystrm Engineering, 37(12), 2559-65. https://doi.org/10.1007/s00449-014-1233-2
  • Sharma, A., Sharma, S., Sharma, K., Chetri, S.P.K., Vashishtha, A., Singh, P., Kumar, R., Rathi, B., & Agrawal, V. (2016). Algae as crucial organisms in advancing nanotechnology: a systematic review. Journal of Applied Phycology, 28, 1759-1774. https://doi.org/10.1007/s10811-015-0715-1
  • Silva Ferreira, V., ConzFerreira, M.E., Lima, L.M.T.R., Frases, S., de Souza, W., & Sant’Anna, C. (2017). Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. Enzyme and Microbial Technology, 97, 114–121. https://doi.org/10.1016/j.enzmictec.2016.10.018
  • Singh, P., Kim, Y.J., Zhang, D., & Yang, D.C. (2016). Biological synthesis of nanoparticles from plants and microorganisms, Trends in Biotechnology, 34(7), 588-599. https://doi.org/10.1016/j.tibtech.2016.02.006
  • Singh, N.A. (2017). Nanotechnology ınnovations, Industrial Applications and Patents. Environmentel Chemistry Letters, 15:185-191. https://doi.org/10.1007/s10311-017-0612-8
  • Skladanowski, M., Wypij, M., Laskowski, D., Golinska, P., Dahm, H., & Rai, M. (2017). Silver and gold nanoparticles synthesized from streptomyces sp. ısolated from acid forest soil with special reference to its antibacterial activity against pathogens. Journal of Cluster Science, 28, 58-79. https://doi.org/10.1007/s10876-016-1043-6
  • Thakkar, K.N., Mhatre, S.S., & Parikh, R.Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 257-262. https://doi.org/10.1016/j.nano.2009.07.002
  • Tüylek, Z. (2017). Drug Delivery Systems and Nanotechnological Interaction, Bozok Tıp Dergisi, 7(3), 89-98. (in Turkish with English abstract)
  • Wishkerman, A., Arad, M. S. (2017). Production of silver nanoparticles by the diatom Phaeodactylum tricornutum. Nanotechnology VIII, 1048. https://doi.org/10.1117/12.2264706
  • Wong, Y.W.H., Yuen, C.W.M., Leung, M.Y.S., Ku, S.K.A., & Lam, H.L.I. (2006). Selected applications of nanotechnology ın textiles. AUTEX Research Journal, 6(1).
  • Yildirim, O., Tunay, D., Ozkaya, B., & Demir, A. (2021). Effect of green synthesized silver oxide nanoparticle on biological hydrogen production. International Journal of Hydrogen Energy, In Press. https://doi.org/10.1016/j.ijhydene.2021.11.176
  • Zayadi, R.A., & Bakar, F.A. (2020). Comparative study on stability, antioxidant and catalytic activities of biostabilized colloidal gold nanoparticles using microalgae and cyanobacteria. Journal of Environmental Chemical Engineering, 8, 103843. https://doi.org/10.1016/j.jece.2020.103843
  • Zhang, Y., Gao, G., Qirong, Q., & Cui, D. (2012). Chloroplasts-mediated biosynthesis of nanoscale au-ag alloy for 2-butanone assay based on electrochemical sensor. Nanoscale Research Letters, 7(475). http://www.nanoscalereslett.com/content/7/1/475
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Review
Authors

Tuğçe Mutaf 0000-0002-4195-4607

Gülizar Çalışkan Bilgin 0000-0001-6221-9495

Suphi Öncel 0000-0003-2817-2296

Murat Elibol 0000-0002-6756-6290

Project Number 117M052
Publication Date March 15, 2023
Submission Date February 3, 2022
Published in Issue Year 2023Volume: 40 Issue: 1

Cite

APA Mutaf, T., Çalışkan Bilgin, G., Öncel, S., Elibol, M. (2023). Metal nanopartiküllerin mikroalgler aracılığı ile yeşil sentezi. Ege Journal of Fisheries and Aquatic Sciences, 40(1), 81-89. https://doi.org/10.12714/egejfas.40.1.12