Review
BibTex RIS Cite

Sıfır atığa doğru: Su ürünleri yetiştiriciliğinde sürdürülebilir atık yönetim

Year 2022, Volume: 39 Issue: 4, 341 - 348, 15.12.2022
https://doi.org/10.12714/egejfas.39.4.11

Abstract



Su ürünleri yetiştiriciliğine artan gereksinime paralel olarak artan üretim miktarı, işletmelerin atık miktarında da doğrusal bir artışa neden olmaktadır. Bu durum, yoğun su ürünleri yetiştiriciliğinde atık suların etkin bir şekilde arıtımı konusunu öne çıkarmaktadır. Günümüzde su ürünleri yetiştiriciliği kaynaklı atık suların arıtımında, geleneksel fiziksel ve kimyasal yöntemlerin yerine, ekosisteme duyarlı ve besin zincirinin farklı seviyelerinde üretimi devreye sokan sistemler daha fazla benimsenmeye başlanmıştır. Atık su içinde bulunan besin elementlerinin farklı bir gıda üretimiyle döngüye katılması, sıfır atık yaklaşımının esasını oluşturmaktadır. Su ürünleri yetiştiriciliği yapan işletmelerin çıkış sularını kullanan entegre üretim sistemleri (örneğin; akuaponik) atık içinde bulunan besin elementlerinin tekrar geri kazanımını sağlamaktadır. Entegre sistemler, su ürünleri atık sularının arıtımında hem atık içinde besin elementlerinin biyomasa dönüşümünü sağlamakta hem de çevreyle uyumlu arıtım yöntemi olarak değer kazanmaktadır. Su ürünleri yetiştiriciliği çıkış suları, entegre sistemler yardımıyla balık yanında ikili (örneğin; balık+midye) ya da üçlü (örneğin; balık+midye+yosun) yetiştiricilikte kullanılabilmektedir. Su ürünleri yetiştiriciliği çıkış sularının yapay sulak alanlarda ya da bitki lagünlerinde belli besin elementlerinin azaltılması amacıyla kullanılması da sürdürülebilir yetiştiricilik ve atık su arıtımı için uygun yaklaşımlar arasındadır.
Bu derleme çalışmasında, su ürünleri yetiştiriciliğinden gelen atık suların arıtımına yönelik mevcut ve ekolojik bazda yenilikçi teknolojiler ele alınmış; sürdürülebilir su ürünleri yetiştiriciliği ve çevreyle uyumlu atık arıtımı için yapay sulak alanlar ve entegre multi-trofik yetiştiricilik sistemlerinin pratikte kullanımının artırılması gereği vurgulanmıştır.


References

  • Ackefors, H., & Enell, M. (1990). Discharge of nutriens from swedish fish farming to adjacent sea areas. Ambio, 19, 29-35 . Adekanmi, A.A., Adekanmi, S.A., & Adekanmi, O.S. (2020). Biological treatment of fish pond waste water by Coelastrum morum, a green microalgae. International Journal of Engineering and Information Systems. 4, 4, 62-77.
  • Ahmad, A.L., Chin, J.Y., Harun, M.H.Z.M., & Low, S.C. (2022). Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review. Journal of Water Process Engineering, 46, 102553. DOI: 10.1016/j.jwpe.2021.102553
  • Angel, D., & Freeman, S. (2009). Integrated aquaculture (INTAQ) as a tool for an ecosystem approach in the Mediterranean Sea. Integrated Mariculture: A Global Review, 133–183.
  • Ayaz, S., Fındık, N., Kınacı, C., Tunçsiper, B., & Güneş, E. (2011). Manual of Artificial Wetlands, (in Turkish). Türkiye Bilimsel ve Teknolojik Araştırma Kurumu Marmara Araştırma Merkezi Çevre Enstitüsü, Gebze, Kocaeli, 107p. Retrieved from https://webdosya.csb.gov.tr/db/destek/icerikler/yapay_sulak_alanlar_el_k-tab--20191127122415.pdf (01.01.2022).
  • Aşır, U., & Pulatsü, S. (2008). Estimation of the nitrogen-phosphorus load due to cage cultured rainbow trout (Oncorhynchus mykiss Walbaum, 1792) in Kesikköprü Dam Lake: Comparison of pelleted and extruded feed. Turkish Journal of Veterinary and Animal Sciences, 32, 417-422.
  • Buhmann, A., J.& Papenbrock, J. (2013). Biofiltering of aquaculture effluents by halo-phytic plants: basic principles, current uses and future perspectives. Environmental and Experimental Botany, 92, 122–133. DOI: 10.1016/j.envexpbot.2012.07.005
  • Cao, L., Wang, W., Yang, Y., Yang, C., Yuan, Z., Xiong, S., & Diana, J. (2007). Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environmental Sciens and Pollution Research, 14(7), 452–462. DOI: 10.1065/espr2007.05.426
  • Chary, K., Aubin, J., Sadoul, B., Fiandrino, A., & Covès, D. (2020). Integrated multi-trophic aquaculture of red drum (Sciaenops ocellatus) and sea cucumber (Holothuria scabra): Assessing bioremediation and life-cycle impacts. Aquaculture, 516, 1-17. DOI: 10.1016/j.aquaculture.2019.734621
  • Cho C. Y., & Bureau D. P. (2001). A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture. Aquaculture Research, 32 (Suppl. 1), 349-360. DOI: 10.1046/j.1355-557x.2001.00027.x
  • Chopin T. (2013). Aquaculture, Integrated Multi-trophic (IMTA). In Christou P., Savin R., Costa-Pierce B.A., Misztal I., Whitelaw C.B.A. (Eds) Sustainable Food Production. Springer, New York, NY. DOI:10.1007/978-1-4614-5797-8_173
  • Cohen, A., Malone, S., Morris, Z., Weissburg, M., & Bras, B. (2018). Combined fish and lettuce cultivation: an aquaponics life cycle assessment. Procedia CIRP, 69, 551–556.DOI: 10.1016/j. procir.2017.11.029
  • Costa-Pierce B.A. (2013). Aquaculture, Ecological. In P. Christou, R. Savin, B.A. Costa-Pierce, I. Misztal, I., C.B.A. Whitelaw (Eds.) Sustainable Food Production. Springer, New York, NY. DOI: 10.1007/978-1-4614-5797-8_172
  • Cripps, S.J., & Bergheim, A. (2000). Solids management and removal for intensive land-based aquaculture production systems. Aquacultural Engineering, 22, 33–56. DOI: 10.1016/S0144-8609(00)00031-5
  • Çantaş, İ. B., & Yıldırım, Ö. (2019). Reducing the impact of feeds on the environment in sustainable aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 36(1), 87-97. DOI: 10.12714/egejfas.2019.36.1.12
  • Enduta, A. Jusoh, A., Ali, N., & Wan Nik, W.B. (2011). Nutrient removal from aquaculture wastewater by vegetable production in aquaponics recirculation system, Desalination and Water Treatment, 32:1-3, 422-430. DOI: 10.5004/dwt.2011.2761
  • Ferreira, J.G., Saurel, C., & Ferreira,J.M. (2012). Cultivation of gilthead bream in monoculture and integrated multi-trophic aquaculture. Analysis of production and environmental effects by means of the FARM model. Aquaculture, 359, 23-34. DOI: 10.1016/j.aquaculture.2012.06.015
  • Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K.V., Jijakli, H., & Thorarinsdottir, R. (2015). Challenges of sustainable and commercial aquaponics. Sustainability, 7(4), 4199–4224. DOI: 10.3390/su7044199
  • Greenfeld, A., Becker, N., Bornman, J. F., Spatari, S., & Angel, D. L. (2022). Is aquaponics good for the environment?—evaluation of environmental impact through life cycle assessment studies on aquaponics systems. Aquaculture International, (0123456789). DOI: 10.1007/s10499-021-00800-8
  • Hernandez, A., Satoh, S., Kiron, V., & Watanabe, T. (2004). Phosphorus retention efficiency in rainbow trout fed diets with low fish meal and alternative protein ingredients. Fisheries Science, 70, 580-586. DOI: 10.1111/j.1444-2906.2004.00844.x
  • Hu, Z., Lee, J.W., Chandran, K., Kim, S., Coelho-Brotto, A., & Khanal,S.K. (2015). Effect of plant species on nitrogen recovery in aquaponics. Bioresource Technology, 188, 92-98. DOI: 10.1016/j.biortech.2015.01.013
  • Jegatheesan, V., Shu., L., & Visvanathan, C. (2011). Aquaculture effluent: Impacts and remedies for protecting the environment and human health. Encyclopedia of Environmental Health, 123-135. DOI: 10.1016/B978-0-444-52272-6.00340-8
  • Jokumsen, A. and Svendsen, L. M. (2010). Farming of freshwater rainbow trout in Denmark, DT. Retrieved from: https://backend.orbit.dtu.dk/ws/portalfiles/portal/6581106/219-10_Farming-of-freshwater-rainbow-trout-in-denmark-v2.pdf (08.02.2020)
  • Jusoh, A., Nasir, N.M., Hanis, F., & Yunos, M. (2019). Green technology in treating aquaculture wastewater. AIP Conference Proceedings 2197, 020001. DOI: 10.1063/1.5140892.
  • Lennard, W.A., & Leonard, B.V. (2006). A comparison of three different hydroponic subsystems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquaculture International, 14(6): 539–550. DOI: 10.1007/s10499-006-9053-2
  • Lin, Y.F., Jing, S.R., Lee, D.Y., & Wang, T.W. (2002). Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture, 209, 169–184. DOI: 10.1016/S0044-8486(01)00801-8
  • Lymbery, A., Starcevich, M., & Doupe, R. (2007). Managing environmental impacts from inland saline aquaculture-a case study of trout production from saline groundwater in Western Australia. A report for the Rural Industries Research and Development Corporation. Publication No 05/166. 78 s.
  • Miller, D., & Simmens, K. (2002). Waste management in aquaculture. West Virginia University, Aquaculture Information Series, Publication, AQ02-1.
  • Nora'aini, A.A., Wahab., M., & Ahmad, J. (2005). Treatment of aquaculture wastewater using ultra-low pressure asymmetric polyethersulfone (PES) membrane. Desalination, 185, 317–326. DOI: 10.1016/j.desal.2005.03.084
  • Palm, H.W., Knaus, U., Appelbaum, S., Strauch, S.M., & Kotzen, B. (2019) Coupled Aquaponics Systems. In S. Goddek, A. Joyce, B. Kotzen, G.M. Burnell (Eds.), Aquaponics Food Production Systems. Springer, Cham. DOI: 10.1007/978-3-030-15943-6_7
  • Pulatsü, S., & Kaya, D. (2016). Environmental aspect of fish nutrition in aquaculture [Su ürünleri yetiştiriciliğinde balık beslemenin çevresel boyutu.] (in Turkish with English abstract). Türkiye Klinikleri Animal Nutrition and Nutritional Diseases-Special Topics, 2(1): 33-41.
  • Reid, G.K., Chopin, T., Robinson, S.M.C., Azevedo, P., Quinton, M., & Belyea, E. (2013). Weight ratios of the kelps, Alaria esculenta and Saccharina latissima, required to sequester dissolved inorganic besin elements and supply oxygen for Atlantic salmon, Salmo salar, in Integrated Multi-Trophic Aquaculture systems. Aquaculture 408–409, 34–46. DOI: 10.1016/j.aquaculture.2013.05.004
  • Sánchez, H. (2014). Aquaponics and its potential aquaculture wastewater treatment and human urine treatment. Retrieved from https://www.hemmaodlat.se/research/sanchez%202014.pdf (08.02.2022).
  • Sarıipek M., & Karayücel, S. (2015). Integrated Multi-Trophic System Approach in Sustainable Aquaculture Production [Sürdürülebilir Su Ürünleri Üretiminde Entegre Multi-Trofik Sistem Yaklaşımı] (in Turkish). 18. Ulusal Su Ürünleri Kongresi. 1-4 Eylül 2015. İzmir.
  • Sikder, M.N.A., Min, W.W., Ziyad, A.O., Kumar, P.P., & Kumar, R.D. (2016). Sustainable treatment of aquaculture effluents in future-A review. International Research Journal of Advanced Engineering and Science, 1, 4, 190-193.
  • Sindilariu, P.D. (2007). Reduction in effluent nutrient loads from flow-through facilities for trout production. Aquaculture Research, 38, 1005-1036. DOI: 10.1111/j.1365-2109.2007.01751.x
  • Sindilariu, P.D., Schulz, C., & Reiter, R. (2007). Treatment of flow-through trout aquaculture effluents in a constructed wetland. Aquaculture, 270, 92–104. DOI:10.1016/j.aquaculture.2007.03.006
  • Sindilariu, P.D., Brinker, A., & Reiter, R. (2009) Factors influencing the efficiency of constructed wetlands used for the treatment of intensive trout farm effluent. Ecological Engineering, 35, 711–722. DOI:10.1016/j.ecoleng.2008.11.007
  • Tanveer, M., Sukumaran, M., & Devarayan, K. (2016). Application of green technology in aquaculture wastewater treatment: a conceptual approach. International Journal of Science, Environment and Technology, 5, 4, 2546 – 2550.
  • Thorarinsdottir, R.I. (2015). Aquaponics Guidelines. Retrieved from https://skemman.is/bit stream/1946/23343/1/Guidelines_Aquaponics_20151112.pdf (08.02.2022).
  • Toledo, J.J., & Penha, J. (2011). Performance of Azolla caroliniana Willd. and Salvinia auriculata Aubl. on fish farming effluent. Brazilian Journal Biology, 71, 1, 37-45. DOI: 10.1590/s1519-69842011000100007 Tom, A.P., Jayakumar, J.S., Biju, M., Somarajan, J., & Ibrahim, M.A. (2021). Aquaculture wastewater treatment technologies and their sustainability: A review. Energy Nexus, 4, 100022. DOI: 10.1016/j.nexus.2021.100022
  • Tsagaraki, T. M., Petihakis, G., Tsiaras, K., Triantafyllou, G., Tsapakis, M., Korres, G., & Karakassis, I. (2011). Beyond the cage: Ecosystem modelling for impact evaluation in aquaculture. Ecological Modelling, 222(14), 2512–2523. DOI: 10.1016/j.ecolmodel.2010.11.027
  • Turcios, A. E., & Papenbrock, J. (2014). Sustainable treatment of aquaculture effluents-What can we learn from the past for the future? Sustainability, 6(2), 836–856. DOI: 10.3390/su6020836 Wilson, G. (2005). Australian barramundi farm goes aquaponic, Aquaponics Journal, 37,12-16.
  • Yavuzcan, H., Atar, H.H., & Pulatsü, S. (2020). Current Situation and Future in Aquaculture and Fishing. [Su ürünleri yetiştiriciliğinde ve avcılığında mevcut durum ve gelecek] (in Turkish) Türkiye Ziraat Mühendisliği 9. Teknik Kongresi Bildiriler Kitabı (ISBN-978-605-01-1322-8) 299-319. Ankara
  • Yavuzcan Yildiz, H., Robaina, L., Pirhonen, J., Mente, E., Domínguez, D., & Parisi, G. (2017). Fish welfare in aquaponic systems: ıts relation to water quality with an emphasis on feed and faeces—A review. Water, 9(1), 13. DOI: 10.3390/w9010013

Towards zero waste: Sustainable waste management in aquaculture

Year 2022, Volume: 39 Issue: 4, 341 - 348, 15.12.2022
https://doi.org/10.12714/egejfas.39.4.11

Abstract



Increases in aquaculture production due to higher demand for aquatic foods result in an increase in the amount of aquaculture wastewater. This situation highlights the need for the effective treatment of wastewater in sustainable aquaculture. Today, instead of traditional physical and chemical methods in the treatment of wastewater originating from aquaculture, ecosystem-sensitive and by-product-oriented systems have begun to be adopted. The main principle of the zero-waste approach is the recycling of the nutrients in the wastewater to produce another food. In this new innovative approach, the production of other organisms from the different trophic levels using the wastewater of aquaculture in the integrated multi-trophic systems (such as aquaponics) is possible to recycle the nutrients. It has been considered the integrated multi-trophic systems (IMTA) more valuable as these systems can be used both in environment-friendly wastewater treatment and in the conversion of nutrients in wastewater to biomass. The nutrients such as nitrogen and phosphorus in aquaculture wastewater can be utilized to produce two organisms (i.e. fish+mussel) or three organisms (i.e. fish+mussel+seaweed) through IMTA. Aquaculture wastewater can be used to reduce the nutrients in constructed wetlands and plant lagoons representing the reasonable approach for sustainable aquaculture and wastewater treatment.
Here, the innovative approach to sustainable aquaculture wastewater treatment was reviewed for the current and innovative technologies. It was emphasized that the need for environment-friendly wastewater treatment Technologies such as aquaponics, enlargement of constructed wetlands, or increase in using the integrated multi-trophic production systems (IMTA) in practice are recommended for sustainable aquaculture.


References

  • Ackefors, H., & Enell, M. (1990). Discharge of nutriens from swedish fish farming to adjacent sea areas. Ambio, 19, 29-35 . Adekanmi, A.A., Adekanmi, S.A., & Adekanmi, O.S. (2020). Biological treatment of fish pond waste water by Coelastrum morum, a green microalgae. International Journal of Engineering and Information Systems. 4, 4, 62-77.
  • Ahmad, A.L., Chin, J.Y., Harun, M.H.Z.M., & Low, S.C. (2022). Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review. Journal of Water Process Engineering, 46, 102553. DOI: 10.1016/j.jwpe.2021.102553
  • Angel, D., & Freeman, S. (2009). Integrated aquaculture (INTAQ) as a tool for an ecosystem approach in the Mediterranean Sea. Integrated Mariculture: A Global Review, 133–183.
  • Ayaz, S., Fındık, N., Kınacı, C., Tunçsiper, B., & Güneş, E. (2011). Manual of Artificial Wetlands, (in Turkish). Türkiye Bilimsel ve Teknolojik Araştırma Kurumu Marmara Araştırma Merkezi Çevre Enstitüsü, Gebze, Kocaeli, 107p. Retrieved from https://webdosya.csb.gov.tr/db/destek/icerikler/yapay_sulak_alanlar_el_k-tab--20191127122415.pdf (01.01.2022).
  • Aşır, U., & Pulatsü, S. (2008). Estimation of the nitrogen-phosphorus load due to cage cultured rainbow trout (Oncorhynchus mykiss Walbaum, 1792) in Kesikköprü Dam Lake: Comparison of pelleted and extruded feed. Turkish Journal of Veterinary and Animal Sciences, 32, 417-422.
  • Buhmann, A., J.& Papenbrock, J. (2013). Biofiltering of aquaculture effluents by halo-phytic plants: basic principles, current uses and future perspectives. Environmental and Experimental Botany, 92, 122–133. DOI: 10.1016/j.envexpbot.2012.07.005
  • Cao, L., Wang, W., Yang, Y., Yang, C., Yuan, Z., Xiong, S., & Diana, J. (2007). Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environmental Sciens and Pollution Research, 14(7), 452–462. DOI: 10.1065/espr2007.05.426
  • Chary, K., Aubin, J., Sadoul, B., Fiandrino, A., & Covès, D. (2020). Integrated multi-trophic aquaculture of red drum (Sciaenops ocellatus) and sea cucumber (Holothuria scabra): Assessing bioremediation and life-cycle impacts. Aquaculture, 516, 1-17. DOI: 10.1016/j.aquaculture.2019.734621
  • Cho C. Y., & Bureau D. P. (2001). A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture. Aquaculture Research, 32 (Suppl. 1), 349-360. DOI: 10.1046/j.1355-557x.2001.00027.x
  • Chopin T. (2013). Aquaculture, Integrated Multi-trophic (IMTA). In Christou P., Savin R., Costa-Pierce B.A., Misztal I., Whitelaw C.B.A. (Eds) Sustainable Food Production. Springer, New York, NY. DOI:10.1007/978-1-4614-5797-8_173
  • Cohen, A., Malone, S., Morris, Z., Weissburg, M., & Bras, B. (2018). Combined fish and lettuce cultivation: an aquaponics life cycle assessment. Procedia CIRP, 69, 551–556.DOI: 10.1016/j. procir.2017.11.029
  • Costa-Pierce B.A. (2013). Aquaculture, Ecological. In P. Christou, R. Savin, B.A. Costa-Pierce, I. Misztal, I., C.B.A. Whitelaw (Eds.) Sustainable Food Production. Springer, New York, NY. DOI: 10.1007/978-1-4614-5797-8_172
  • Cripps, S.J., & Bergheim, A. (2000). Solids management and removal for intensive land-based aquaculture production systems. Aquacultural Engineering, 22, 33–56. DOI: 10.1016/S0144-8609(00)00031-5
  • Çantaş, İ. B., & Yıldırım, Ö. (2019). Reducing the impact of feeds on the environment in sustainable aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 36(1), 87-97. DOI: 10.12714/egejfas.2019.36.1.12
  • Enduta, A. Jusoh, A., Ali, N., & Wan Nik, W.B. (2011). Nutrient removal from aquaculture wastewater by vegetable production in aquaponics recirculation system, Desalination and Water Treatment, 32:1-3, 422-430. DOI: 10.5004/dwt.2011.2761
  • Ferreira, J.G., Saurel, C., & Ferreira,J.M. (2012). Cultivation of gilthead bream in monoculture and integrated multi-trophic aquaculture. Analysis of production and environmental effects by means of the FARM model. Aquaculture, 359, 23-34. DOI: 10.1016/j.aquaculture.2012.06.015
  • Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K.V., Jijakli, H., & Thorarinsdottir, R. (2015). Challenges of sustainable and commercial aquaponics. Sustainability, 7(4), 4199–4224. DOI: 10.3390/su7044199
  • Greenfeld, A., Becker, N., Bornman, J. F., Spatari, S., & Angel, D. L. (2022). Is aquaponics good for the environment?—evaluation of environmental impact through life cycle assessment studies on aquaponics systems. Aquaculture International, (0123456789). DOI: 10.1007/s10499-021-00800-8
  • Hernandez, A., Satoh, S., Kiron, V., & Watanabe, T. (2004). Phosphorus retention efficiency in rainbow trout fed diets with low fish meal and alternative protein ingredients. Fisheries Science, 70, 580-586. DOI: 10.1111/j.1444-2906.2004.00844.x
  • Hu, Z., Lee, J.W., Chandran, K., Kim, S., Coelho-Brotto, A., & Khanal,S.K. (2015). Effect of plant species on nitrogen recovery in aquaponics. Bioresource Technology, 188, 92-98. DOI: 10.1016/j.biortech.2015.01.013
  • Jegatheesan, V., Shu., L., & Visvanathan, C. (2011). Aquaculture effluent: Impacts and remedies for protecting the environment and human health. Encyclopedia of Environmental Health, 123-135. DOI: 10.1016/B978-0-444-52272-6.00340-8
  • Jokumsen, A. and Svendsen, L. M. (2010). Farming of freshwater rainbow trout in Denmark, DT. Retrieved from: https://backend.orbit.dtu.dk/ws/portalfiles/portal/6581106/219-10_Farming-of-freshwater-rainbow-trout-in-denmark-v2.pdf (08.02.2020)
  • Jusoh, A., Nasir, N.M., Hanis, F., & Yunos, M. (2019). Green technology in treating aquaculture wastewater. AIP Conference Proceedings 2197, 020001. DOI: 10.1063/1.5140892.
  • Lennard, W.A., & Leonard, B.V. (2006). A comparison of three different hydroponic subsystems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquaculture International, 14(6): 539–550. DOI: 10.1007/s10499-006-9053-2
  • Lin, Y.F., Jing, S.R., Lee, D.Y., & Wang, T.W. (2002). Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture, 209, 169–184. DOI: 10.1016/S0044-8486(01)00801-8
  • Lymbery, A., Starcevich, M., & Doupe, R. (2007). Managing environmental impacts from inland saline aquaculture-a case study of trout production from saline groundwater in Western Australia. A report for the Rural Industries Research and Development Corporation. Publication No 05/166. 78 s.
  • Miller, D., & Simmens, K. (2002). Waste management in aquaculture. West Virginia University, Aquaculture Information Series, Publication, AQ02-1.
  • Nora'aini, A.A., Wahab., M., & Ahmad, J. (2005). Treatment of aquaculture wastewater using ultra-low pressure asymmetric polyethersulfone (PES) membrane. Desalination, 185, 317–326. DOI: 10.1016/j.desal.2005.03.084
  • Palm, H.W., Knaus, U., Appelbaum, S., Strauch, S.M., & Kotzen, B. (2019) Coupled Aquaponics Systems. In S. Goddek, A. Joyce, B. Kotzen, G.M. Burnell (Eds.), Aquaponics Food Production Systems. Springer, Cham. DOI: 10.1007/978-3-030-15943-6_7
  • Pulatsü, S., & Kaya, D. (2016). Environmental aspect of fish nutrition in aquaculture [Su ürünleri yetiştiriciliğinde balık beslemenin çevresel boyutu.] (in Turkish with English abstract). Türkiye Klinikleri Animal Nutrition and Nutritional Diseases-Special Topics, 2(1): 33-41.
  • Reid, G.K., Chopin, T., Robinson, S.M.C., Azevedo, P., Quinton, M., & Belyea, E. (2013). Weight ratios of the kelps, Alaria esculenta and Saccharina latissima, required to sequester dissolved inorganic besin elements and supply oxygen for Atlantic salmon, Salmo salar, in Integrated Multi-Trophic Aquaculture systems. Aquaculture 408–409, 34–46. DOI: 10.1016/j.aquaculture.2013.05.004
  • Sánchez, H. (2014). Aquaponics and its potential aquaculture wastewater treatment and human urine treatment. Retrieved from https://www.hemmaodlat.se/research/sanchez%202014.pdf (08.02.2022).
  • Sarıipek M., & Karayücel, S. (2015). Integrated Multi-Trophic System Approach in Sustainable Aquaculture Production [Sürdürülebilir Su Ürünleri Üretiminde Entegre Multi-Trofik Sistem Yaklaşımı] (in Turkish). 18. Ulusal Su Ürünleri Kongresi. 1-4 Eylül 2015. İzmir.
  • Sikder, M.N.A., Min, W.W., Ziyad, A.O., Kumar, P.P., & Kumar, R.D. (2016). Sustainable treatment of aquaculture effluents in future-A review. International Research Journal of Advanced Engineering and Science, 1, 4, 190-193.
  • Sindilariu, P.D. (2007). Reduction in effluent nutrient loads from flow-through facilities for trout production. Aquaculture Research, 38, 1005-1036. DOI: 10.1111/j.1365-2109.2007.01751.x
  • Sindilariu, P.D., Schulz, C., & Reiter, R. (2007). Treatment of flow-through trout aquaculture effluents in a constructed wetland. Aquaculture, 270, 92–104. DOI:10.1016/j.aquaculture.2007.03.006
  • Sindilariu, P.D., Brinker, A., & Reiter, R. (2009) Factors influencing the efficiency of constructed wetlands used for the treatment of intensive trout farm effluent. Ecological Engineering, 35, 711–722. DOI:10.1016/j.ecoleng.2008.11.007
  • Tanveer, M., Sukumaran, M., & Devarayan, K. (2016). Application of green technology in aquaculture wastewater treatment: a conceptual approach. International Journal of Science, Environment and Technology, 5, 4, 2546 – 2550.
  • Thorarinsdottir, R.I. (2015). Aquaponics Guidelines. Retrieved from https://skemman.is/bit stream/1946/23343/1/Guidelines_Aquaponics_20151112.pdf (08.02.2022).
  • Toledo, J.J., & Penha, J. (2011). Performance of Azolla caroliniana Willd. and Salvinia auriculata Aubl. on fish farming effluent. Brazilian Journal Biology, 71, 1, 37-45. DOI: 10.1590/s1519-69842011000100007 Tom, A.P., Jayakumar, J.S., Biju, M., Somarajan, J., & Ibrahim, M.A. (2021). Aquaculture wastewater treatment technologies and their sustainability: A review. Energy Nexus, 4, 100022. DOI: 10.1016/j.nexus.2021.100022
  • Tsagaraki, T. M., Petihakis, G., Tsiaras, K., Triantafyllou, G., Tsapakis, M., Korres, G., & Karakassis, I. (2011). Beyond the cage: Ecosystem modelling for impact evaluation in aquaculture. Ecological Modelling, 222(14), 2512–2523. DOI: 10.1016/j.ecolmodel.2010.11.027
  • Turcios, A. E., & Papenbrock, J. (2014). Sustainable treatment of aquaculture effluents-What can we learn from the past for the future? Sustainability, 6(2), 836–856. DOI: 10.3390/su6020836 Wilson, G. (2005). Australian barramundi farm goes aquaponic, Aquaponics Journal, 37,12-16.
  • Yavuzcan, H., Atar, H.H., & Pulatsü, S. (2020). Current Situation and Future in Aquaculture and Fishing. [Su ürünleri yetiştiriciliğinde ve avcılığında mevcut durum ve gelecek] (in Turkish) Türkiye Ziraat Mühendisliği 9. Teknik Kongresi Bildiriler Kitabı (ISBN-978-605-01-1322-8) 299-319. Ankara
  • Yavuzcan Yildiz, H., Robaina, L., Pirhonen, J., Mente, E., Domínguez, D., & Parisi, G. (2017). Fish welfare in aquaponic systems: ıts relation to water quality with an emphasis on feed and faeces—A review. Water, 9(1), 13. DOI: 10.3390/w9010013
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Ecology, Environmental Sciences, Water Resources and Water Structures
Journal Section Review
Authors

Hijran Yavuzcan 0000-0001-6567-7467

Serap Pulatsü 0000-0001-5277-417X

Publication Date December 15, 2022
Submission Date February 11, 2022
Published in Issue Year 2022Volume: 39 Issue: 4

Cite

APA Yavuzcan, H., & Pulatsü, S. (2022). Sıfır atığa doğru: Su ürünleri yetiştiriciliğinde sürdürülebilir atık yönetim. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341-348. https://doi.org/10.12714/egejfas.39.4.11