Research Article
BibTex RIS Cite

Ova kurbağası, Pelophylax ridibundus'un (Pallas, 1771) bacak tüketiminden elde edilen eser element biyobirikimi ve sağlık riski değerlendirmesi

Year 2022, Volume: 39 Issue: 3, 182 - 190, 15.09.2022
https://doi.org/10.12714/egejfas.39.3.02

Abstract



Hem sucul hem de karasal ortamlarda yaşayabilen amfibiler, bu alanlardaki kirliliği gösteren önemli biyoindikatör canlılardandır. Kurbağa bacağı, Türkiye’nin de dahil olduğu bazı mutfaklarda sıklıkla tüketilmemesine rağmen pek çok Avrupa ülkesinde insan gıdası olarak tercih edilmesi nedeniyle metal birikiminin değerlendirilmesi açısından önemlidir. Bu çalışmada, Türkiye'deki iki kurbağa çiftliğinden örnek alınarak bir amfibi türünün yenilebilir dokularında (kaslarında) eser element (Cd, Pb, Cu, Zn, As, Co, Cr, Ni, Mn and V) miktarları ölçülmüştür. Geçici tolere edilebilir haftalık alım (PTWI), hedef risk katsayısı (THQ) ve Tehlike İndeksi (HI) dahil olmak üzere birçok değer toksikolojik sınır değerlerle karşılaştırılarak kurbağa bacağı tüketiminin insanlar için olası sağlık tehlikelerinin değerlendirmesi amaçlanmıştır. Genel olarak eser elementlerin ortalama değerleri (µg kg−1) Zn (3.437.62)> Pb (69.22)> Cu (66.72)> Mn (35.07)> As (24.24)> Cr (11.47)> Ni (6.94)> Cd (6.51)> Co (2.97)> V (<0.001) olarak sıralanmıştır. Sonuçlar, analiz edilen eser elementlerin konsantrasyonlarının Avrupa Komisyonu'nun izin verdiği seviyelerin altında belirlendiğini ve ova kurbağasının yenilebilir dokularının insanlar için kanserojen bir sağlık riski oluşturmadığını gösterdi.



Supporting Institution

TÜBİTAK

Project Number

2209A Üniversite Öğrencileri Araştırma Destek Programı

References

  • Afonso, C., Costa, S., Cardoso, C., Bandarra, N.M., Batista, I., Coelho, I., & Nunes, M.L. (2015). Evaluation of the risk/benefit associated to the consumption of raw and cooked farmed meagre based on the bioaccessibility of selenium, eicosapentaenoic acid and docosahexaenoic acid, total mercury, and methylmercury determined by an in vitro digestion model. Food Chemistry, 170, 249-256. DOI:10.1016/j.foodchem.2014.08.044
  • Aguillón-Gutiérrez, D.R., & Ramírez-Bautista, A. (2020). Heavy metals in water, sediment and tissues of Dryophytes plicatus (Anura: Hylidae). Sylwan, 164 (8), 1-11.
  • Akın, Ç., & Bilgin, C.C. (2010). Preliminary Report on the Collection, Processing and Export of Water Frogs in Turkey. (Presented to KKGM). ODTÜ, Ankara, Turkey. [in Turkish]
  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, Volume 2019, Article ID 6730305, 14 p. DOI:10.1155/2019/6730305
  • Alpbaz, A. (2009). Frog breeding. Su Ürünleri Yetiştiriciliği. http://www.atillaalpbaz.com/?o=3y=142. (In Turkish).
  • Altunışık, A., Gül, S., & Özdemir, N. (2021a). Impact of various ecological parameters on the life‐history characteristics of Bufotes viridis sitibundus from Turkey. The Anatomical Record, 304 (8), 1745-1758. DOI:10.1002/ar.24571
  • Altunışık, A., Gül, S., Altunışık, S., & Eminoğlu, A. (2021b). Survey for the pathogenic chytrid fungi Batrachochytrium dendrobatidis and B. salamandrivorans on the Caucasian salamander in Northeastern Turkey. Herpetological Conservation and Biology, 16(3), 534-541.
  • Amiard, J.C., Amiard-Triquet, C., Charbonnier, L., Mesnil, A., Rainbow, P.S., & Wang, W.X. (2008). Bioaccessibility of essential and non-essential metals in commercial shellfish from Western Europe and Asia. Food and Chemical Toxicology, 46(6), 2010-2022. DOI:10.1016/j.fct.2008.01.041
  • Basara, B.B., Guler, C., Soytutan, I., Aygün, A., & Özdemir, T.A. 2016. Republic of Turkey ministry of health statistics yearbook 2015. Ankara (Turkey): Ministry of Health Publication; p. 248.
  • Bat, L., Arıcı, E., Sezgin, M., & Şahin, F. (2016). Heavy metals in edible tissues of benthic organisms from Samsun coasts, South Black Sea, Turkey and their potential risk to human health. Food and Health, 2(2), 57-66. DOI:10.3153/JFHS16006
  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. DOI:10.1016/j.heliyon.2020.e04691
  • Birungi, Z., Masola, B., Zaranyika, M.F., Naigaga, I., & Marshall, B. (2007). Active biomonitoring of trace heavy metals using fish (Oreochromis niloticus) as bioindicator species: the case of Nakivubo Wetland along Lake Victoria. Physics and Chemistry of the Earth, Parts A/B/C, 32, 1350-1358. DOI:10.1016/j.pce.2007.07.034
  • Borković-Mitić, S.S., Prokić, M.D., Krizmanić, II., Mutić, J., Trifković, J., Gavrić, J., Despotović, S.G., Gavrilović, B.R., Radovanović, T.B., Pavlović, S.Z., & Saičić, Z.S. (2016). Biomarkers of oxidative stress and metal accumulation in marsh frog (Pelophylax ridibundus). Environmental Science and Pollution Research International, 23, 9649–9659. DOI:10.1007/ s11356- 016- 6194-3
  • Çiçek, K., Ayaz, D., Afsar, M., Bayrakcı, Y., Pekşen, Ç, Cumhuriyet, O., İlhan, B.İ., Yenmiş, M., Üstündağ, E., Tok, C.V., Bilgin, C.C., & Akçakaya, H. (2021). Unsustainable harvest of water frogs in southern Turkey for the European market. Oryx, 55(3), 364-372. DOI:10.1017/S0030605319000176
  • de Medeiros, A.M.Z., Côa, F., Alves, O.L., Martinez, D.S.T., & Barbieri, E. (2020). Metabolic effects in the freshwater fish Geophagus iporangensis in response to single and combined exposure to graphene oxide and trace elements. Chemosphere, 243, 125316. DOI:10.1016/j.chemosphere.2019.125316
  • EC (2006). European Commission regulation no. 1881/2006 of 19 December 2006 setting 450 maximum levels for certain contaminants in foodstuffs. Off J Eur Union L364–5-L364–24. Available at https:// eur- lex. europa. eu/ legal- conte nt/ EN/ ALL/? uriDc elex% 3A320 06R18 81. Accessed 30 January 2022
  • Fettweis, A., Bergen, B., Hansul, S., De Schamphelaere, K., & Smolders, E. (2021). Correlated Ni, Cu, and Zn sensitivities of 8 freshwater algal species and consequences for low‐level metal mixture effects. Environmental Toxicology and Chemistry. DOI:10.1002/etc.5034
  • Gedik, K. (2018). Bioaccessibility of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in Mediterranean mussel (Mytilus galloprovincialis Lamarck, 1819) along the southeastern Black Sea coast. Human and Ecological Risk Assessment, 24,754–66. DOI:10.1080/10807039.2017.1398632
  • Hecnar, S.J. (1995). Acute and chronic toxicity of ammonium nitrate fertilizer to amphibians from southern Ontario. Environmental Toxicology and Chemistry, 14, 2131–2137. DOI:10.1002/etc.5620141217
  • Helfrich, L.A., Neves, R.J., & Parkhurst, J.A. (2009). Commercial frog farming. College of Agriculture and Life Sciences, State University of Virginia, USA.
  • Henczova, M., Deer, A.K., Filla, A., Komlosi, V., & Mink, J. (2008). Effects of Cu2+ and Pb2+ on different fish species: liver cytochrome P450-dependent monooxygenease activites and FTIR spectra. Comparative Biochemistry and Physiology C, 148, 53-60. DOI:10.1016/j.cbpc.2008.03.010
  • JECFA (1982) Evaluation of certain food additives and contami- nants 26th Report of the Joint FAO/WHO Expert Committee on Food Additives, WHO Technical Report Series No. 683. World Health Organization, Geneva, Switzerland. Available at http:// apps. who. int/ iris/ bitst ream/ 10665/ 41546/1/ WHO_ TRS_ 683. pdf. Accessed 2 February 2022
  • JECFA (2011a) Evaluation of certain food additives and con- taminants 72nd Report of the Joint FAO/WHO Expert Commit- tee on Food Additives. WHO Technical Report Series No. 959. World Health Organization, Rome, Italy. Available at http:// apps. who. int/ iris/ bitst ream/ 10665/ 44514/1/ WHO_ TRS_ 959_ eng. pdf. Accessed 2 February 2022
  • JECFA (2011b). Evaluation of certain food additives and contami- nants 73rd Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series No. 960. World Health Organization, Geneva, Switzerland. Available at http:// apps. who. int/ iris/ bitst ream/ 10665/ 44515/1/ WHO_ TRS_ 960_ eng. pdf. 2 February 2022
  • Kaczor, M., Sura, P., Bronowicka-Adamska, P., & Wróbel, M. (2013). Exposure to lead in water and cysteine non-oxidative metabolism in Pelophylax ridibundus tissues. Aquatic toxicology, 127, 72-77. DOI:10.1016/j.aquatox.2012.03.014
  • Kürüm, V. (2015). Statistics of Frog Trade in Turkey. Republic of Turkey Ministry of Agriculture and Forestry General Directorate of Fisheries and Aquaculture, Ankara, Turkey. [in Turkish]
  • Lee, Y.H., & Stuebing, R.B. (1990). Heavy metal contamination in the River Toad, Bufo juxtasper (Inger), near a copper mine in East Malaysia. Bulletin of Environmental Contamination and Toxicology, 45(2), 272-279. DOI: 10.1007/BF01700195
  • Loumbourdis, N.S., Kostaropoulos, I., Theodoropoulou, B., & Kalmanti, D. (2007). Heavy metal accumulation and metallothionein concentration in the frog Rana ridibunda after exposure to chromium or a mixture of chromium and cadmium. Environmental Pollution, 145(3), 787-792. DOI:10.1016/j.envpol.2006.05.011
  • Loumbourdis, N.S., & Wray, D. (1998). Heavy-metal concentration in the frog Rana ridibunda from a small river of Macedonia, Northern Greece. Environment International, 24(4), 427-431. DOI:10.1016/S0160-4120(98)00021-X
  • Mani, M., Altunışık, A., & Gedik K. (2021). Bioaccumulation of trace elements and health risk predictions in edible tissues of the marsh frog. Biological Trace Element Research. DOI:10.1007/s12011-021-03017-1
  • Maulvault, A.L., Cardoso, C., Nunes, M.L., & Marques, A. (2013). Risk–benefit assessment of cooked seafood: Black scabbard fish (Aphanopus carbo) and edible crab (Cancer pagurus) as case studies. Food Control, 32(2), 518-524. DOI:10.1016/j.foodcont.2013.01.026
  • Medina, M.F., González, M.E., Klyver, S.M.R., & Odstrcil, I.M.A. (2016). Histopathological and biochemical changes in the liver, kidney, and blood of amphibians intoxicated with cadmium. Turkish Journal of Biology, 40(1), 229-238. DOI:10.3906/biy-1505-72
  • Nebeker, A.V., Schuytema, G.S., & Ott, S.L. (1995). Effects of cadmium on growth and bioaccumulation in the Northwestern salamander (Ambystoma gracile). Archives of Environmental Contamination and Toxicology, 29(4), 492-499. DOI:10.1007/BF00208379
  • Newman, M.C., & Unger M.A. (2002). Fundamentals of ecotoxicology. Lewis Publishers, Boca Raton, p 480.
  • Othman, M. S., Khonsue, W., Kitana, J., Thirakhupt, K., Robson, M.G., & Kitana, N. (2009). Cadmium accumulation in two populations of rice frogs (Fejervarya limnocharis) naturally exposed to different environmental cadmium levels. Bulletin of Environmental Contamination and Toxicology, 83(5), 703-707. DOI:10.1007/s00128-009-9845-y
  • Papadimitriou, E., & Loumbourdis, N.S. (2002). Exposure of the frog Rana ridibunda to copper: Impact on two biomarkers, lipid peroxidation, and glutathione. Bulletin of Environmental Contamination and Toxicology, 69(6), 0885-0891. DOI:10.1007/s00128-002-0142-2
  • Prokić, M.D., Borković-Mitić, S.S., Krizmanić, I.I., Mutić, J.J., Trifković, J.Đ., Gavrić, J.P., Despetovic, S.G., Gavrilovic, B.R., Radovanovic, T.B., Pavlovic, S.Z., & Saičić, Z.S. (2016a). Bioaccumulation and effects of metals on oxidative stress and neurotoxicity parameters in the frogs from the Pelophylax esculentus complex. Ecotoxicology, 25(8), 1531-1542. DOI:10.1007/s10646-016-1707-x
  • Prokić, M.D., Borković-Mitić, S.S., Krizmanić, I.I., Mutić, J.J., Vukojević, V., Nasia, M., Gavrić, J.P., Despetovic, S.G.; Gavrilovic, B.R.; Radovanovic, T.B.; Pavlovic, S.Z., & Saičić, Z. S. (2016b). Antioxidative responses of the tissues of two wild populations of Pelophylax kl. esculentus frogs to heavy metal pollution. Ecotoxicology and Environmental Safety, 128, 21-29. DOI:10.1016/j.ecoenv.2016.02.005
  • Prokić, M.D., Borković-Mitić, S.S., Krizmanić, I.I., Mutić, J.J., Gavrić, J.P., Despotović, S.G.; Despetovic, S.G.; Gavrilovic, B.R.; Radovanovic, T.B.; Pavlovic, S.Z., & Saičić, Z.S. (2017). Oxidative stress parameters in two Pelophylax esculentus complex frogs during pre-and post-hibernation: Arousal vs heavy metals. Comparative Biochemistry and Physiology Part C, Toxicology Pharmacology, 202, 19-25. DOI:10.1016/j.cbpc.2017.07.006
  • Qureshi, I.Z., Kashif, Z., & Hashmi, M.Z. (2015). Assessment of heavy metals and metalloids in tissues of two frog species: Rana tigrina and Euphlyctis cyanophlyctis from industrial city Sialkot, Pakistan. Environmental Science and Pollution Research, 22:14157–14168. DOI:10.1007/ s11356- 015- 4454-2
  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https:// www.R-project.org/
  • Rainbow, P. S. (2018). Trace metals in the environment and living organisms: the British Isles as a case study. Cambridge University Press. DOI:10.1017/9781108658423
  • Rohman, F., Permana, H., Akhsani, F., Wangkulangkul, S., & Priambodo, B. (2020). The amphibians diversity as bioindicator of aquatic ecosystem at Sumber Taman, Malang, East Java. In AIP Conference Proceedings (Vol. 2231, No. 1, p. 040016). AIP Publishing LLC. DOI:10.1063/5.0002503
  • Shaapera, U., Nnamonu, L.A., & Eneji, I.S. (2013). Assessment of heavy metals in Rana esculenta organs from River Guma, Benue State Nigeria. American Journal of Analytical Chemistry, 2013. DOI:10.4236/ajac.2013.49063
  • Stolyar, O.B., Loumbourdis, N.S., Falfushinska, H.I., & Romanchuk, L.D. (2008). Comparison of metal bioavailability in frogs from urban and rural sites of Western Ukraine. Archives of Environmental Contamination and Toxicology, 54(1), 107-113. DOI:10.1007/s00244-007-9012-6
  • Şereflişan, H., & Alkaya, A. (2016). Legal regulations on biology, economy, hunting and export of edible frogs (Ranidae) in Turkey. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi, 4 (7), 600-604 (In Turkish). DOI: 10.24925/turjaf.v4i7.600-604.654
  • Taş, E.Ç., & Sunlu, U. (2019). Heavy metal concentrations in razor clam (Solen marginatus Pulteney, 1799) and sediments from Izmir Bay, Aegean Sea, Turkey. Turkish Journal of Agriculture-Food Science and Technology, 7(2), 306-313. DOI:10.24925/turjaf.v7i2.306-313.2284
  • TFC (Turkish Food Codex). (2011). Turkish Food Codex Regulation on Contaminants, official gazette, 29 December 2011 28157. Available at http://mevzuat.basbakanlik.gov.tr/ Metin.Aspx?MevzuatKodD=7.5.15692&MevzuatIliski=0&sourceXmlSearch=bula%C5%9Fanlar
  • Thanomsangad, P., Tengjaroenkul, B., Sriuttha, M., & Neeratanaphan, L. (2019). Heavy metal accumulation in frogs surrounding an e-waste dump site and human health risk assessment. Human and Ecological Risk Assessment: An International Journal. DOI:10.1080/10807039.2019.1575181
  • Tyokumbur, E.T., & Okorie, T. (2011). Bioconcentration of Trace Metals in the Tissues of Two Leafy Vegetables Widely Consumed in South West Nigeria. Biological Trace Element Research. 140, 215–224. DOI:10.1007/s12011-010-8683-4
  • US EPA (1994). A Literature Review Summary of Metal Extraction Processes. Used to Remove Lead from Soils, EPA/600/SR-94/006 March, Cincinnati, OH
  • US EPA (US Environmental Protection Agency) (1996). Acid digestion of sediments, sludges, and soils. EPA Method 3050B. Washington, DC, USA
  • US EPA (2015). Regional screening level (RSL) summary table (TR D 1E-6, HQ D 1) June 2015 (revised). Available at http://semspub.epa.gov/work/03/2218422.pdf
  • US EPA (2000). Guidance for assessing chemical contaminant data for use in fish advisories volume 2 risk assessment and fish consumption limits Third Edition. US Environmental Protection Agency.
  • Vogiatzis, A.K., & Loumbourdis, N.S. (1998). Cadmium accumulation in liver and kidneys and hepatic metallothionein and glutathione levels in Rana ridibunda, after exposure to CdCl2. Archives of environmental contamination and toxicology, 34(1), 64-68. DOI:10.1007/s002449900286
  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag. DOI:10.1007/978-3-319-24277-4
  • Zeng, J., Chen, F., Li, M., Wu, L., Zhang, H., & Zou, X. (2019). The mixture toxicity of heavy metals on Photobacterium phosphoreum and its modeling by ion characteristics-based QSAR. PloS one, 14(12), e0226541. DOI:10.1371/journal.pone.0226541
  • Zhelev, Zh.M., Popgeorgiev, G.S., & Mehterov, N.H. (2014). Changes in the basic mor- phophysiological parameters in the populations of Pelophylax ridibundus (Amphibia: Ranidae) from anthropogenically polluted biotopes in Southern Bulgaria. Part. 1. Bulgarian Journal of Agricultural Science, 20(5), 1202–1210.
  • Zhelev, Z. M., Arnaudova, D. N., Popgeorgiev, G. S., & Tsonev, S. V. (2020). In situ assessment of health status and heavy metal bioaccumulation of adult Pelophylax ridibundus (Anura: Ranidae) individuals inhabiting polluted area in southern Bulgaria. Ecological Indicators, 115, 106413. DOI:10.1016/j.ecolind.2020.106413

Trace element bioaccumulation and health risk assessment derived from leg consumption of the marsh frog, Pelophylax ridibundus (Pallas, 1771)

Year 2022, Volume: 39 Issue: 3, 182 - 190, 15.09.2022
https://doi.org/10.12714/egejfas.39.3.02

Abstract



Amphibians, which can live in aquatic and terrestrial environments, are a good indicator of pollution in these areas. Although frog leg is not consumed frequently in some cuisines, including Turkey, it is important in terms of evaluating metal accumulation since it is preferred as human food in many European countries. In this study, the quantities of trace elements (Cd, Pb, Cu, Zn, As, Co, Cr, Ni, Mn, V) were measured in the edible tissues (muscles) of an amphibian species by sampling from two frog farms in Turkey. It was aimed to assess possible health hazards for humans by frog legs consumption comparing with the toxicological limit values, including provisional tolerable weekly intake (PTWI), target hazard quotient (THQ), and Hazard Index (HI). In general, the average values (µg kg−1) of trace elements were Zn (3.437.62)> Pb (69.22)> Cu (66.72)> Mn (35.07)> As (24.24)> Cr (11.47)> Ni (6.94)> Cd (6.51)> Co (2.97)> V (<0.001). The results indicated that concentrations of the analyzed trace elements were determined below the European Commission’s permitted levels and edible tissues of the marsh frog posed no carcinogenic health risk to humans.


Project Number

2209A Üniversite Öğrencileri Araştırma Destek Programı

References

  • Afonso, C., Costa, S., Cardoso, C., Bandarra, N.M., Batista, I., Coelho, I., & Nunes, M.L. (2015). Evaluation of the risk/benefit associated to the consumption of raw and cooked farmed meagre based on the bioaccessibility of selenium, eicosapentaenoic acid and docosahexaenoic acid, total mercury, and methylmercury determined by an in vitro digestion model. Food Chemistry, 170, 249-256. DOI:10.1016/j.foodchem.2014.08.044
  • Aguillón-Gutiérrez, D.R., & Ramírez-Bautista, A. (2020). Heavy metals in water, sediment and tissues of Dryophytes plicatus (Anura: Hylidae). Sylwan, 164 (8), 1-11.
  • Akın, Ç., & Bilgin, C.C. (2010). Preliminary Report on the Collection, Processing and Export of Water Frogs in Turkey. (Presented to KKGM). ODTÜ, Ankara, Turkey. [in Turkish]
  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, Volume 2019, Article ID 6730305, 14 p. DOI:10.1155/2019/6730305
  • Alpbaz, A. (2009). Frog breeding. Su Ürünleri Yetiştiriciliği. http://www.atillaalpbaz.com/?o=3y=142. (In Turkish).
  • Altunışık, A., Gül, S., & Özdemir, N. (2021a). Impact of various ecological parameters on the life‐history characteristics of Bufotes viridis sitibundus from Turkey. The Anatomical Record, 304 (8), 1745-1758. DOI:10.1002/ar.24571
  • Altunışık, A., Gül, S., Altunışık, S., & Eminoğlu, A. (2021b). Survey for the pathogenic chytrid fungi Batrachochytrium dendrobatidis and B. salamandrivorans on the Caucasian salamander in Northeastern Turkey. Herpetological Conservation and Biology, 16(3), 534-541.
  • Amiard, J.C., Amiard-Triquet, C., Charbonnier, L., Mesnil, A., Rainbow, P.S., & Wang, W.X. (2008). Bioaccessibility of essential and non-essential metals in commercial shellfish from Western Europe and Asia. Food and Chemical Toxicology, 46(6), 2010-2022. DOI:10.1016/j.fct.2008.01.041
  • Basara, B.B., Guler, C., Soytutan, I., Aygün, A., & Özdemir, T.A. 2016. Republic of Turkey ministry of health statistics yearbook 2015. Ankara (Turkey): Ministry of Health Publication; p. 248.
  • Bat, L., Arıcı, E., Sezgin, M., & Şahin, F. (2016). Heavy metals in edible tissues of benthic organisms from Samsun coasts, South Black Sea, Turkey and their potential risk to human health. Food and Health, 2(2), 57-66. DOI:10.3153/JFHS16006
  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. DOI:10.1016/j.heliyon.2020.e04691
  • Birungi, Z., Masola, B., Zaranyika, M.F., Naigaga, I., & Marshall, B. (2007). Active biomonitoring of trace heavy metals using fish (Oreochromis niloticus) as bioindicator species: the case of Nakivubo Wetland along Lake Victoria. Physics and Chemistry of the Earth, Parts A/B/C, 32, 1350-1358. DOI:10.1016/j.pce.2007.07.034
  • Borković-Mitić, S.S., Prokić, M.D., Krizmanić, II., Mutić, J., Trifković, J., Gavrić, J., Despotović, S.G., Gavrilović, B.R., Radovanović, T.B., Pavlović, S.Z., & Saičić, Z.S. (2016). Biomarkers of oxidative stress and metal accumulation in marsh frog (Pelophylax ridibundus). Environmental Science and Pollution Research International, 23, 9649–9659. DOI:10.1007/ s11356- 016- 6194-3
  • Çiçek, K., Ayaz, D., Afsar, M., Bayrakcı, Y., Pekşen, Ç, Cumhuriyet, O., İlhan, B.İ., Yenmiş, M., Üstündağ, E., Tok, C.V., Bilgin, C.C., & Akçakaya, H. (2021). Unsustainable harvest of water frogs in southern Turkey for the European market. Oryx, 55(3), 364-372. DOI:10.1017/S0030605319000176
  • de Medeiros, A.M.Z., Côa, F., Alves, O.L., Martinez, D.S.T., & Barbieri, E. (2020). Metabolic effects in the freshwater fish Geophagus iporangensis in response to single and combined exposure to graphene oxide and trace elements. Chemosphere, 243, 125316. DOI:10.1016/j.chemosphere.2019.125316
  • EC (2006). European Commission regulation no. 1881/2006 of 19 December 2006 setting 450 maximum levels for certain contaminants in foodstuffs. Off J Eur Union L364–5-L364–24. Available at https:// eur- lex. europa. eu/ legal- conte nt/ EN/ ALL/? uriDc elex% 3A320 06R18 81. Accessed 30 January 2022
  • Fettweis, A., Bergen, B., Hansul, S., De Schamphelaere, K., & Smolders, E. (2021). Correlated Ni, Cu, and Zn sensitivities of 8 freshwater algal species and consequences for low‐level metal mixture effects. Environmental Toxicology and Chemistry. DOI:10.1002/etc.5034
  • Gedik, K. (2018). Bioaccessibility of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in Mediterranean mussel (Mytilus galloprovincialis Lamarck, 1819) along the southeastern Black Sea coast. Human and Ecological Risk Assessment, 24,754–66. DOI:10.1080/10807039.2017.1398632
  • Hecnar, S.J. (1995). Acute and chronic toxicity of ammonium nitrate fertilizer to amphibians from southern Ontario. Environmental Toxicology and Chemistry, 14, 2131–2137. DOI:10.1002/etc.5620141217
  • Helfrich, L.A., Neves, R.J., & Parkhurst, J.A. (2009). Commercial frog farming. College of Agriculture and Life Sciences, State University of Virginia, USA.
  • Henczova, M., Deer, A.K., Filla, A., Komlosi, V., & Mink, J. (2008). Effects of Cu2+ and Pb2+ on different fish species: liver cytochrome P450-dependent monooxygenease activites and FTIR spectra. Comparative Biochemistry and Physiology C, 148, 53-60. DOI:10.1016/j.cbpc.2008.03.010
  • JECFA (1982) Evaluation of certain food additives and contami- nants 26th Report of the Joint FAO/WHO Expert Committee on Food Additives, WHO Technical Report Series No. 683. World Health Organization, Geneva, Switzerland. Available at http:// apps. who. int/ iris/ bitst ream/ 10665/ 41546/1/ WHO_ TRS_ 683. pdf. Accessed 2 February 2022
  • JECFA (2011a) Evaluation of certain food additives and con- taminants 72nd Report of the Joint FAO/WHO Expert Commit- tee on Food Additives. WHO Technical Report Series No. 959. World Health Organization, Rome, Italy. Available at http:// apps. who. int/ iris/ bitst ream/ 10665/ 44514/1/ WHO_ TRS_ 959_ eng. pdf. Accessed 2 February 2022
  • JECFA (2011b). Evaluation of certain food additives and contami- nants 73rd Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series No. 960. World Health Organization, Geneva, Switzerland. Available at http:// apps. who. int/ iris/ bitst ream/ 10665/ 44515/1/ WHO_ TRS_ 960_ eng. pdf. 2 February 2022
  • Kaczor, M., Sura, P., Bronowicka-Adamska, P., & Wróbel, M. (2013). Exposure to lead in water and cysteine non-oxidative metabolism in Pelophylax ridibundus tissues. Aquatic toxicology, 127, 72-77. DOI:10.1016/j.aquatox.2012.03.014
  • Kürüm, V. (2015). Statistics of Frog Trade in Turkey. Republic of Turkey Ministry of Agriculture and Forestry General Directorate of Fisheries and Aquaculture, Ankara, Turkey. [in Turkish]
  • Lee, Y.H., & Stuebing, R.B. (1990). Heavy metal contamination in the River Toad, Bufo juxtasper (Inger), near a copper mine in East Malaysia. Bulletin of Environmental Contamination and Toxicology, 45(2), 272-279. DOI: 10.1007/BF01700195
  • Loumbourdis, N.S., Kostaropoulos, I., Theodoropoulou, B., & Kalmanti, D. (2007). Heavy metal accumulation and metallothionein concentration in the frog Rana ridibunda after exposure to chromium or a mixture of chromium and cadmium. Environmental Pollution, 145(3), 787-792. DOI:10.1016/j.envpol.2006.05.011
  • Loumbourdis, N.S., & Wray, D. (1998). Heavy-metal concentration in the frog Rana ridibunda from a small river of Macedonia, Northern Greece. Environment International, 24(4), 427-431. DOI:10.1016/S0160-4120(98)00021-X
  • Mani, M., Altunışık, A., & Gedik K. (2021). Bioaccumulation of trace elements and health risk predictions in edible tissues of the marsh frog. Biological Trace Element Research. DOI:10.1007/s12011-021-03017-1
  • Maulvault, A.L., Cardoso, C., Nunes, M.L., & Marques, A. (2013). Risk–benefit assessment of cooked seafood: Black scabbard fish (Aphanopus carbo) and edible crab (Cancer pagurus) as case studies. Food Control, 32(2), 518-524. DOI:10.1016/j.foodcont.2013.01.026
  • Medina, M.F., González, M.E., Klyver, S.M.R., & Odstrcil, I.M.A. (2016). Histopathological and biochemical changes in the liver, kidney, and blood of amphibians intoxicated with cadmium. Turkish Journal of Biology, 40(1), 229-238. DOI:10.3906/biy-1505-72
  • Nebeker, A.V., Schuytema, G.S., & Ott, S.L. (1995). Effects of cadmium on growth and bioaccumulation in the Northwestern salamander (Ambystoma gracile). Archives of Environmental Contamination and Toxicology, 29(4), 492-499. DOI:10.1007/BF00208379
  • Newman, M.C., & Unger M.A. (2002). Fundamentals of ecotoxicology. Lewis Publishers, Boca Raton, p 480.
  • Othman, M. S., Khonsue, W., Kitana, J., Thirakhupt, K., Robson, M.G., & Kitana, N. (2009). Cadmium accumulation in two populations of rice frogs (Fejervarya limnocharis) naturally exposed to different environmental cadmium levels. Bulletin of Environmental Contamination and Toxicology, 83(5), 703-707. DOI:10.1007/s00128-009-9845-y
  • Papadimitriou, E., & Loumbourdis, N.S. (2002). Exposure of the frog Rana ridibunda to copper: Impact on two biomarkers, lipid peroxidation, and glutathione. Bulletin of Environmental Contamination and Toxicology, 69(6), 0885-0891. DOI:10.1007/s00128-002-0142-2
  • Prokić, M.D., Borković-Mitić, S.S., Krizmanić, I.I., Mutić, J.J., Trifković, J.Đ., Gavrić, J.P., Despetovic, S.G., Gavrilovic, B.R., Radovanovic, T.B., Pavlovic, S.Z., & Saičić, Z.S. (2016a). Bioaccumulation and effects of metals on oxidative stress and neurotoxicity parameters in the frogs from the Pelophylax esculentus complex. Ecotoxicology, 25(8), 1531-1542. DOI:10.1007/s10646-016-1707-x
  • Prokić, M.D., Borković-Mitić, S.S., Krizmanić, I.I., Mutić, J.J., Vukojević, V., Nasia, M., Gavrić, J.P., Despetovic, S.G.; Gavrilovic, B.R.; Radovanovic, T.B.; Pavlovic, S.Z., & Saičić, Z. S. (2016b). Antioxidative responses of the tissues of two wild populations of Pelophylax kl. esculentus frogs to heavy metal pollution. Ecotoxicology and Environmental Safety, 128, 21-29. DOI:10.1016/j.ecoenv.2016.02.005
  • Prokić, M.D., Borković-Mitić, S.S., Krizmanić, I.I., Mutić, J.J., Gavrić, J.P., Despotović, S.G.; Despetovic, S.G.; Gavrilovic, B.R.; Radovanovic, T.B.; Pavlovic, S.Z., & Saičić, Z.S. (2017). Oxidative stress parameters in two Pelophylax esculentus complex frogs during pre-and post-hibernation: Arousal vs heavy metals. Comparative Biochemistry and Physiology Part C, Toxicology Pharmacology, 202, 19-25. DOI:10.1016/j.cbpc.2017.07.006
  • Qureshi, I.Z., Kashif, Z., & Hashmi, M.Z. (2015). Assessment of heavy metals and metalloids in tissues of two frog species: Rana tigrina and Euphlyctis cyanophlyctis from industrial city Sialkot, Pakistan. Environmental Science and Pollution Research, 22:14157–14168. DOI:10.1007/ s11356- 015- 4454-2
  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https:// www.R-project.org/
  • Rainbow, P. S. (2018). Trace metals in the environment and living organisms: the British Isles as a case study. Cambridge University Press. DOI:10.1017/9781108658423
  • Rohman, F., Permana, H., Akhsani, F., Wangkulangkul, S., & Priambodo, B. (2020). The amphibians diversity as bioindicator of aquatic ecosystem at Sumber Taman, Malang, East Java. In AIP Conference Proceedings (Vol. 2231, No. 1, p. 040016). AIP Publishing LLC. DOI:10.1063/5.0002503
  • Shaapera, U., Nnamonu, L.A., & Eneji, I.S. (2013). Assessment of heavy metals in Rana esculenta organs from River Guma, Benue State Nigeria. American Journal of Analytical Chemistry, 2013. DOI:10.4236/ajac.2013.49063
  • Stolyar, O.B., Loumbourdis, N.S., Falfushinska, H.I., & Romanchuk, L.D. (2008). Comparison of metal bioavailability in frogs from urban and rural sites of Western Ukraine. Archives of Environmental Contamination and Toxicology, 54(1), 107-113. DOI:10.1007/s00244-007-9012-6
  • Şereflişan, H., & Alkaya, A. (2016). Legal regulations on biology, economy, hunting and export of edible frogs (Ranidae) in Turkey. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi, 4 (7), 600-604 (In Turkish). DOI: 10.24925/turjaf.v4i7.600-604.654
  • Taş, E.Ç., & Sunlu, U. (2019). Heavy metal concentrations in razor clam (Solen marginatus Pulteney, 1799) and sediments from Izmir Bay, Aegean Sea, Turkey. Turkish Journal of Agriculture-Food Science and Technology, 7(2), 306-313. DOI:10.24925/turjaf.v7i2.306-313.2284
  • TFC (Turkish Food Codex). (2011). Turkish Food Codex Regulation on Contaminants, official gazette, 29 December 2011 28157. Available at http://mevzuat.basbakanlik.gov.tr/ Metin.Aspx?MevzuatKodD=7.5.15692&MevzuatIliski=0&sourceXmlSearch=bula%C5%9Fanlar
  • Thanomsangad, P., Tengjaroenkul, B., Sriuttha, M., & Neeratanaphan, L. (2019). Heavy metal accumulation in frogs surrounding an e-waste dump site and human health risk assessment. Human and Ecological Risk Assessment: An International Journal. DOI:10.1080/10807039.2019.1575181
  • Tyokumbur, E.T., & Okorie, T. (2011). Bioconcentration of Trace Metals in the Tissues of Two Leafy Vegetables Widely Consumed in South West Nigeria. Biological Trace Element Research. 140, 215–224. DOI:10.1007/s12011-010-8683-4
  • US EPA (1994). A Literature Review Summary of Metal Extraction Processes. Used to Remove Lead from Soils, EPA/600/SR-94/006 March, Cincinnati, OH
  • US EPA (US Environmental Protection Agency) (1996). Acid digestion of sediments, sludges, and soils. EPA Method 3050B. Washington, DC, USA
  • US EPA (2015). Regional screening level (RSL) summary table (TR D 1E-6, HQ D 1) June 2015 (revised). Available at http://semspub.epa.gov/work/03/2218422.pdf
  • US EPA (2000). Guidance for assessing chemical contaminant data for use in fish advisories volume 2 risk assessment and fish consumption limits Third Edition. US Environmental Protection Agency.
  • Vogiatzis, A.K., & Loumbourdis, N.S. (1998). Cadmium accumulation in liver and kidneys and hepatic metallothionein and glutathione levels in Rana ridibunda, after exposure to CdCl2. Archives of environmental contamination and toxicology, 34(1), 64-68. DOI:10.1007/s002449900286
  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag. DOI:10.1007/978-3-319-24277-4
  • Zeng, J., Chen, F., Li, M., Wu, L., Zhang, H., & Zou, X. (2019). The mixture toxicity of heavy metals on Photobacterium phosphoreum and its modeling by ion characteristics-based QSAR. PloS one, 14(12), e0226541. DOI:10.1371/journal.pone.0226541
  • Zhelev, Zh.M., Popgeorgiev, G.S., & Mehterov, N.H. (2014). Changes in the basic mor- phophysiological parameters in the populations of Pelophylax ridibundus (Amphibia: Ranidae) from anthropogenically polluted biotopes in Southern Bulgaria. Part. 1. Bulgarian Journal of Agricultural Science, 20(5), 1202–1210.
  • Zhelev, Z. M., Arnaudova, D. N., Popgeorgiev, G. S., & Tsonev, S. V. (2020). In situ assessment of health status and heavy metal bioaccumulation of adult Pelophylax ridibundus (Anura: Ranidae) individuals inhabiting polluted area in southern Bulgaria. Ecological Indicators, 115, 106413. DOI:10.1016/j.ecolind.2020.106413
There are 59 citations in total.

Details

Primary Language English
Subjects Zoology
Journal Section Articles
Authors

Hale Tatlı 0000-0002-5864-092X

Abdullah Altunışık 0000-0003-2934-7414

Kenan Gedik 0000-0001-8244-6935

Project Number 2209A Üniversite Öğrencileri Araştırma Destek Programı
Publication Date September 15, 2022
Submission Date February 2, 2022
Published in Issue Year 2022Volume: 39 Issue: 3

Cite

APA Tatlı, H., Altunışık, A., & Gedik, K. (2022). Trace element bioaccumulation and health risk assessment derived from leg consumption of the marsh frog, Pelophylax ridibundus (Pallas, 1771). Ege Journal of Fisheries and Aquatic Sciences, 39(3), 182-190. https://doi.org/10.12714/egejfas.39.3.02