Research Article
BibTex RIS Cite

Edremit Körfezi’nden yakalanan Barbunya (Mullus barbatus) ve Bakalyaro (Merluccius merluccius) balıklarında alifatik hidrokarbonların incelenmesi

Year 2021, Volume: 38 Issue: 1, 1 - 10, 15.03.2021
https://doi.org/10.12714/egejfas.38.1.01

Abstract



Bu çalışmada, 2015 yılı bahar ve güz dönemlerinde Edremit Körfezi’nden (Batı Ege, Türkiye) trolle yakalanan barbunya (Mullus barbatus) ve bakalyaro (Merluccius merluccius) balıklarında alifatik hidrokarbon seviyeleri incelenmiştir. Bu amaçla, her iki dönemde körfezin 3 farklı bölgesinden trolle örnekleme yapılmıştır. Yapılan analizler sonucunda, barbunya balıklarındaki toplam alifatik hidrokarbon (TAH) seviyeleri bakalyarolardakinden daha yüksek olduğu bulunmuştur. Barbunya örneklerinde hesaplanan TAH seviyeleri 456-2090 ng/g iken bakalyarolarda 61-746 ng/g aralığında ölçülmüştür. Genel olarak barbunyalardaki yüksek TAH seviyesinin, bu türe ait eksrakte olabilen organik madde (EOM) miktarı ile ilişkili olduğu düşünülmektedir. Korelasyon, kümeleme ve birincil bileşen analiz sonuçlarına göre genellikle barbunyalarda TAH seviyelerine etki eden bileşiklerin C11 ve C12 alifatik hidrokarbon bileşikleri iken bakalyarolarda C15, C17 ve Pristan (Pristane) bileşiklerinin olduğu görülmüştür. Bu sonuçlar Edremit Körfezi’ndeki balıklarda bulunan alifatik hidrokarbonların kaynağının, bakalyarolarda biyojenik iken barbunyalarda kesin olmamakla birlikte petrojenik olabileceğine işaret etmektedir.


Supporting Institution

TÜBİTAK

Project Number

113Y447

Thanks

TÜBİTAK'a 113Y447 nolu proje desteği için teşekkürler.

References

  • Ahmed, M. T., Loutfy, N., Shoieb, M., & Mosleh, Y. Y. (2014). Residues of Aliphatic and Polycyclic Aromatic Hydrocarbons in Some Fish Species of Lake Temsah, Ismailia, Egypt: An Analytical Search for Hydrocarbon Sources and Exposure Bioindicators. Human and Ecological Risk Assessment: An International Journal, 20(6), 1659-1669.
  • Ahmed, O. E., Eldesoky, A. M., & El Nady, M. M. (2019). Evaluation of petroleum hydrocarbons and its impact on organic matters of living organisms in the northwestern Gulf of Suez, Egypt. Petroleum Science and Technology, 37(24), 2441–2449. DOI:10.1080/10916466.2019.1655443
  • Akalın, S. (2014). Investigations of the age and growth characteristics of European Hake (Merluccius merluccius L., 1758) in Edremit Bay. Ege Journal of Fisheries and Aquatic Sciences, 31(4), 195–203. DOI:10.12714/egejfas.2014.31.4.04
  • Azis, M. Y., Yelmiza, Asia, L., Piram, A., Bucharil, B., Doumenq, P., & Syakti, A. D. (2016). Occurrence of aliphatic and polyaromatic hydrocarbons (PAHs) in Mytillus galloprovincialis from the traditional market in Marseille, France, by Gas Chromatography triplequadropole tandem Mass Spectrometry (GC-QQQ/MS). IOP Conference Series: Materials Science and Engineering, 107(1). DOI:10.1088/1757-899X/107/1/012008
  • Balıkesir İli 2015 Yılı Çevre Durum Raporu (2016). T.C. BALIKESİR VALİLİĞİ ÇEVRE VE ŞEHİRCİLİK İL MÜDÜRLÜĞÜ, Balıkesir İli 2015 Yılı Çevre Durum Raporu.
  • Bedair, H.M., Al-Saad, H.T., 1992. Dissolved and particulate-adsorbed hydrocarbons in the waters of shatt al-Arab River, Iraq. Water, Air, Soil Pollut. 61, 397–408. https://doi.org/10.1007/BF00482618
  • Blumer, M., Mullin, M. M., & Thomas, D. W. (1964). Pristane in the marine environment. Helgoländer Wissenschaftliche Meeresuntersuchungen, 10(1), 187–201. DOI:10.1007/BF01626106
  • Blumer, M., Sass, J., 1972. Oil pollution: Persistence and degradation of spilled fuel oil. Science (80-. ). 176, 1120–1122. https://doi.org/10.1126/science.176.4039.1120.
  • Brassell, S. C., Eglinton, G., Maxwell, J. R., & Philp, R. P. (1978). Natural background of alkanes in the aquatic environment. In Aquatic pollutants (pp. 69-86). Pergamon Press Ltd. DOI:10.1016/b978-0-08-022059-8.50010-8
  • Brown, J., Boehm, P., Cook, L., Trefry, J., Smith, W., & Durell, G. (2010). cANIMIDA Task 2: Hydrocarbon and metal characterization of sediments in the cANIMIDA study area. OCS Study MMS 2010-004, Final report. Contract, (M04PC00001).
  • Carls, M.G., Wertheimer, A.C., Short, J.W., Smolowitz, R.M., & Stegeman, J.J., 1996. Contamination of juvenile pink and chum salmon by hydrocarbons is Prince William Sound after the Exxon Valdez oil spill. In: Rice, S.D., Spies, R.B., Wolfe, D.A., Wright, B.A. (Eds.), Proceedings of the Exxon Valdez oil spill symposium. American Fisheries Society, Bethesda, Maryland, pp. 593–607.
  • Carro, N., Cobas, J., & Maneiro, J. (2006). Distribution of aliphatic compounds in bivalve mollusks from Galicia after the Prestige oil spill: Spatial and temporal trends. Environmental Research, 100(3), 339–348. DOI:10.1016/j.envres.2005.09.003
  • Ceyhan, T., Akyol, O., & Ünal, V. (2006). Edremit Körfezi (Ege Denizi) Kıyı Balıkçılığı Üzerine Bir Araştırma. Su Ürünleri Dergisi, 23(3), 373-375.
  • Clark Jr, R. C. (1966). Saturated hydrocarbons in marine plants and sediments (Doctoral dissertation, Massachusetts Institute of Technology).
  • Colombo, J. C., Cappelletti, N., Migoya, M. C., & Speranza, E. (2007). Bioaccumulation of anthropogenic contaminants by detritivorous fish in the Río de la Plata estuary: 1-Aliphatic hydrocarbons. Chemosphere, 68(11), 2128–2135. DOI:10.1016/j.chemosphere.2007.02.001
  • Çelik, Ö., & Torcu, H. (2000). Ege Denizi, Edremit Körfezi Barbunya Baliǧi (Mullus barbatus Linnaeus, 1758)’nin Biyolojisi Üzerine Araştirmalar. Turkish Journal of Veterinary and Animal Sciences, 24(3), 287–295.
  • Darilmaz, E., & Kucuksezgin, F. (2012). Distribution of aliphatic and aromatic hydrocarbons in red mullet (Mullus barbatus) and annular sea bream (Diplodus annularis) from the Izmir Bay (Eastern Aegean). Bulletin of Environmental Contamination and Toxicology, 88(2), 283–289. DOI:10.1007/s00128-011-0467-9
  • Emara, H. I., Said, T. O., El Naggar, N. A., & Shreadah, M. A. (2008). Aliphatic and polycyclic hydrocarbon compounds as chemical markers for pollution sources in relation to physico-chemical characteristics of the eastern harbour (Egyptian Mediterranean Sea). Egyptian Journal of Aquatic Research.
  • EPA. (2018). Region 4 Ecological Risk Assessment Supplemental Guidance. U.S. Environmental Protection Agency, (March), 98. Retrieved from https://www.epa.gov/sites/production/files/2018-03/documents/era_regional_supplemental_guidance_report-march-2018_update.pdf
  • Ferguson, A. L., Debenedetti, P. G., & Panagiotopoulos, A. Z. (2009). Solubility and molecular conformations of n-Alkane chains in water. Journal of Physical Chemistry B, 113(18), 6405–6414. DOI:10.1021/jp811229q
  • Harvey, H. R., & Taylor, K. A. (2017). Alkane and polycyclic aromatic hydrocarbons in sediments and benthic invertebrates of the northern Chukchi Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 144 (August), 52–62. DOI:10.1016/j.dsr2.2017.08.011
  • Le Dreau, Y., Jacquot, F., Doumenq, P., Guiliano, M., Bertrand, J. C., & Mille, G. (1997). Hydrocarbon balance of a site which had been highly and chronically contaminated by petroleum wastes of a refinery (from 1956 to 1992). Marine Pollution Bulletin, 34(6), 456–468. DOI:10.1016/S0025-326X(96)00139-7.
  • Lin, X., Zhu, L.P., Wang, Y., Wang, J.B., Xie, M.P., Ju, J.T., Mäusbacher, R., Schwalb, A., 2008. Environmental changes reflected by n-alkanes of lake core in Nam Co on the Tibetan Plateau since 8.4 kaB.P. Chinese Science Bulletin, 53, 3051–3057. DOI:10.1007/s11434-008-0313-6
  • Luquet, P., Cravedi, J. P., Tulliez, J., & Bories, G. (1984). Growth reduction in trout induced by naphthenic and isoprenoid hydrocarbons (dodecylcyclohexane and pristane). Ecotoxicology and Environmental Safety, 8(3), 219–226. DOI:10.1016/0147-6513(84)90025-3
  • Miyake, T., Nakazawa, F., Sakugawa, H., Takeuchi, N., Fujita, K., Ohta, K., & Nakawo, M. (2006). Concentrations and source variations of n-alkanes in a 21 m ice core and snow samples at Belukha glacier, Russian Altai mountains. Annals of Glaciology, 43, 142-147.
  • Mzoughi, N., Chouba, L., & Lespes, G. (2010). Assessment of total aromatic hydrocarbons, aliphatic and polycyclic aromatic hydrocarbons in surface sediment and fish from the Gulf of Tunis (Tunisia). Soil and Sediment Contamination, 19(4), 467–486. DOI:10.1080/15320383.2010.486052
  • Onwurah, I. N. E. (2000). A perspective of industrial and environmental biotechnology. Snaap, 588, 148-152.
  • Payne, J. F., Fancey, L. L., Hellou, J., King, M. J., & Fletcher, G. L. (1995). Aliphatic hydrocarbons in sediments: a chronic toxicity study with winter flounder (Pleuronectes americanus) exposed to oil well drill cuttings. Canadian Journal of Fisheries and Aquatic Sciences, 52(12), 2724–2735. DOI:10.1139/f95-861
  • Short, J., & Harris, P. (2005). Pristane monitoring in mussels: Distribution of pristane in the neritic ecosystem of the Northern Gulf of Alaska. Anchorage (AK): NOAA, National Marine Fisheries Service, Auke Bay Laboratory Juneau, AK. Exxon Valdez, 10-54.
  • Steinhauer, M. S., & Boehm, P. D. (1992). The composition and distribution of saturated and aromatic hydrocarbons in nearshore sediments, river sediments, and coastal peat of the Alaskan Beaufort Sea: Implications for detecting anthropogenic hydrocarbon inputs. Marine Environmental Research, 33(4), 223–253. DOI:10.1016/0141-1136(92)90140-H
  • UNEP/FAO/IOC/IAEA. (1993). Guidelines for monitoring chemical contaminants in the sea using marine organisms. Reference methods for marine Pollution Studies, (6).
  • Ünlüoğlu, A., Akalın, S., & Çakır, D. T. (2008). Edremit Körfezi Demersal Balıkçılık Kaynakları Üzerine Bir Araştırma. Su Ürünleri Dergisi, 25(1), 63-69.
  • Vidal, N.P., Manzanos, M.J., Goicoechea, E., Guillén, M.D., 2016. Farmed and wild sea bass (Dicentrarchus labrax) volatile metabolites: A comparative study by SPME-GC/MS. J. Sci. Food Agric. 96, 1181–1193. https://doi.org/10.1002/jsfa.7201
  • Wakeham, S.G., 1990. Algal and bacterial hydrocarbons in particulate matter and interfacial sediment of the Cariaco Trench. Geochim. Cosmochim. Acta 54, 1325–1336. https://doi.org/10.1016/0016-7037(90)90157-G.
  • Wang, S., Liu, G., Yuan, Z., & Lam, P. K. S. (2019). Occurrence and trophic transfer of aliphatic hydrocarbons in fish species from Yellow River Estuary and Laizhou Bay, China. Science of the Total Environment, 696. DOI:10.1016/j.scitotenv.2019.134037
  • Wang, Z., & Christensen, J. H. (2006). Crude oil and refined product fingerprinting: applications. In Environmental Forensics (pp. 410-464). Academic Press. DOI: 10.1016/B978-012507751-4/50039-2
  • Wang, Z., Fingas, M., & Page, D. S. (1999). Oil spill identification. Journal of Chromatography A, 843(1-2), 369-411.
  • Webster, L., Russell, M., Hussy, I., Packer, G., Dalgarno, E. J., Craig, A., ... & Moffat, C. F. (2012). Environmental Assessment of the Elgin Gas Field Incident–Report 5, Fish and Sediment Update.

Investigation of aliphatic hydrocarbons in Red Mullet (Mullus barbatus) and European Hake (Merluccius merluccius) fish caught from the Edremit Bay (Western Turkey)

Year 2021, Volume: 38 Issue: 1, 1 - 10, 15.03.2021
https://doi.org/10.12714/egejfas.38.1.01

Abstract



In this study, aliphatic hydrocarbon levels were investigated in red mullet and european hake fish caught by trawler from Edremit Bay (Western Aegean, Turkey) in spring and autumn 2015. For this purpose, trawling was carried out from 3 different regions of the Edremit Bay in both seasons. As a result of the analyzes, total aliphatic hydrocarbon (TAH) levels in red mullet were found to be higher than that of european hake. TAH concentrations found for red mullet were in the range of 456-2090 ng/g, while it was found in the range of 61-746 ng/g for european hake. In general, TAH concentrations in red mullet were higher than that of european hake for both seasons. In addition, EOM amounts were found higher in red mullet like TAH. According to correlation, cluster and primary component analysis results, it was observed that the compounds affecting TAH levels in red mullet are C11 and C12 aliphatic hydrocarbon compounds, while european hake have C15, C17 and Pristane compounds. These results indicate that the source of aliphatic hydrocarbons in Edremit Bay fish is biogenic in european hake samples, although not exact, it may be petrogenic in red mullet samples.


Project Number

113Y447

References

  • Ahmed, M. T., Loutfy, N., Shoieb, M., & Mosleh, Y. Y. (2014). Residues of Aliphatic and Polycyclic Aromatic Hydrocarbons in Some Fish Species of Lake Temsah, Ismailia, Egypt: An Analytical Search for Hydrocarbon Sources and Exposure Bioindicators. Human and Ecological Risk Assessment: An International Journal, 20(6), 1659-1669.
  • Ahmed, O. E., Eldesoky, A. M., & El Nady, M. M. (2019). Evaluation of petroleum hydrocarbons and its impact on organic matters of living organisms in the northwestern Gulf of Suez, Egypt. Petroleum Science and Technology, 37(24), 2441–2449. DOI:10.1080/10916466.2019.1655443
  • Akalın, S. (2014). Investigations of the age and growth characteristics of European Hake (Merluccius merluccius L., 1758) in Edremit Bay. Ege Journal of Fisheries and Aquatic Sciences, 31(4), 195–203. DOI:10.12714/egejfas.2014.31.4.04
  • Azis, M. Y., Yelmiza, Asia, L., Piram, A., Bucharil, B., Doumenq, P., & Syakti, A. D. (2016). Occurrence of aliphatic and polyaromatic hydrocarbons (PAHs) in Mytillus galloprovincialis from the traditional market in Marseille, France, by Gas Chromatography triplequadropole tandem Mass Spectrometry (GC-QQQ/MS). IOP Conference Series: Materials Science and Engineering, 107(1). DOI:10.1088/1757-899X/107/1/012008
  • Balıkesir İli 2015 Yılı Çevre Durum Raporu (2016). T.C. BALIKESİR VALİLİĞİ ÇEVRE VE ŞEHİRCİLİK İL MÜDÜRLÜĞÜ, Balıkesir İli 2015 Yılı Çevre Durum Raporu.
  • Bedair, H.M., Al-Saad, H.T., 1992. Dissolved and particulate-adsorbed hydrocarbons in the waters of shatt al-Arab River, Iraq. Water, Air, Soil Pollut. 61, 397–408. https://doi.org/10.1007/BF00482618
  • Blumer, M., Mullin, M. M., & Thomas, D. W. (1964). Pristane in the marine environment. Helgoländer Wissenschaftliche Meeresuntersuchungen, 10(1), 187–201. DOI:10.1007/BF01626106
  • Blumer, M., Sass, J., 1972. Oil pollution: Persistence and degradation of spilled fuel oil. Science (80-. ). 176, 1120–1122. https://doi.org/10.1126/science.176.4039.1120.
  • Brassell, S. C., Eglinton, G., Maxwell, J. R., & Philp, R. P. (1978). Natural background of alkanes in the aquatic environment. In Aquatic pollutants (pp. 69-86). Pergamon Press Ltd. DOI:10.1016/b978-0-08-022059-8.50010-8
  • Brown, J., Boehm, P., Cook, L., Trefry, J., Smith, W., & Durell, G. (2010). cANIMIDA Task 2: Hydrocarbon and metal characterization of sediments in the cANIMIDA study area. OCS Study MMS 2010-004, Final report. Contract, (M04PC00001).
  • Carls, M.G., Wertheimer, A.C., Short, J.W., Smolowitz, R.M., & Stegeman, J.J., 1996. Contamination of juvenile pink and chum salmon by hydrocarbons is Prince William Sound after the Exxon Valdez oil spill. In: Rice, S.D., Spies, R.B., Wolfe, D.A., Wright, B.A. (Eds.), Proceedings of the Exxon Valdez oil spill symposium. American Fisheries Society, Bethesda, Maryland, pp. 593–607.
  • Carro, N., Cobas, J., & Maneiro, J. (2006). Distribution of aliphatic compounds in bivalve mollusks from Galicia after the Prestige oil spill: Spatial and temporal trends. Environmental Research, 100(3), 339–348. DOI:10.1016/j.envres.2005.09.003
  • Ceyhan, T., Akyol, O., & Ünal, V. (2006). Edremit Körfezi (Ege Denizi) Kıyı Balıkçılığı Üzerine Bir Araştırma. Su Ürünleri Dergisi, 23(3), 373-375.
  • Clark Jr, R. C. (1966). Saturated hydrocarbons in marine plants and sediments (Doctoral dissertation, Massachusetts Institute of Technology).
  • Colombo, J. C., Cappelletti, N., Migoya, M. C., & Speranza, E. (2007). Bioaccumulation of anthropogenic contaminants by detritivorous fish in the Río de la Plata estuary: 1-Aliphatic hydrocarbons. Chemosphere, 68(11), 2128–2135. DOI:10.1016/j.chemosphere.2007.02.001
  • Çelik, Ö., & Torcu, H. (2000). Ege Denizi, Edremit Körfezi Barbunya Baliǧi (Mullus barbatus Linnaeus, 1758)’nin Biyolojisi Üzerine Araştirmalar. Turkish Journal of Veterinary and Animal Sciences, 24(3), 287–295.
  • Darilmaz, E., & Kucuksezgin, F. (2012). Distribution of aliphatic and aromatic hydrocarbons in red mullet (Mullus barbatus) and annular sea bream (Diplodus annularis) from the Izmir Bay (Eastern Aegean). Bulletin of Environmental Contamination and Toxicology, 88(2), 283–289. DOI:10.1007/s00128-011-0467-9
  • Emara, H. I., Said, T. O., El Naggar, N. A., & Shreadah, M. A. (2008). Aliphatic and polycyclic hydrocarbon compounds as chemical markers for pollution sources in relation to physico-chemical characteristics of the eastern harbour (Egyptian Mediterranean Sea). Egyptian Journal of Aquatic Research.
  • EPA. (2018). Region 4 Ecological Risk Assessment Supplemental Guidance. U.S. Environmental Protection Agency, (March), 98. Retrieved from https://www.epa.gov/sites/production/files/2018-03/documents/era_regional_supplemental_guidance_report-march-2018_update.pdf
  • Ferguson, A. L., Debenedetti, P. G., & Panagiotopoulos, A. Z. (2009). Solubility and molecular conformations of n-Alkane chains in water. Journal of Physical Chemistry B, 113(18), 6405–6414. DOI:10.1021/jp811229q
  • Harvey, H. R., & Taylor, K. A. (2017). Alkane and polycyclic aromatic hydrocarbons in sediments and benthic invertebrates of the northern Chukchi Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 144 (August), 52–62. DOI:10.1016/j.dsr2.2017.08.011
  • Le Dreau, Y., Jacquot, F., Doumenq, P., Guiliano, M., Bertrand, J. C., & Mille, G. (1997). Hydrocarbon balance of a site which had been highly and chronically contaminated by petroleum wastes of a refinery (from 1956 to 1992). Marine Pollution Bulletin, 34(6), 456–468. DOI:10.1016/S0025-326X(96)00139-7.
  • Lin, X., Zhu, L.P., Wang, Y., Wang, J.B., Xie, M.P., Ju, J.T., Mäusbacher, R., Schwalb, A., 2008. Environmental changes reflected by n-alkanes of lake core in Nam Co on the Tibetan Plateau since 8.4 kaB.P. Chinese Science Bulletin, 53, 3051–3057. DOI:10.1007/s11434-008-0313-6
  • Luquet, P., Cravedi, J. P., Tulliez, J., & Bories, G. (1984). Growth reduction in trout induced by naphthenic and isoprenoid hydrocarbons (dodecylcyclohexane and pristane). Ecotoxicology and Environmental Safety, 8(3), 219–226. DOI:10.1016/0147-6513(84)90025-3
  • Miyake, T., Nakazawa, F., Sakugawa, H., Takeuchi, N., Fujita, K., Ohta, K., & Nakawo, M. (2006). Concentrations and source variations of n-alkanes in a 21 m ice core and snow samples at Belukha glacier, Russian Altai mountains. Annals of Glaciology, 43, 142-147.
  • Mzoughi, N., Chouba, L., & Lespes, G. (2010). Assessment of total aromatic hydrocarbons, aliphatic and polycyclic aromatic hydrocarbons in surface sediment and fish from the Gulf of Tunis (Tunisia). Soil and Sediment Contamination, 19(4), 467–486. DOI:10.1080/15320383.2010.486052
  • Onwurah, I. N. E. (2000). A perspective of industrial and environmental biotechnology. Snaap, 588, 148-152.
  • Payne, J. F., Fancey, L. L., Hellou, J., King, M. J., & Fletcher, G. L. (1995). Aliphatic hydrocarbons in sediments: a chronic toxicity study with winter flounder (Pleuronectes americanus) exposed to oil well drill cuttings. Canadian Journal of Fisheries and Aquatic Sciences, 52(12), 2724–2735. DOI:10.1139/f95-861
  • Short, J., & Harris, P. (2005). Pristane monitoring in mussels: Distribution of pristane in the neritic ecosystem of the Northern Gulf of Alaska. Anchorage (AK): NOAA, National Marine Fisheries Service, Auke Bay Laboratory Juneau, AK. Exxon Valdez, 10-54.
  • Steinhauer, M. S., & Boehm, P. D. (1992). The composition and distribution of saturated and aromatic hydrocarbons in nearshore sediments, river sediments, and coastal peat of the Alaskan Beaufort Sea: Implications for detecting anthropogenic hydrocarbon inputs. Marine Environmental Research, 33(4), 223–253. DOI:10.1016/0141-1136(92)90140-H
  • UNEP/FAO/IOC/IAEA. (1993). Guidelines for monitoring chemical contaminants in the sea using marine organisms. Reference methods for marine Pollution Studies, (6).
  • Ünlüoğlu, A., Akalın, S., & Çakır, D. T. (2008). Edremit Körfezi Demersal Balıkçılık Kaynakları Üzerine Bir Araştırma. Su Ürünleri Dergisi, 25(1), 63-69.
  • Vidal, N.P., Manzanos, M.J., Goicoechea, E., Guillén, M.D., 2016. Farmed and wild sea bass (Dicentrarchus labrax) volatile metabolites: A comparative study by SPME-GC/MS. J. Sci. Food Agric. 96, 1181–1193. https://doi.org/10.1002/jsfa.7201
  • Wakeham, S.G., 1990. Algal and bacterial hydrocarbons in particulate matter and interfacial sediment of the Cariaco Trench. Geochim. Cosmochim. Acta 54, 1325–1336. https://doi.org/10.1016/0016-7037(90)90157-G.
  • Wang, S., Liu, G., Yuan, Z., & Lam, P. K. S. (2019). Occurrence and trophic transfer of aliphatic hydrocarbons in fish species from Yellow River Estuary and Laizhou Bay, China. Science of the Total Environment, 696. DOI:10.1016/j.scitotenv.2019.134037
  • Wang, Z., & Christensen, J. H. (2006). Crude oil and refined product fingerprinting: applications. In Environmental Forensics (pp. 410-464). Academic Press. DOI: 10.1016/B978-012507751-4/50039-2
  • Wang, Z., Fingas, M., & Page, D. S. (1999). Oil spill identification. Journal of Chromatography A, 843(1-2), 369-411.
  • Webster, L., Russell, M., Hussy, I., Packer, G., Dalgarno, E. J., Craig, A., ... & Moffat, C. F. (2012). Environmental Assessment of the Elgin Gas Field Incident–Report 5, Fish and Sediment Update.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Maritime Engineering
Journal Section Articles
Authors

Enis Darılmaz 0000-0002-9090-9319

Project Number 113Y447
Publication Date March 15, 2021
Submission Date April 30, 2020
Published in Issue Year 2021Volume: 38 Issue: 1

Cite

APA Darılmaz, E. (2021). Edremit Körfezi’nden yakalanan Barbunya (Mullus barbatus) ve Bakalyaro (Merluccius merluccius) balıklarında alifatik hidrokarbonların incelenmesi. Ege Journal of Fisheries and Aquatic Sciences, 38(1), 1-10. https://doi.org/10.12714/egejfas.38.1.01