Prebiotic effects of macroalgae
Year 2020,
Volume: 37 Issue: 1, 103 - 112, 15.03.2020
Zehra Torun
,
Belma Konuklugil
Abstract
Macroalgae are seaweeds, which are often consumed as much as food in Asian countries. Studies have been made that carbohydrate compounds such as oligosaccharides and polysaccharides can be considered as prebiotics. Prebiotics are nutrient sources of probiotics that defined as useful microorganisms in the gastrointestinal tract especially. With the positive effects of prebiotics on probiotics, the gastointestinal system and thus all body systems are kept in a healthy balance. This review provides brief information about probiotics, prebiotics and is a pioneer in the studies on the evaluation of macroalgae as prebiotics in our country.
References
- Ale, M.T., Mikkelsen, J.D. & Meyer, A.S. (2011). Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Marine Drugs, 9(10), 2106-2130. DOI: 10.3390/md9102106
- Annison, G., Illman, R.J. & Topping, D.L. (2003). Acetylated, Propionylated or Butyrylated Starches Raise Large Bowel Short-Chain Fatty Acids Preferentially When Fed to Rats. The Journal of Nutrition, 133(11), 3523-3528. DOI: 10.1093/jn/133.11.3523
- Baurhoo, B., Letellier, A., Zhao, X. & Ruiz-Feria, C.A. (2007). Cecal Populations of Lactobacilli and Bifidobacteria and Escherichia coli Populations After In Vivo Escherichia coli Challenge in Birds Fed Diets with Purified Lignin or Mannanoligosaccharides. Poultry Science, 86(12), 2509-2516. DOI: 10.3382/ps.2007-00136
- Begley, M., Hill, C. & Gahan, C.G.M. (2006). Bile salt hydrolase activity in probiotics. Applied and Environmental Microbiology, 72(3), 1729-1738. DOI: 10.1128/AEM.72.3.1729-1738.2006
- Chang, C.-J., Lin, C.-S., Lu, C.-C., Martel, J., Ko, Y.-F., Ojcius, D.M., Tseng, S.-F., Wu, T.-R., Margaret Chen, Y.-Y., Young, J.D. & Lai, H.C. (2015). Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nature Communications, 6, 7489-7489. DOI: 10.1038/ncomms8489
- Charoensiddhi, S., Conlon, M.A., Methacanon, P., Franco, C.M.M., Su, P. & Zhang, W. (2017). Gut health benefits of brown seaweed Ecklonia radiata and its polysaccharides demonstrated in vivo in a rat model. Journal of Functional Foods, 37, 676-684. DOI: 10.1016/j.jff.2017.08.040
- Charoensiddhi, S., Conlon, M.A., Vuaran, M.S., Franco, C.M.M. & Zhang, W. (2016). Impact of extraction processes on prebiotic potential of the brown seaweed Ecklonia radiata by in vitro human gut bacteria fermentation. Journal of Functional Foods, 24, 221-230. DOI: 10.1016/j.jff.2016.04.016
- Chen, L., Xu, W., Chen, D., Chen, G., Liu, J., Zeng, X., Shao, R. & Zhu, H. (2018). Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro. International Journal of Biological Macromolecules, 112, 1055-1061. DOI: 10.1016/j.ijbiomac.2018.01.183
- Cremonini, F., Di Caro, S., Nista, E.C., Bartolozzi, F., Capelli, G., Gasbarrini, G. & Gasbarrini, A. (2002). Meta-analysis: the effect of probiotic administration on antibiotic-associated diarrhoea. Alimentary Pharmacology & Therapeutics, 16(8), 1461-1467. DOI: 10.1046/j.1365-2036.2002.01318.x
- de Jesus Raposo, M.F., de Morais, A.M.B. & de Morais, R.M.S.C. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine drugs, 13(5), 2967-3028. DOI: 10.3390/md13052967
- de Jesus Raposo, M.F., de Morais, A.M.B. & de Morais, R.M.S.C. (2016). Emergent Sources of Prebiotics: Seaweeds and Microalgae. Marine drugs, 14(2). DOI: 10.3390/md14020027
- Devillé, C., Damas, J., Forget, P., Dandrifosse, G. & Peulen, O. (2004). Laminarin in the dietary fibre concept. Journal of the Science of Food and Agriculture, 84(9), 1030-1038. DOI: 10.1002/jsfa.1754
- Diaz-Pulido, G. & McCook, L.J. (2008). Macroalgae (Seaweeds). In Chin. A (Ed.), The State of the Great Barrier Reef On-line. Great Barrier Reef Marine Park Authority: Townsville.
- Fricke, A. & Camacho, O. (2008). Bocas Algae: Gracilaria domingensis. Smithsonian Tropical Research Institute.
- Fu, X. T. & Kim, S. M. (2010). Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Marine drugs, 8(1), 200-218. DOI: 10.3390/md8010200
- Gibson, G.R., Probert, H.M., Loo, J.V., Rastall, R.A. & Roberfroid, M.B. (2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Reviews, 17(2), 259-275. DOI: 10.1079/NRR200479
- Gibson, G.R. & Roberfroid, M.B. (1995). Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition, 125(6), 1401-1412. DOI: 10.1093/jn/125.6.1401
- Grajek, W., Olejnik, A. & Sip, A. (2005). Probiotics, prebiotics and antioxidants as functional foods. Acta Biochimica Polonica, 52(3), 665-671.
- Gu, Q., Zhang, C., Song, D., Li, P. & Zhu, X. (2015). Enhancing vitamin B12 content in soy-yogurt by Lactobacillus reuteri. International Journal of Food Microbiology, 206, 56-59. DOI: 10.1016/j.ijfoodmicro.2015.04.033
- Guiry, M. D. G., G.M. (2019). AlgaeBase. from World-wide electronic publication,National University of Ireland, Galway
- Hehemann, J.-H., Smyth, L., Yadav, A., Vocadlo, D. & Boraston, A. (2012). Analysis of Keystone Enzyme in Agar Hydrolysis Provides Insight into the Degradation (of a Polysaccharide from) Red Seaweeds. The Journal of biological chemistry, 287, 13985-13995. DOI: 10.1074/jbc.M112.345645
- Hehemann, J., Correc, G., Barbeyron, T., Helbert, W., Czjzek, M. & Michel, G. (2010). Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature, 464, 908. DOI: 10.1038/nature08937
- Hehemann, J., Kelly, A., Pudlo, N., Martens, E. & Boraston, A. (2012). Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proceedings of the National Academy of Sciences of the United States of America, 109(48), 19786-19791. DOI: 10.1073/pnas.1211002109
- Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., Calder, P.C. & Sanders, M.E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514. DOI: 10.1038/nrgastro.2014.66
- Hu, B., Gong, Q., Wang, Y., Ma, Y., Li, J. & Yu, W. (2006). Prebiotic effects of neoagaro-oligosaccharides prepared by enzymatic hydrolysis of agarose. Anaerobe, 12(5), 260-266. DOI: 10.1016/j.anaerobe.2006.07.005
- Johnston, B.C., Supina, A.L. & Vohra, S. (2006). Probiotics for pediatric antibiotic-associated diarrhea: a meta-analysis of randomized placebo-controlled trials. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne, 175(4), 377-383. DOI: 10.1503/cmaj.051603
- Kaoutari, A.E., Armougom, F., Gordon, J.I., Raoult, D. & Henrissat, B. (2013). The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology, 11, 497. DOI: 10.1038/nrmicro3050
- Katia, S., Villarreal, M. M. L., M.I., S. S., Tallarico, A.M.A., Kimiko, S.I. & Rossi, E.A. (2014). Prebiotic Effect of Fructooligosaccharide in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME® Model). Journal of Medicinal Food, 17(8), 894-901. DOI: 10.1089/jmf.2013.0092
- Khalesi, S., Sun, J., Buys, N. & Jayasinghe, R. (2014). Effect of Probiotics on Blood Pressure. HypertensionAHA, 64(4), 897-903. DOI: 10.1161/HYPERTENSIONAHA.114.03469
- Kong, Q., Dong, S., Gao, J. & Jiang, C. (2016). In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota. International Journal of Biological Macromolecules, 91, 867-871. DOI: 10.1016/j.ijbiomac.2016.06.036
- Kuda, T., Enomoto, T. & Yano, T. (2009). Effects of two storage β-1,3-glucans, laminaran from Eicenia bicyclis and paramylon from Euglena gracili, on cecal environment and plasma lipid levels in rats. Journal of Functional Foods, 1(4), 399-404. DOI: 10.1016/j.jff.2009.08.003
- Li, M., Shang, Q., Li, G., Wang, X. & Yu, G. (2017). Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota. Mar Drugs, 15(4). DOI: 10.3390/md15040092
- Li, P. & Gu, Q. (2016). Complete genome sequence of Lactobacillus plantarum LZ95, a potential probiotic strain producing bacteriocins and B-group vitamin riboflavin. Journal of Biotechnology, 229, 1-2. DOI: 10.1016/j.jbiotec.2016.04.048
- Lilly, D. M. & Stillwell, R.H. (1965). Probiotics: Growth-Promoting Factors Produced by Microorganisms. Science, 147(3659), 747-748. DOI: 10.1126/science.147.3659.747
- Lynch, M.B., Sweeney, T., Callan, J.J., O'Sullivan, J.T. ,& O'Doherty, J.V. (2010). The effect of dietary Laminaria-derived laminarin and fucoidan on nutrient digestibility, nitrogen utilisation, intestinal microflora and volatile fatty acid concentration in pigs. Journal of the Science of Food and Agriculture, 90(3), 430-437. DOI: 10.1002/jsfa.3834
- Markowiak, P. & Slizewska, K. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 9(9). DOI: 10.3390/nu9091021
- Marteau, P. & Shanahan, F. (2003). Basic aspects and pharmacology of probiotics: an overview of pharmacokinetics, mechanisms of action and side-effects. Best Practice & Research Clinical Gastroenterology, 17(5), 725-740. DOI: 10.1016/S1521-6918(03)00055-6
- McCormick, S. P. J. J. o. C. E. (2013). Microbial Detoxification of Mycotoxins. Journal of Chemical Ecology, 39(7), 907-918. DOI: 10.1007/s10886-013-0321-0
- Mohamed, S., Hashim, S. N. & Rahman, H.A. (2012). Seaweeds: A sustainable functional food for complementary and alternative therapy. Trends in Food Science & Technology, 23(2), 83-96. DOI: 10.1016/j.tifs.2011.09.001
- Nagamine, T., Nakazato, K., Tomioka, S., Iha, M. & Nakajima, K. (2014). Intestinal absorption of fucoidan extracted from the brown seaweed, Cladosiphon okamuranus. Marine drugs, 13(1), 48-64. DOI: 10.3390/md13010048
- Nikbakht Nasrabadi, E., Jamaluddin, R., Abdul Mutalib, M. S., Khaza'ai, H., Khalesi, S. & Mohd Redzwan, S. (2013). Reduction of aflatoxin level in aflatoxin-induced rats by the activity of probiotic Lactobacillus casei strain Shirota. Journal of Applied Microbiology, 114(5), 1507-1515. DOI: 10.1111/jam.12148
- Nova, E., Wärnberg, J., Gómez-Martínez, S., Díaz, L.E., Romeo, J. & Marcos, A. (2007). Immunomodulatory effects of probiotics in different stages of life. British Journal of Nutrition, 98(S1), S90-S95. DOI: 10.1017/S0007114507832983
- O'Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P.G., Hughes, H. & Gardiner, G.E. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine drugs, 8(7), 2038-2064. DOI: 10.3390/md8072038
- Oelschlaeger, T. A. (2010). Mechanisms of probiotic actions – A review. International Journal of Medical Microbiology, 300(1), 57-62. DOI: 10.1016/j.ijmm.2009.08.005
- Ouwehand, A.C., Derrien, M., de Vos, W., Tiihonen, K. & Rautonen, N. (2005). Prebiotics and other microbial substrates for gut functionality. Current Opinion in Biotechnology, 16(2), 212-217. DOI: 10.1016/j.copbio.2005.01.007
- Ouwehand, A.C., Kirjavainen, P.V., Shortt, C. & Salminen, S. (1999). Probiotics: mechanisms and established effects. International Dairy Journal, 9(1), 43-52. DOI: 10.1016/S0958-6946(99)00043-6
- Patterson, J. & Burkholder, K. (2003). Application of prebiotics and probiotics in poultry production. Poultry Science, 82(4), 627-631. DOI: 10.1093/ps/82.4.627
- Pineiro, M., Asp, N.-G., Reid, G., Macfarlane, S., Morelli, L., Brunser, O. & Tuohy, K. (2008). FAO Technical Meeting on Prebiotics. Journal of Clinical Gastroenterology, 42, 156-159. DOI: 10.1097/MCG.0b013e31817f184e
- Pompei, A., Cordisco, L., Amaretti, A., Zanoni, S., Matteuzzi, D., Rossi, M. (2007). Folate production by bifidobacteria as a potential probiotic property. Applied and Environmental Microbiology, 73(1), 179-185. DOI: 10.1128/AEM.01763-06
- Ramnani, P., Chitarrari, R., Tuohy, K., Grant, J., Hotchkiss, S., Philp, K., Campbell, R., Gill, C. & Rowland, I. (2012). In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds. Anaerobe, 18(1), 1-6. DOI: 10.1016/j.anaerobe.2011.08.003
- Rodrigues, D., Walton, G., Sousa, S., Rocha-Santos, T.A.P., Duarte, A.C., Freitas, A.C. & Gomes, A.M.P. (2016). In vitro fermentation and prebiotic potential of selected extracts from seaweeds and mushrooms. LWT Food Science and Technology, 73, 131-139. DOI: 10.1016/j.lwt.2016.06.004
- Ruan, Y., Sun, J., He, J., Chen, F., Chen, R. & Chen, H. (2015). Effect of Probiotics on Glycemic Control: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials. PloS one, 10(7), e0132121-e0132121. DOI: 10.1371/journal.pone.0132121
- Sanders, M.E., Gibson, G.R., Gill, H.S. & Guarner, F. (2007). Probiotics: their potential to impact human health. Council for Agricultural Science and Technology(36), 1-20. Retrieved from http://www.cast-science.org/
- Schachtsiek, M., Hammes, W.P. & Hertel, C. (2004). Characterization of Lactobacillus coryniformis DSM 20001T surface protein CPF mediating coaggregation with and aggregation among pathogens. Applied and Environmental Microbiology(70), 7078-7085.
- Schiffrin, E. J., Thomas, D. R., Kumar, V. B., Brown, C., Hager, C., Van't Hof, M.A., Morley, J.E. & Guigoz, Y. (2007). Systemic inflammatory markers in older persons: the effect of oral nutritional supplementation with prebiotics. The Journal of Nutrition, Health and Aging, 11(6), 475-479.
- Shang, Q., Jiang, H., Cai, C., Hao, J., Li, G., Yu, G. (2018). Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: An overview. Carbohydrate Polymers, 179, 173-185. DOI: 10.1016/j.carbpol.2017.09.059
- Shang, Q., Li, Q., Zhang, M., Song, G., Shi, J., Jiang, H., Cai, C., Hao, J., Li, G. & Yu, G. (2016). Dietary Keratan Sulfate from Shark Cartilage Modulates Gut Microbiota and Increases the Abundance of Lactobacillus spp. Marine drugs, 14(12), 224. DOI: 10.3390/md14120224
- Shang, Q., Sun, W., Shan, X., Jiang, H., Cai, C., Hao, J., Li, G. & Yu, G. (2017). Carrageenan-induced colitis is associated with decreased population of anti-inflammatory bacterium, Akkermansia muciniphila, in the gut microbiota of C57BL/6J mice. Toxicology Letters, 279, 87-95. DOI: 10.1016/j.toxlet.2017.07.904
- Simon, O. (2005). Micro-Organisms as Feed Additives – Probiotics. Advances in Pork Production, 16, 161-167.
- Socha, P., Stolarczyk, M. & Socha, J. (2002). Wpływ probiotyków i prebiotyków na gospodarke˛ lipidowa. Pediatria Współczesna Gastroenterologia, Hepatologia i Żywienie Dziecka, 4, 85-88.
- Sonnenburg, E.D. & Sonnenburg, J.L. (2014). Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell metabolism, 20(5), 779-786.
- Sudhakar, M. P., Kumar, B. R., Mathimani, T. & Arunkumar, K. (2019). A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. Journal of Cleaner Production, 228, 1320-1333. DOI: 10.1016/j.jclepro.2019.04.287
- Suleria, H. A. R., Osborne, S., Masci, P. & Gobe, G. (2015). Marine-Based Nutraceuticals: An Innovative Trend in the Food and Supplement Industries. Marine drugs, 13(10), 6336-6351. DOI: 10.3390/md13106336
- Tobacman, J.K. (2001). Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environmental health perspectives, 109(10), 983-994. DOI: 10.1289/ehp.01109983
- Tobacman, J. K., Bhattacharyya, S., Borthakur, A. & Dudeja, P.K. (2008). The carrageenan diet: not recommended. Science (New York, N.Y.), 321(5892), 1040-1041. DOI: 10.1126/science.321.5892.1040d
- Upadrasta, A. & Madempudi, R.S. (2016). Probiotics and blood pressure: current insights. Integrated blood pressure control, 9, 33-42. DOI: 10.2147/IBPC.S73246
- Van den Abbeele, P., Venema, K., Van de Wiele, T., Verstraete, W. & Possemiers, S. (2013). Different Human Gut Models Reveal the Distinct Fermentation Patterns of Arabinoxylan versus Inulin. Journal of Agricultural and Food Chemistry, 61(41), 9819-9827.
- Vergin, F. (1954). Antibiotics and probiotics. Hippokrates, 25(4), 116-119.
- Vulevic, J., Drakoularakou, A., Yaqoob, P., Tzortzis, G. & Gibson, G.R. (2008). Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. The American Journal of Clinical Nutrition, 88(5), 1438-1446. DOI: 10.3945/ajcn.2008.26242
- Weiner, M. L. (2014). Food additive carrageenan: Part II: A critical review of carrageenan in vivo safety studies. Critical Reviews in Toxicology, 44(3), 244-269. DOI: 10.3109/10408444.2013.861798
- Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E., Smith, A.G., Camire, M.E. & Brawley, S.H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of applied phycology, 29(2), 949-982.
- Yahfoufi, N., Mallet, J. F., Graham, E. & Matar, C. (2018). Role of probiotics and prebiotics in immunomodulation. Current Opinion in Food Science, 20, 82-91. DOI: 10.1016/j.cofs.2018.04.006
- Zaporozhets, T.S., Besednova, N.N., Kuznetsova, T.A., Zvyagintseva, T.N., Makarenkova, I.D., Kryzhanovsky, S.P. & Melnikov, V.G. (2014). The prebiotic potential of polysaccharides and extracts of seaweeds. Russian Journal of Marine Biology, 40(1), 1-9.
- Zhang, N., Mao, X., Li, R.W., Hou, E., Wang, Y., Xue, C. & Tang, Q. (2017). Neoagarotetraose protects mice against intense exercise-induced fatigue damage by modulating gut microbial composition and function. Molecular Nutrition Food Research, 61(8), 1600585. DOI: 10.1002/mnfr.201600585
Makroalglerin prebiyotik etkileri
Year 2020,
Volume: 37 Issue: 1, 103 - 112, 15.03.2020
Zehra Torun
,
Belma Konuklugil
Abstract
Makroalgler, genellikle Asya ülkelerinde diğer besinler kadar tüketilmektedir. İçerdikleri oligosakkarit ve polisakkarit gibi karbonhidrat bileşiklerin, prebiyotikler olarak değerlendirilebileceği yönünde çalışmalar yapılmıştır. Prebiyotikler özellikle gastrointestinal sistemde bulunan faydalı mikroorganizmalar olarak tanımladığımız probiyotiklerin besin kaynaklarıdır. Prebiyotiklerin probiyotikler üzerinde oluşturdukları pozitif etkiler ile gastointestinal sistem ve dolayısı ile tüm vücut sistemleri sağlıklı bir dengede tutulmaktadır. Bu derleme, probiyotikler, prebiyotikler hakkında kısa bilgiler vermektedir ve yurdumuzda makroalglerin prebiyotikler olarak değerlendirilmesi yönünde planlanan çalışmalar için öncü bir çalışmadır.
References
- Ale, M.T., Mikkelsen, J.D. & Meyer, A.S. (2011). Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Marine Drugs, 9(10), 2106-2130. DOI: 10.3390/md9102106
- Annison, G., Illman, R.J. & Topping, D.L. (2003). Acetylated, Propionylated or Butyrylated Starches Raise Large Bowel Short-Chain Fatty Acids Preferentially When Fed to Rats. The Journal of Nutrition, 133(11), 3523-3528. DOI: 10.1093/jn/133.11.3523
- Baurhoo, B., Letellier, A., Zhao, X. & Ruiz-Feria, C.A. (2007). Cecal Populations of Lactobacilli and Bifidobacteria and Escherichia coli Populations After In Vivo Escherichia coli Challenge in Birds Fed Diets with Purified Lignin or Mannanoligosaccharides. Poultry Science, 86(12), 2509-2516. DOI: 10.3382/ps.2007-00136
- Begley, M., Hill, C. & Gahan, C.G.M. (2006). Bile salt hydrolase activity in probiotics. Applied and Environmental Microbiology, 72(3), 1729-1738. DOI: 10.1128/AEM.72.3.1729-1738.2006
- Chang, C.-J., Lin, C.-S., Lu, C.-C., Martel, J., Ko, Y.-F., Ojcius, D.M., Tseng, S.-F., Wu, T.-R., Margaret Chen, Y.-Y., Young, J.D. & Lai, H.C. (2015). Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nature Communications, 6, 7489-7489. DOI: 10.1038/ncomms8489
- Charoensiddhi, S., Conlon, M.A., Methacanon, P., Franco, C.M.M., Su, P. & Zhang, W. (2017). Gut health benefits of brown seaweed Ecklonia radiata and its polysaccharides demonstrated in vivo in a rat model. Journal of Functional Foods, 37, 676-684. DOI: 10.1016/j.jff.2017.08.040
- Charoensiddhi, S., Conlon, M.A., Vuaran, M.S., Franco, C.M.M. & Zhang, W. (2016). Impact of extraction processes on prebiotic potential of the brown seaweed Ecklonia radiata by in vitro human gut bacteria fermentation. Journal of Functional Foods, 24, 221-230. DOI: 10.1016/j.jff.2016.04.016
- Chen, L., Xu, W., Chen, D., Chen, G., Liu, J., Zeng, X., Shao, R. & Zhu, H. (2018). Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro. International Journal of Biological Macromolecules, 112, 1055-1061. DOI: 10.1016/j.ijbiomac.2018.01.183
- Cremonini, F., Di Caro, S., Nista, E.C., Bartolozzi, F., Capelli, G., Gasbarrini, G. & Gasbarrini, A. (2002). Meta-analysis: the effect of probiotic administration on antibiotic-associated diarrhoea. Alimentary Pharmacology & Therapeutics, 16(8), 1461-1467. DOI: 10.1046/j.1365-2036.2002.01318.x
- de Jesus Raposo, M.F., de Morais, A.M.B. & de Morais, R.M.S.C. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine drugs, 13(5), 2967-3028. DOI: 10.3390/md13052967
- de Jesus Raposo, M.F., de Morais, A.M.B. & de Morais, R.M.S.C. (2016). Emergent Sources of Prebiotics: Seaweeds and Microalgae. Marine drugs, 14(2). DOI: 10.3390/md14020027
- Devillé, C., Damas, J., Forget, P., Dandrifosse, G. & Peulen, O. (2004). Laminarin in the dietary fibre concept. Journal of the Science of Food and Agriculture, 84(9), 1030-1038. DOI: 10.1002/jsfa.1754
- Diaz-Pulido, G. & McCook, L.J. (2008). Macroalgae (Seaweeds). In Chin. A (Ed.), The State of the Great Barrier Reef On-line. Great Barrier Reef Marine Park Authority: Townsville.
- Fricke, A. & Camacho, O. (2008). Bocas Algae: Gracilaria domingensis. Smithsonian Tropical Research Institute.
- Fu, X. T. & Kim, S. M. (2010). Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Marine drugs, 8(1), 200-218. DOI: 10.3390/md8010200
- Gibson, G.R., Probert, H.M., Loo, J.V., Rastall, R.A. & Roberfroid, M.B. (2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Reviews, 17(2), 259-275. DOI: 10.1079/NRR200479
- Gibson, G.R. & Roberfroid, M.B. (1995). Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition, 125(6), 1401-1412. DOI: 10.1093/jn/125.6.1401
- Grajek, W., Olejnik, A. & Sip, A. (2005). Probiotics, prebiotics and antioxidants as functional foods. Acta Biochimica Polonica, 52(3), 665-671.
- Gu, Q., Zhang, C., Song, D., Li, P. & Zhu, X. (2015). Enhancing vitamin B12 content in soy-yogurt by Lactobacillus reuteri. International Journal of Food Microbiology, 206, 56-59. DOI: 10.1016/j.ijfoodmicro.2015.04.033
- Guiry, M. D. G., G.M. (2019). AlgaeBase. from World-wide electronic publication,National University of Ireland, Galway
- Hehemann, J.-H., Smyth, L., Yadav, A., Vocadlo, D. & Boraston, A. (2012). Analysis of Keystone Enzyme in Agar Hydrolysis Provides Insight into the Degradation (of a Polysaccharide from) Red Seaweeds. The Journal of biological chemistry, 287, 13985-13995. DOI: 10.1074/jbc.M112.345645
- Hehemann, J., Correc, G., Barbeyron, T., Helbert, W., Czjzek, M. & Michel, G. (2010). Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature, 464, 908. DOI: 10.1038/nature08937
- Hehemann, J., Kelly, A., Pudlo, N., Martens, E. & Boraston, A. (2012). Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proceedings of the National Academy of Sciences of the United States of America, 109(48), 19786-19791. DOI: 10.1073/pnas.1211002109
- Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., Calder, P.C. & Sanders, M.E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514. DOI: 10.1038/nrgastro.2014.66
- Hu, B., Gong, Q., Wang, Y., Ma, Y., Li, J. & Yu, W. (2006). Prebiotic effects of neoagaro-oligosaccharides prepared by enzymatic hydrolysis of agarose. Anaerobe, 12(5), 260-266. DOI: 10.1016/j.anaerobe.2006.07.005
- Johnston, B.C., Supina, A.L. & Vohra, S. (2006). Probiotics for pediatric antibiotic-associated diarrhea: a meta-analysis of randomized placebo-controlled trials. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne, 175(4), 377-383. DOI: 10.1503/cmaj.051603
- Kaoutari, A.E., Armougom, F., Gordon, J.I., Raoult, D. & Henrissat, B. (2013). The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology, 11, 497. DOI: 10.1038/nrmicro3050
- Katia, S., Villarreal, M. M. L., M.I., S. S., Tallarico, A.M.A., Kimiko, S.I. & Rossi, E.A. (2014). Prebiotic Effect of Fructooligosaccharide in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME® Model). Journal of Medicinal Food, 17(8), 894-901. DOI: 10.1089/jmf.2013.0092
- Khalesi, S., Sun, J., Buys, N. & Jayasinghe, R. (2014). Effect of Probiotics on Blood Pressure. HypertensionAHA, 64(4), 897-903. DOI: 10.1161/HYPERTENSIONAHA.114.03469
- Kong, Q., Dong, S., Gao, J. & Jiang, C. (2016). In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota. International Journal of Biological Macromolecules, 91, 867-871. DOI: 10.1016/j.ijbiomac.2016.06.036
- Kuda, T., Enomoto, T. & Yano, T. (2009). Effects of two storage β-1,3-glucans, laminaran from Eicenia bicyclis and paramylon from Euglena gracili, on cecal environment and plasma lipid levels in rats. Journal of Functional Foods, 1(4), 399-404. DOI: 10.1016/j.jff.2009.08.003
- Li, M., Shang, Q., Li, G., Wang, X. & Yu, G. (2017). Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota. Mar Drugs, 15(4). DOI: 10.3390/md15040092
- Li, P. & Gu, Q. (2016). Complete genome sequence of Lactobacillus plantarum LZ95, a potential probiotic strain producing bacteriocins and B-group vitamin riboflavin. Journal of Biotechnology, 229, 1-2. DOI: 10.1016/j.jbiotec.2016.04.048
- Lilly, D. M. & Stillwell, R.H. (1965). Probiotics: Growth-Promoting Factors Produced by Microorganisms. Science, 147(3659), 747-748. DOI: 10.1126/science.147.3659.747
- Lynch, M.B., Sweeney, T., Callan, J.J., O'Sullivan, J.T. ,& O'Doherty, J.V. (2010). The effect of dietary Laminaria-derived laminarin and fucoidan on nutrient digestibility, nitrogen utilisation, intestinal microflora and volatile fatty acid concentration in pigs. Journal of the Science of Food and Agriculture, 90(3), 430-437. DOI: 10.1002/jsfa.3834
- Markowiak, P. & Slizewska, K. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 9(9). DOI: 10.3390/nu9091021
- Marteau, P. & Shanahan, F. (2003). Basic aspects and pharmacology of probiotics: an overview of pharmacokinetics, mechanisms of action and side-effects. Best Practice & Research Clinical Gastroenterology, 17(5), 725-740. DOI: 10.1016/S1521-6918(03)00055-6
- McCormick, S. P. J. J. o. C. E. (2013). Microbial Detoxification of Mycotoxins. Journal of Chemical Ecology, 39(7), 907-918. DOI: 10.1007/s10886-013-0321-0
- Mohamed, S., Hashim, S. N. & Rahman, H.A. (2012). Seaweeds: A sustainable functional food for complementary and alternative therapy. Trends in Food Science & Technology, 23(2), 83-96. DOI: 10.1016/j.tifs.2011.09.001
- Nagamine, T., Nakazato, K., Tomioka, S., Iha, M. & Nakajima, K. (2014). Intestinal absorption of fucoidan extracted from the brown seaweed, Cladosiphon okamuranus. Marine drugs, 13(1), 48-64. DOI: 10.3390/md13010048
- Nikbakht Nasrabadi, E., Jamaluddin, R., Abdul Mutalib, M. S., Khaza'ai, H., Khalesi, S. & Mohd Redzwan, S. (2013). Reduction of aflatoxin level in aflatoxin-induced rats by the activity of probiotic Lactobacillus casei strain Shirota. Journal of Applied Microbiology, 114(5), 1507-1515. DOI: 10.1111/jam.12148
- Nova, E., Wärnberg, J., Gómez-Martínez, S., Díaz, L.E., Romeo, J. & Marcos, A. (2007). Immunomodulatory effects of probiotics in different stages of life. British Journal of Nutrition, 98(S1), S90-S95. DOI: 10.1017/S0007114507832983
- O'Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P.G., Hughes, H. & Gardiner, G.E. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine drugs, 8(7), 2038-2064. DOI: 10.3390/md8072038
- Oelschlaeger, T. A. (2010). Mechanisms of probiotic actions – A review. International Journal of Medical Microbiology, 300(1), 57-62. DOI: 10.1016/j.ijmm.2009.08.005
- Ouwehand, A.C., Derrien, M., de Vos, W., Tiihonen, K. & Rautonen, N. (2005). Prebiotics and other microbial substrates for gut functionality. Current Opinion in Biotechnology, 16(2), 212-217. DOI: 10.1016/j.copbio.2005.01.007
- Ouwehand, A.C., Kirjavainen, P.V., Shortt, C. & Salminen, S. (1999). Probiotics: mechanisms and established effects. International Dairy Journal, 9(1), 43-52. DOI: 10.1016/S0958-6946(99)00043-6
- Patterson, J. & Burkholder, K. (2003). Application of prebiotics and probiotics in poultry production. Poultry Science, 82(4), 627-631. DOI: 10.1093/ps/82.4.627
- Pineiro, M., Asp, N.-G., Reid, G., Macfarlane, S., Morelli, L., Brunser, O. & Tuohy, K. (2008). FAO Technical Meeting on Prebiotics. Journal of Clinical Gastroenterology, 42, 156-159. DOI: 10.1097/MCG.0b013e31817f184e
- Pompei, A., Cordisco, L., Amaretti, A., Zanoni, S., Matteuzzi, D., Rossi, M. (2007). Folate production by bifidobacteria as a potential probiotic property. Applied and Environmental Microbiology, 73(1), 179-185. DOI: 10.1128/AEM.01763-06
- Ramnani, P., Chitarrari, R., Tuohy, K., Grant, J., Hotchkiss, S., Philp, K., Campbell, R., Gill, C. & Rowland, I. (2012). In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds. Anaerobe, 18(1), 1-6. DOI: 10.1016/j.anaerobe.2011.08.003
- Rodrigues, D., Walton, G., Sousa, S., Rocha-Santos, T.A.P., Duarte, A.C., Freitas, A.C. & Gomes, A.M.P. (2016). In vitro fermentation and prebiotic potential of selected extracts from seaweeds and mushrooms. LWT Food Science and Technology, 73, 131-139. DOI: 10.1016/j.lwt.2016.06.004
- Ruan, Y., Sun, J., He, J., Chen, F., Chen, R. & Chen, H. (2015). Effect of Probiotics on Glycemic Control: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials. PloS one, 10(7), e0132121-e0132121. DOI: 10.1371/journal.pone.0132121
- Sanders, M.E., Gibson, G.R., Gill, H.S. & Guarner, F. (2007). Probiotics: their potential to impact human health. Council for Agricultural Science and Technology(36), 1-20. Retrieved from http://www.cast-science.org/
- Schachtsiek, M., Hammes, W.P. & Hertel, C. (2004). Characterization of Lactobacillus coryniformis DSM 20001T surface protein CPF mediating coaggregation with and aggregation among pathogens. Applied and Environmental Microbiology(70), 7078-7085.
- Schiffrin, E. J., Thomas, D. R., Kumar, V. B., Brown, C., Hager, C., Van't Hof, M.A., Morley, J.E. & Guigoz, Y. (2007). Systemic inflammatory markers in older persons: the effect of oral nutritional supplementation with prebiotics. The Journal of Nutrition, Health and Aging, 11(6), 475-479.
- Shang, Q., Jiang, H., Cai, C., Hao, J., Li, G., Yu, G. (2018). Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: An overview. Carbohydrate Polymers, 179, 173-185. DOI: 10.1016/j.carbpol.2017.09.059
- Shang, Q., Li, Q., Zhang, M., Song, G., Shi, J., Jiang, H., Cai, C., Hao, J., Li, G. & Yu, G. (2016). Dietary Keratan Sulfate from Shark Cartilage Modulates Gut Microbiota and Increases the Abundance of Lactobacillus spp. Marine drugs, 14(12), 224. DOI: 10.3390/md14120224
- Shang, Q., Sun, W., Shan, X., Jiang, H., Cai, C., Hao, J., Li, G. & Yu, G. (2017). Carrageenan-induced colitis is associated with decreased population of anti-inflammatory bacterium, Akkermansia muciniphila, in the gut microbiota of C57BL/6J mice. Toxicology Letters, 279, 87-95. DOI: 10.1016/j.toxlet.2017.07.904
- Simon, O. (2005). Micro-Organisms as Feed Additives – Probiotics. Advances in Pork Production, 16, 161-167.
- Socha, P., Stolarczyk, M. & Socha, J. (2002). Wpływ probiotyków i prebiotyków na gospodarke˛ lipidowa. Pediatria Współczesna Gastroenterologia, Hepatologia i Żywienie Dziecka, 4, 85-88.
- Sonnenburg, E.D. & Sonnenburg, J.L. (2014). Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell metabolism, 20(5), 779-786.
- Sudhakar, M. P., Kumar, B. R., Mathimani, T. & Arunkumar, K. (2019). A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. Journal of Cleaner Production, 228, 1320-1333. DOI: 10.1016/j.jclepro.2019.04.287
- Suleria, H. A. R., Osborne, S., Masci, P. & Gobe, G. (2015). Marine-Based Nutraceuticals: An Innovative Trend in the Food and Supplement Industries. Marine drugs, 13(10), 6336-6351. DOI: 10.3390/md13106336
- Tobacman, J.K. (2001). Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environmental health perspectives, 109(10), 983-994. DOI: 10.1289/ehp.01109983
- Tobacman, J. K., Bhattacharyya, S., Borthakur, A. & Dudeja, P.K. (2008). The carrageenan diet: not recommended. Science (New York, N.Y.), 321(5892), 1040-1041. DOI: 10.1126/science.321.5892.1040d
- Upadrasta, A. & Madempudi, R.S. (2016). Probiotics and blood pressure: current insights. Integrated blood pressure control, 9, 33-42. DOI: 10.2147/IBPC.S73246
- Van den Abbeele, P., Venema, K., Van de Wiele, T., Verstraete, W. & Possemiers, S. (2013). Different Human Gut Models Reveal the Distinct Fermentation Patterns of Arabinoxylan versus Inulin. Journal of Agricultural and Food Chemistry, 61(41), 9819-9827.
- Vergin, F. (1954). Antibiotics and probiotics. Hippokrates, 25(4), 116-119.
- Vulevic, J., Drakoularakou, A., Yaqoob, P., Tzortzis, G. & Gibson, G.R. (2008). Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. The American Journal of Clinical Nutrition, 88(5), 1438-1446. DOI: 10.3945/ajcn.2008.26242
- Weiner, M. L. (2014). Food additive carrageenan: Part II: A critical review of carrageenan in vivo safety studies. Critical Reviews in Toxicology, 44(3), 244-269. DOI: 10.3109/10408444.2013.861798
- Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E., Smith, A.G., Camire, M.E. & Brawley, S.H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of applied phycology, 29(2), 949-982.
- Yahfoufi, N., Mallet, J. F., Graham, E. & Matar, C. (2018). Role of probiotics and prebiotics in immunomodulation. Current Opinion in Food Science, 20, 82-91. DOI: 10.1016/j.cofs.2018.04.006
- Zaporozhets, T.S., Besednova, N.N., Kuznetsova, T.A., Zvyagintseva, T.N., Makarenkova, I.D., Kryzhanovsky, S.P. & Melnikov, V.G. (2014). The prebiotic potential of polysaccharides and extracts of seaweeds. Russian Journal of Marine Biology, 40(1), 1-9.
- Zhang, N., Mao, X., Li, R.W., Hou, E., Wang, Y., Xue, C. & Tang, Q. (2017). Neoagarotetraose protects mice against intense exercise-induced fatigue damage by modulating gut microbial composition and function. Molecular Nutrition Food Research, 61(8), 1600585. DOI: 10.1002/mnfr.201600585