Research Article
BibTex RIS Cite

Hamsi (Engraulis encrasicolus) ve sardalya (Sardina pilchardus) iç organlarından tripsin eldesi ve bazı fonksiyonel özelliklerinin tespiti

Year 2020, Volume: 37 Issue: 1, 53 - 58, 15.03.2020
https://doi.org/10.12714/egejfas.37.1.07

Abstract



Bu araştırmada hamsi (Engraulis encrasicolus)  ve sardalya (Sardina pilchardus) iç organlarının besinsel kompozisyonu, iç organlardan elde edilen tripsin enziminin protein konsantrasyonu, tripsin aktivite tespiti, protein çözünürlüğü ve toz tripsinin renk değerleri incelenmiştir. İç organlar aseton ile homojenize edilip, amonyum sülfat çöktürmesi ve diyaliz işlemleri sonucunda tripsin enzimi geri kazanılmıştır. İç organların besinsel kompozisyonu; hamsi iç organlarının nem oranı % 78,92 ± 0,11, kül oranı oranı % 2,26 ±, 0,55, protein oranı % 10,82 ±, 2,05, yağ oranı % 6,49 ± 0,55 olarak bulgulanmıştır. Sardalya iç organlarının nem oranı % 81,07 ± 1,03, kül oranı oranı % 0,71 ±, 0,04, protein oranı % 5,08 ±, 2,08, yağ oranı % 2,01 ± 0,17 olarak bulgulanmıştır. Hamsi iç organlarından elde edilen tripsinin enzim aktiviesi 0,064 U/ml, spesifik aktivitesi 0,17 U/mg, sardalya tripsinin enzim aktivitesi 0,051 U/ml, spesifik aktivitesi 0,19 U/mg olarak bulgulanmıştır. Enzim saflaştırma basamağında 1 kg hamsi iç organlarından 13,6 gr ve 1 kg sardalya iç organlarından 18,9 gr toz tripsin elde edilmiştir.




Supporting Institution

Ege Üniversitesi

Project Number

16-BİL-013

Thanks

Bu çalışma Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmişir. Proje no: 16-BİL-013

References

  • AOAC, (1984a). Official Methods of Analyses, Method 935.47. Association Official Analytical Chemists, Washington, DC., USA.
  • AOAC, (1984b.) Official Methods of Analyses, Method 981.10. Association of Official Analytical Chemists, Washington, DC., USA.
  • Bkhairia, I., Khaled, H.B., Ktari, N., Miled, N., Nasri, M. & Ghorbel, S. (2015). Biochemical and molecular characterisation of a new alkaline trypsin from Liza aurata: Structural features explaining thermal stability. Food Chemistry, 196, 1346-1354. DOI: 10.1016/j.foodchem.2015.10.058
  • Blanco, M., Sotelo, C.G., Chapela, M.J. & Perez-Martin, R.I. (2006). Towards sustainable and efficient use of fishery resources: present and future trends. Trends Food Science Technology, 18, 29–36. DOI: 10.1016/j.tifs.2006.07.015
  • Bligh, E.G. & Dyer, W.J. (1959). A Rapid Method of Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology, 37: 911-917. DOI: 10.1139/y59-099
  • Bougatef, A. (2013). Trypsins from Fish Processing Waste: Characteristics and Biotechnological Applications-Comprehensive Review. Journal of Cleaner Production, 57, 257–265. DOI: 10.1016/j.jclepro.2013.06.005
  • Bozzano, A. & Sarda, F. (2002). Fishery Discard Consumption Rate and Scavenging Activity in the Northwestern Mediterranean Sea. The International Council for the Exploration of the Sea Journal of Marine Science, 59, 15–28. DOI: 10.1006/jmsc.2001.1142
  • Çaklı, Ş., Yünlü, A.C., Yılmaz, Ş.T. & Yılmaz, Ş.B. (2018). Kültür Çipura (Sparus aurata), Levrek (Dicentrarchus labrax), ve Alabalığın (Oncorhynchus mykiss) İç Organlarından Tripsin Eldesi ve Farklı Depolama Sıcaklıklarının ve Mevsimsel Farklılıklarının Elde Edilen Toz Haldeki Tripsinin Depolama Kararlılığı Üzerindeki Etkisi. TUBİTAK Program Kodu 1001, Proje No: 214O569.
  • Castillo-Yáñez, F.J., Pacheco-Aguilar, R., García-Carreño, F.L. & Navarrete-Del Toro, M. de los Á. (2005). Isolation and Characterization of Trypsin from Pyloric Caeca of Monterey Sardine sardinops sagax caerulea. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 140(1), 91–98. DOI: 10.1016/j.cbpc.2004.09.031
  • Chen, C.C., Chaung, H.C., Chung, M.Y. & Huang, L.T. (2006). Menhaden fish oil improves spatial memory in rat pups following recurrent pentylenetetrazole-induced seizures. Epilepsy & Behavior, 8, 516–521. DOI: 10.1016/j.yebeh.2006.01.004
  • Faid, M., Zouiten, A., Elmarrakchi, A. & Achkari-Begdouri, A. (1997). Biotransformation of fish waste into a stable feed ingredient. Food Chemistry, 60, 13–18. DOI: 10.1016/S0308-8146(96)00291-9
  • FAO. (2016). The State of World Fisheries and Aquaculture. SOFIA, Roma.
  • Gupta, R., Gupta, K., Saxena, R.K. & Khan, S. (1999). Bleach-Stable, Alkaline Protease from Bacillus sp. Biotechnology Letters, 21, 135–138. DOI: 10.1023/A:1005478117918
  • Hau, P.V. & Benjakul, S. (2006). Purification and Characterization of Trypsin from Pyloric Caeca of Bigeye Snapper (Pricanthus macracanthus). Journal of Food Biochemistry. 30, 478–495. DOI: 10.1111/j.1745-4514.2006.00089.x
  • Heu, M.S., Kim, H.R. & Pyeun, J.H. (1995). Comparison of trypsin and chymotrypsin from the viscera of anchovy, Engraulis japonica. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 112(3), 557-567. DOI: 10.1016/0305-0491(95)00111-5
  • Hjelmeland, K. & Raa, J. (1982). Characteristics of Two Trypsin Type Isozymes Isolated from Arctic Capelin (Mallotus villosus). Comparative Biochemistry and Physiology. 71B, 557–562. DOI: 10.1016/0305-0491(82)90462-X
  • Kacem, M., Sellami, M., Kammoun, W., Frikha, F., Miled, N. & Ben Rebah F. (2011). Seasonal variations of chemical composition and fatty acid profiles of viscera of three marine species from the Tunisian coast. Journal of Aquatic Food Product Technology, 20, 233–246. DOI: 10.1080/10498850.2011.560365
  • Karim, A.A. & Bhat, R. (2009). Fish Gelatin: Properties, Challenges, and Prospects as an Alternative to Mammalian Gelatins. Food Hydrocolloids, 23, 563–576. DOI: 10.1016/j.foodhyd.2008.07.002
  • Khaled, H.B., Bougatef, A., Balti, R., Triki-Ellouz, Y. & Souissi, N. (2008). Isolation and Characterization of Trypsin from Sardinelle (Sardinella aurita) Viscera. Journal of the Science Food and Agriculture, 88, 2654–2662. DOI: 10.1002/jsfa.3386
  • Khangembam, B.K. & Chakrabarti, R. (2015). Trypsin from the Digestive System of Carp Cirrhinus mrigala: Purification, Characterization and its Potential Application. Food Chemistry, 175, 386–394. DOI: 10.1016/j.foodchem.2014.11.140
  • Khantaphant, S. & Benjakul S. (2008). Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 151(4), 410-419. DOI: 10.1016/j.cbpb.2008.08.011
  • Kim, Y.J., Kim, H.J., No, J.K., Chung, H.Y. & Fernandes, G. (2006). Anti- inflammatory action of dietary fish oil and calorie restriction. Life Sciences, 78, 2523–2532. DOI: 10.1016/j.lfs.2005.10.034
  • Kim, S.K. & Mendis, E. (2005). Bioactive Compounds from Marine Processing Byproducts – A Review. Food Research International, 39, 383-393. DOI: 10.1016/j.foodres.2005.10.010
  • Kismuhara, H. & Hayashi, K. (2002). Isolation and characteristics of trypsin from the pyloric caeca of the starfish Asterina pectinifera. Comparative Biochemistry & Physiology. 132B, 485–490. DOI: 10.1016/S1096-4959(02)00062-3
  • Khandagale, A.S., Sarojini, B.K., Kumari, S.N., Joshi, S.D.S. & Nooralabettu, K. (2015). Isolation, purification, and biochemical characterization of trypsin from indian mackerel (Rastralliger kanagurta). Journal of Aquatic Food Product Technology, 24(4), 354-367. DOI: 10.1080/10498850.2013.777864
  • Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H. & Simpson, B.K. (2006). Purification and Characterization of Trypsin from the Spleen of Tongol Tuna (Thunnus tanggol). Journal of Agricultural and Food Chemistry, 54(15), 5617–5622. DOI: 10.1021/jf060699d
  • Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H. & Simpson, B.K. (2007). Extraction of Carotenoprotein from Black Tiger Shrimp Shells with the Aid of Bluefish trypsin. Journal of Food Chemistry, 33, 201–217. DOI: 10.1111/j.1745-4514.2009.00213.x
  • Klomklao, S., Kishimura, H. & Benjakul, S. (2008). Endogenous Proteinases in True Sardine (Sardinops melanostictus). Food Chemistry, 107, 213–220 DOI: 10.1016/j.foodchem.2007.08.007
  • Lowry, O.H., Rosebrough, N.J., Fan, A.L. & Randall, R.J. (1951). Protein measurement with Folin phenol reagent. Journal of Biological Chemistry. 193, 256–275.
  • Lu, B.J., Zhou, L.G., Cai, Q.F., Hara, K., Maeda, A., Su, W.J. & Cao, M.J. (2008). Purification and Characterisation of Trypsins from the Pyloric Caeca of Mandarin Fish (Siniperca chuatsi). Food Chemistry. 110(2), 352–360 DOI: 10.1016/j.foodchem.2008.02.010
  • Ludorff, W. & Meyer, V. (1973). Fische und Fisherzeugnisse. Z. Auflage, Verlag Paul Parey In Berlin und Hamburg, 209-210.
  • Menezes Estevam Alves, M.H. & Nascimento, G.A. (2016). Trypsin Purification Using Magnetic Particles of Azocasein-Iron Composite. Food Chemistry. 226, 75–78. DOI: 10.1016/j.foodchem.2016.12.094.
  • Rubio-Rodriguez, N., Beltran, S., Jaime, I., de Diego, S.M., Sanz, M.T. & Carballido, J.R. (2010). Production of omega-3 polyunsaturated fatty acid concentrates: A Review. Innovative Food Science and Emerging Technologies, 11,1–12 DOI: 10.1016/j.ifset.2009.10.006
  • Schubring, R. (2002). Double freezing of cod fillets: Influence on sensory, physical and chemical attributes of battered and breaded fillet portions. Nahrung / Food, 46(4): 227-232. DOI: 10.1002/1521-3803
  • Shahidi, F. & Janak Kamil, J.Y.V.A. (2001). Enzymes from Fish and Aquatic Invertebrates and their Application in the Food Industry. Trends Food Science Technologie. 12, 435–464. DOI: 10.1016/S0924-2244(02)00021-3
  • Sila, A., Nasri, R., Jridi, M., Balti, R., Nasri, M. & Bougatef, A. (2012). Characterisation of trypsin purified from the viscera of Tunisian barbel (Barbus callensis) and its application for recovery of carotenoproteins from shrimp wastes. Food Chemistry, 132(3), 1287-1295. DOI: 10.1016/j.foodchem.2011.11.105
  • Simpson, B.K. (2000). Digestive Proteinases from Marine Animals. In: Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality. Haard, N.F., and Simpson, B. K. (Eds.) New York, NY: Mercel Dekker. 531–540.
  • Poonsin, T., Sripokar, P., Benjakul, S., Simpson, B.K., Visessanguan, W. & Klomklao, S. (2017). Major trypsin like‐serine proteinases from albacore tuna (Thunnus alalunga) spleen: Biochemical characterization and the effect of extraction media. Journal of Food Biochemistry, 41(2), e12323. DOI: 10.1111/jfbc.12323
  • Tengku-Rozaina, T.M., Jeng, W.W. & Amiza, M.A. (2018). Nutritional composition and thermal properties Of goldstripe sardinella (Sardinella gibbosa) fillets and by-products. Journal of Aquatıc Food Product Technology, 27(6), 667–679. DOI: 10.1080/10498850.2018.1483991
  • Toppe, J., Albrektsen, S., Hope, B. & Aksnes, A. (2007). Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species. Comparative Biochemistry & Physiology, 146(3), 395-401. DOI: 10.1016/j.cbpb.2006.11.020
  • Zamani, A. & Benjakul, S. (2016). Trypsin from unicorn leatherjacket (Aluterus monoceros) pyloric caeca: purification and its use for preparation of fish protein hydrolysate with antioxidative activity. Journal of the Science of Food and Agriculture, 96(3), 962-969. DOI: 10.1002/jsfa.7172
  • Zampolli, A., Bysted, A., Leth, T., Mortensen, A., De Caterina, R. & Falk, E. (2006). Contrasting effect of fish oil supplementation on the development of atherosclerosis in marine models. Atherosclerosis, 184, 78. DOI: 10.1016/j.atherosclerosis.2005.04.018
  • Zhou, L., Budge, S.M., Ghaly, A.E., Brooks, M.S. & Dave, D. (2011). Extraction, Purification and Characterization of Fish Chymotrypsin. A Review. American Journal of Biochemistry and Biotechnology, 7(3), 104-123. DOI: 10.3844/ajbbsp.2011.104.125
  • Zukowski, M.M. (1992). Production of Commercially Valuable Products. In: Doi, R.H., Mc Gloughlin, M. (Eds.), Biology of Bacilli: Application to Industry. Butterworth-Heinemann, London. 311–337

Extraction of trypsin enzyme from visceral organs of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) and determination of some functional characteristics

Year 2020, Volume: 37 Issue: 1, 53 - 58, 15.03.2020
https://doi.org/10.12714/egejfas.37.1.07

Abstract



In this study, nutritional composition analysis of internal organs of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus), trypsin activity determination of trypsin enzyme obtained from internal organs, protein solubility and color values of extracted trypsin parameters examined. Nutritional composition of internal organs: the moisture content of the anchovy internal organs 78.92±0.11 %, the ash 2.26±0.55 %, the protein 10.82±2.05 %, the fat 6.49±0.55 % were estimated. The moisture content of the sardine internal organs 81.07±1.03 %, the ash 0.71±0.04 %, the protein 5.08±2.08 %, the fat 2.01±0.17 % were estimated. Enzyme activity and spesicific activity of anchovy trypsin which are 0.064 U/mg, 0.17 U/ml were estimated, respectively. Enzyme activiy of sardine trypsin as 0.051 U/ml and spesific activity as 0.19 U/mg were estimated. In the enzyme purification step, 13.6 g of 1 kg anchovy and 18.9 g of powder trypsin were obtained from 1 kg sardine.




Project Number

16-BİL-013

References

  • AOAC, (1984a). Official Methods of Analyses, Method 935.47. Association Official Analytical Chemists, Washington, DC., USA.
  • AOAC, (1984b.) Official Methods of Analyses, Method 981.10. Association of Official Analytical Chemists, Washington, DC., USA.
  • Bkhairia, I., Khaled, H.B., Ktari, N., Miled, N., Nasri, M. & Ghorbel, S. (2015). Biochemical and molecular characterisation of a new alkaline trypsin from Liza aurata: Structural features explaining thermal stability. Food Chemistry, 196, 1346-1354. DOI: 10.1016/j.foodchem.2015.10.058
  • Blanco, M., Sotelo, C.G., Chapela, M.J. & Perez-Martin, R.I. (2006). Towards sustainable and efficient use of fishery resources: present and future trends. Trends Food Science Technology, 18, 29–36. DOI: 10.1016/j.tifs.2006.07.015
  • Bligh, E.G. & Dyer, W.J. (1959). A Rapid Method of Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology, 37: 911-917. DOI: 10.1139/y59-099
  • Bougatef, A. (2013). Trypsins from Fish Processing Waste: Characteristics and Biotechnological Applications-Comprehensive Review. Journal of Cleaner Production, 57, 257–265. DOI: 10.1016/j.jclepro.2013.06.005
  • Bozzano, A. & Sarda, F. (2002). Fishery Discard Consumption Rate and Scavenging Activity in the Northwestern Mediterranean Sea. The International Council for the Exploration of the Sea Journal of Marine Science, 59, 15–28. DOI: 10.1006/jmsc.2001.1142
  • Çaklı, Ş., Yünlü, A.C., Yılmaz, Ş.T. & Yılmaz, Ş.B. (2018). Kültür Çipura (Sparus aurata), Levrek (Dicentrarchus labrax), ve Alabalığın (Oncorhynchus mykiss) İç Organlarından Tripsin Eldesi ve Farklı Depolama Sıcaklıklarının ve Mevsimsel Farklılıklarının Elde Edilen Toz Haldeki Tripsinin Depolama Kararlılığı Üzerindeki Etkisi. TUBİTAK Program Kodu 1001, Proje No: 214O569.
  • Castillo-Yáñez, F.J., Pacheco-Aguilar, R., García-Carreño, F.L. & Navarrete-Del Toro, M. de los Á. (2005). Isolation and Characterization of Trypsin from Pyloric Caeca of Monterey Sardine sardinops sagax caerulea. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 140(1), 91–98. DOI: 10.1016/j.cbpc.2004.09.031
  • Chen, C.C., Chaung, H.C., Chung, M.Y. & Huang, L.T. (2006). Menhaden fish oil improves spatial memory in rat pups following recurrent pentylenetetrazole-induced seizures. Epilepsy & Behavior, 8, 516–521. DOI: 10.1016/j.yebeh.2006.01.004
  • Faid, M., Zouiten, A., Elmarrakchi, A. & Achkari-Begdouri, A. (1997). Biotransformation of fish waste into a stable feed ingredient. Food Chemistry, 60, 13–18. DOI: 10.1016/S0308-8146(96)00291-9
  • FAO. (2016). The State of World Fisheries and Aquaculture. SOFIA, Roma.
  • Gupta, R., Gupta, K., Saxena, R.K. & Khan, S. (1999). Bleach-Stable, Alkaline Protease from Bacillus sp. Biotechnology Letters, 21, 135–138. DOI: 10.1023/A:1005478117918
  • Hau, P.V. & Benjakul, S. (2006). Purification and Characterization of Trypsin from Pyloric Caeca of Bigeye Snapper (Pricanthus macracanthus). Journal of Food Biochemistry. 30, 478–495. DOI: 10.1111/j.1745-4514.2006.00089.x
  • Heu, M.S., Kim, H.R. & Pyeun, J.H. (1995). Comparison of trypsin and chymotrypsin from the viscera of anchovy, Engraulis japonica. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 112(3), 557-567. DOI: 10.1016/0305-0491(95)00111-5
  • Hjelmeland, K. & Raa, J. (1982). Characteristics of Two Trypsin Type Isozymes Isolated from Arctic Capelin (Mallotus villosus). Comparative Biochemistry and Physiology. 71B, 557–562. DOI: 10.1016/0305-0491(82)90462-X
  • Kacem, M., Sellami, M., Kammoun, W., Frikha, F., Miled, N. & Ben Rebah F. (2011). Seasonal variations of chemical composition and fatty acid profiles of viscera of three marine species from the Tunisian coast. Journal of Aquatic Food Product Technology, 20, 233–246. DOI: 10.1080/10498850.2011.560365
  • Karim, A.A. & Bhat, R. (2009). Fish Gelatin: Properties, Challenges, and Prospects as an Alternative to Mammalian Gelatins. Food Hydrocolloids, 23, 563–576. DOI: 10.1016/j.foodhyd.2008.07.002
  • Khaled, H.B., Bougatef, A., Balti, R., Triki-Ellouz, Y. & Souissi, N. (2008). Isolation and Characterization of Trypsin from Sardinelle (Sardinella aurita) Viscera. Journal of the Science Food and Agriculture, 88, 2654–2662. DOI: 10.1002/jsfa.3386
  • Khangembam, B.K. & Chakrabarti, R. (2015). Trypsin from the Digestive System of Carp Cirrhinus mrigala: Purification, Characterization and its Potential Application. Food Chemistry, 175, 386–394. DOI: 10.1016/j.foodchem.2014.11.140
  • Khantaphant, S. & Benjakul S. (2008). Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 151(4), 410-419. DOI: 10.1016/j.cbpb.2008.08.011
  • Kim, Y.J., Kim, H.J., No, J.K., Chung, H.Y. & Fernandes, G. (2006). Anti- inflammatory action of dietary fish oil and calorie restriction. Life Sciences, 78, 2523–2532. DOI: 10.1016/j.lfs.2005.10.034
  • Kim, S.K. & Mendis, E. (2005). Bioactive Compounds from Marine Processing Byproducts – A Review. Food Research International, 39, 383-393. DOI: 10.1016/j.foodres.2005.10.010
  • Kismuhara, H. & Hayashi, K. (2002). Isolation and characteristics of trypsin from the pyloric caeca of the starfish Asterina pectinifera. Comparative Biochemistry & Physiology. 132B, 485–490. DOI: 10.1016/S1096-4959(02)00062-3
  • Khandagale, A.S., Sarojini, B.K., Kumari, S.N., Joshi, S.D.S. & Nooralabettu, K. (2015). Isolation, purification, and biochemical characterization of trypsin from indian mackerel (Rastralliger kanagurta). Journal of Aquatic Food Product Technology, 24(4), 354-367. DOI: 10.1080/10498850.2013.777864
  • Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H. & Simpson, B.K. (2006). Purification and Characterization of Trypsin from the Spleen of Tongol Tuna (Thunnus tanggol). Journal of Agricultural and Food Chemistry, 54(15), 5617–5622. DOI: 10.1021/jf060699d
  • Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H. & Simpson, B.K. (2007). Extraction of Carotenoprotein from Black Tiger Shrimp Shells with the Aid of Bluefish trypsin. Journal of Food Chemistry, 33, 201–217. DOI: 10.1111/j.1745-4514.2009.00213.x
  • Klomklao, S., Kishimura, H. & Benjakul, S. (2008). Endogenous Proteinases in True Sardine (Sardinops melanostictus). Food Chemistry, 107, 213–220 DOI: 10.1016/j.foodchem.2007.08.007
  • Lowry, O.H., Rosebrough, N.J., Fan, A.L. & Randall, R.J. (1951). Protein measurement with Folin phenol reagent. Journal of Biological Chemistry. 193, 256–275.
  • Lu, B.J., Zhou, L.G., Cai, Q.F., Hara, K., Maeda, A., Su, W.J. & Cao, M.J. (2008). Purification and Characterisation of Trypsins from the Pyloric Caeca of Mandarin Fish (Siniperca chuatsi). Food Chemistry. 110(2), 352–360 DOI: 10.1016/j.foodchem.2008.02.010
  • Ludorff, W. & Meyer, V. (1973). Fische und Fisherzeugnisse. Z. Auflage, Verlag Paul Parey In Berlin und Hamburg, 209-210.
  • Menezes Estevam Alves, M.H. & Nascimento, G.A. (2016). Trypsin Purification Using Magnetic Particles of Azocasein-Iron Composite. Food Chemistry. 226, 75–78. DOI: 10.1016/j.foodchem.2016.12.094.
  • Rubio-Rodriguez, N., Beltran, S., Jaime, I., de Diego, S.M., Sanz, M.T. & Carballido, J.R. (2010). Production of omega-3 polyunsaturated fatty acid concentrates: A Review. Innovative Food Science and Emerging Technologies, 11,1–12 DOI: 10.1016/j.ifset.2009.10.006
  • Schubring, R. (2002). Double freezing of cod fillets: Influence on sensory, physical and chemical attributes of battered and breaded fillet portions. Nahrung / Food, 46(4): 227-232. DOI: 10.1002/1521-3803
  • Shahidi, F. & Janak Kamil, J.Y.V.A. (2001). Enzymes from Fish and Aquatic Invertebrates and their Application in the Food Industry. Trends Food Science Technologie. 12, 435–464. DOI: 10.1016/S0924-2244(02)00021-3
  • Sila, A., Nasri, R., Jridi, M., Balti, R., Nasri, M. & Bougatef, A. (2012). Characterisation of trypsin purified from the viscera of Tunisian barbel (Barbus callensis) and its application for recovery of carotenoproteins from shrimp wastes. Food Chemistry, 132(3), 1287-1295. DOI: 10.1016/j.foodchem.2011.11.105
  • Simpson, B.K. (2000). Digestive Proteinases from Marine Animals. In: Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality. Haard, N.F., and Simpson, B. K. (Eds.) New York, NY: Mercel Dekker. 531–540.
  • Poonsin, T., Sripokar, P., Benjakul, S., Simpson, B.K., Visessanguan, W. & Klomklao, S. (2017). Major trypsin like‐serine proteinases from albacore tuna (Thunnus alalunga) spleen: Biochemical characterization and the effect of extraction media. Journal of Food Biochemistry, 41(2), e12323. DOI: 10.1111/jfbc.12323
  • Tengku-Rozaina, T.M., Jeng, W.W. & Amiza, M.A. (2018). Nutritional composition and thermal properties Of goldstripe sardinella (Sardinella gibbosa) fillets and by-products. Journal of Aquatıc Food Product Technology, 27(6), 667–679. DOI: 10.1080/10498850.2018.1483991
  • Toppe, J., Albrektsen, S., Hope, B. & Aksnes, A. (2007). Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species. Comparative Biochemistry & Physiology, 146(3), 395-401. DOI: 10.1016/j.cbpb.2006.11.020
  • Zamani, A. & Benjakul, S. (2016). Trypsin from unicorn leatherjacket (Aluterus monoceros) pyloric caeca: purification and its use for preparation of fish protein hydrolysate with antioxidative activity. Journal of the Science of Food and Agriculture, 96(3), 962-969. DOI: 10.1002/jsfa.7172
  • Zampolli, A., Bysted, A., Leth, T., Mortensen, A., De Caterina, R. & Falk, E. (2006). Contrasting effect of fish oil supplementation on the development of atherosclerosis in marine models. Atherosclerosis, 184, 78. DOI: 10.1016/j.atherosclerosis.2005.04.018
  • Zhou, L., Budge, S.M., Ghaly, A.E., Brooks, M.S. & Dave, D. (2011). Extraction, Purification and Characterization of Fish Chymotrypsin. A Review. American Journal of Biochemistry and Biotechnology, 7(3), 104-123. DOI: 10.3844/ajbbsp.2011.104.125
  • Zukowski, M.M. (1992). Production of Commercially Valuable Products. In: Doi, R.H., Mc Gloughlin, M. (Eds.), Biology of Bacilli: Application to Industry. Butterworth-Heinemann, London. 311–337
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Şükran Çaklı 0000-0002-2419-9064

Boğachan Burak Erkan 0000-0002-0924-2116

Project Number 16-BİL-013
Publication Date March 15, 2020
Submission Date July 12, 2019
Published in Issue Year 2020Volume: 37 Issue: 1

Cite

APA Çaklı, Ş., & Erkan, B. B. (2020). Hamsi (Engraulis encrasicolus) ve sardalya (Sardina pilchardus) iç organlarından tripsin eldesi ve bazı fonksiyonel özelliklerinin tespiti. Ege Journal of Fisheries and Aquatic Sciences, 37(1), 53-58. https://doi.org/10.12714/egejfas.37.1.07