Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Karadeniz’in Samsun kıyılarında Rhizostoma pulmo (Macri, 1778) türünün beslenme rejimi tespiti

Year 2019, Volume 36, Issue 2, 135 - 144, 15.06.2019
https://doi.org/10.12714/egejfas.2019.36.2.05

Abstract



Bu çalışmada Karadeniz’in Samsun kıyıları boyunca dağılan Rhizostoma pulmo medüzünün mide içeriği Ağustos 2008 ile Ocak 2010 arasında araştırılmıştır. Ayrıca şemsiye çapı ve av seçiciliği arasındaki ilişki belirlenmiştir. Örnekleme dönemi boyunca yakalanan R. pulmo bireylerinin şemsiye çapı 14,5 ila 42,5 cm arasında değişmiştir. En büyük şemsiye çapı, bu çalışmanın her iki döneminde de Ekim ayında gözlenmiştir. Örnekleme döneminde tüm istasyonlardan toplam 231 R. pulmo bireylerinin mide içerikleri toplanmıştır. R. pulmo bireylerin mide içeriğinde 31 takson, 10 larva, 2 adet nauplii ve 11 adet filumdan balık ve Copepod yumurtaları tespit edilmiştir. R. pulmo bireylerin beslenme tercihlerinin farklılaştığı ve artan şemsiye çapına göre besin sayısının arttığı tespit edilmiştir (Spearman rank korelasyonuna göre, r = 0,70; p <0,05). Mide içerik analizlerine göre, bu türün beslenme rejimleri ağırlıklı olarak Kopepod ve Dinoflagellatlardan oluşmaktadır. R. pulmo bireylerden alınan mide içeriğinde Kabuklulara (% 59; Kopepodların payı % 45,9) ve Dinoflagellatlara (% 15,4) ait taksonların yoğun olarak bulunduğu gözlenmiştir. Ciliophora filumu, R. pulmo türünün mide muhtevasında,% 7,2›lik bir temsil oranı ile bol miktarda bulunan diğer bir grubu oluşturmuştur. Denizanasının, fitoplanktondan balık yumurtasına kadar geniş bir beslenme aralığına sahip olduğu belirlenmiştir. Mide içeriğindeki av türü ve besin miktarı, şemsiye büyüklüğüne paralel olarak artmıştır. R. pulmo türünün Karadeniz ekosisteminin pelajik bölgesi üzerinde önemli etkileri olduğu sonucuna varılmıştır.




References

  • Anninsky, B., Finenko, G., Abolmasova, G., Hubareva, E., Svetlichny, L., Bat, L. & Kideys, A. (2005). Effect of starvation on the biochemical compositions and respiration rates of ctenophores Mnemiopsis leidyi and Beroe ovata in the Black Sea. Journal of the Marine Biological Association of the UK, 85(3), 549-561. DOI: 10.1017/s0025315405011471
  • Baek, S. H., Shimode, S., Han, M. & Kikuchi, T. (2008). Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: The role of nutrients. Harmful Algae, 7(6), 729-739. DOI: 10.1016/j.hal.2008.02.007
  • Bat, L. (2014). Heavy metal pollution in the Black Sea. In E. Düzgüneş, B. Öztürk, and M. Zengin (Eds.), Turkish Fisheries in the Black Sea (pp. 71-107). İstanbul: Turkish Marine Research Foundation.
  • Bat, L. (2017). The Contamination Status of Heavy Metals in Fish from the Black Sea, Turkey and Potential Risks to Human Health. In M. Sezgin, L. Bat, D. Ürkmez, E. Arıcı, and B. Öztürk (Eds.), Black Sea Marine Environment: The Turkish Shelf (pp. 322-418). İstanbul: Turkish Marine Research Foundation.
  • Bat, L., Sezgin, M., Satılmış, H. H., Üstün, F., Birinci Özdemir, Z. & Gökkurt Baki, O. (2011). Biological diversity of the Turkish Black Sea coast. Turkish Journal of Fisheries and Aquatic Sciences, 11, 683-692. DOI: 10.4194/1303-2712-v11_4_04
  • Bat, L. & Özkan, E. Y. (2015). Heavy metal levels in sediment of the Turkish Black Sea coast. In I. Zlateva, V. Raykov, and N. Nikolov (Eds.), Progressive Engineering Practices in Marine Resource Management (pp. 399-419). Hershey, PA: IGI Global book series Advances in Environmental Engineering and Green Technologies.
  • Baytut, Ö., Gönülol, A. & Koray, T. (2010). Temporal variations of phytoplankton in relation to eutrophication in Samsun Bay, Southern Black Sea. Turkish Journal of Fisheries and Aquatic Sciences, 10, 363-372. DOI: 10.4194/trjfas.2010.0309
  • Birinci Özdemir, Z., Erdem, Y. & Bat, L. (2018). Food composition and distribution of gelatinous macrozooplankton in the southern Black Sea. Indian Journal of Geo Marine Sciences, 47(12), 2541-2548.
  • Borysova, O., Kondakov, A., Paleari, S., Rautalahti-Miettinen, E., Stolberg, F. & Daler, D. (2005). Eutrophication in the Black Sea Region; Impact Assessment and Causal Chain Analysis. Kalmar, Sweden: University of Kalmar.
  • Chang, K., DOI, H., Nishibe, Y., Obayashi, Y. & Nakano, S. (2009). Spatial and Temporal Distribution of Zooplankton Communities of Coastal Marine Waters Receiving Different Human Activities (Fish and Pearl Oyster Farmings). The Open Marine Biology Journal, 3(1), 83-88. DOI: 10.2174/1874450800903010083
  • Finenko, G. A., Romanova, Z. A., Abolmasova, G. I., Anninsky, B. E., Pavlovskaya, T. V., Bat, L. & Kideys, A. (2006). Ctenophores-invaders and their role in the trophic dynamics of the planktonic community in the coastal regions off the Crimean coasts of the Black Sea (Sevastopol Bay). Oceanology, 46(4), 472-482. DOI: 10.1134/s0001437006040047
  • Gifford, D. J. & Dagg, M. J. (1988). Feeding of the estuarine Copepod Acartia tonsa Dana: carnivory vs. herbivory in natural microplankton assemblages. Bulletin of Marine Science, 43(3), 458-468. Retrieved from https://www.ingentaconnect.com/content/umrsmas/bullmar/1988/00000043/00000003/art00011#
  • Golemansky, V. (2007). Biodiversity and Ecology of the Bulgarian Black Sea Invertebrates. In V. Fet and A. Popov (Eds.), Biogeography and Ecology of Bulgaria. Monographiae Biologicae (pp. 537-554). Dordrecht: Springer.
  • Gordina, A., Zagorodnyaya, J., Kideys, A., Bat, L. & Satilmis, H. (2005). Summer ichthyoplankton, food supply of fish larvae and impact of invasive ctenophores on the nutrition of fish larvae in the Black Sea during 2000 and 2001. Journal of the Marine Biological Association of the UK, 85(3), 537-548. DOI: 10.1017/s002531540501146x
  • Gubanova, A. & Altukhov, D. (2007). Establishment of Oithona brevicornis Giesbrecht, 1892 (Copepoda: Cyclopoida) in the Black Sea. Aquatic Invasions, 2(4), 407-410. DOI: 10.3391/ai.2007.2.4.10
  • Gubanova, A., Altukhov, D., Stefanova, K., Arashkevich, E., Kamburska, L., Prusova, I., Svetlichny, L., Timofte, F. & Uysal, Z. (2014). Species composition of Black Sea marine planktonic copepods. Journal of Marine Systems, 135, 44-52. DOI: 10.1016/j.jmarsys.2013.12.004
  • Humborg, C., Ittekkot, V., Cociasu, A. & Bodungen, B. V. (1997). Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, 386(6623), 385-388. DOI: 10.1038/386385a0
  • Hyslop, E. J. (1980). Stomach contents analysis-a review of methods and their application. Journal of Fish Biology, 17(4), 411-429. DOI: 10.1111/j.1095-8649.1980.tb02775.x
  • Isinibilir, M., Yılmaz, İ.N. & Üstün, F., (2017). Zooplankton of the Southern Black Sea. In M. Sezgin, L. Bat, D. Ürkmez, E. Arıcı, B. Öztürk (Eds.). Black Sea Marine Environment: the Turkish Shelf. (pp. 178-195). Istanbul, Turkish Marine Research Foundation (TUDAV).
  • Isinibilir, M. & Yılmaz, İ.N., (2017). Jellyfish dynamics and their socioeconomic and ecological consequences in Turkish Seas. In G.L. Mariottini (Ed.). Jellyfish: Ecology, Distribution Patterns and Human Interactions. (pp. 51-70). New York, Nova Publishers.
  • Kingsford, M. J., Pitt, K. A. & Gillanders, B. M. (2000). Management of jellyfish fisheries, with special reference to the order Rhizostomeae. Oceanography and Marine Biology: an annual review, 38, 85-156. Retrieved from https://researchonline.jcu.edu.au/1218/
  • Kleppel, G. S., Holliday, D. V. & Pieper, R. E. (1991). Trophic interactions between copepods and microplankton: A question about the role of diatoms. Limnology and Oceanography, 36(1), 172-178. DOI: 10.4319/lo.1991.36.1.0172
  • Kovalev, A. V., Skryabin, V. A., Zagorondyaya, Y. A., Bingel, F., Kıdeyş, A. E., Niermann, U. & Uysal, Z. (1999). The Black Sea zooplankton: composition, spatial/temporal distribution and history of investigations. Turkish Journal of Zoology, 23, 195-209. Retrieved from https://journals.tubitak.gov.tr/zoology/abstract.htm?id=3194
  • Lilley, M., Houghton, J. & Hays, G. (2009). Distribution, extent of inter-annual variability and diet of the bloom-forming jellyfish Rhizostoma in European waters. Journal of the Marine Biological Association of the United Kingdom, 89(01), 39-48. DOI: 10.1017/s0025315408002439
  • Marcus, N. (2004). An overview of the impacts of eutrophication and chemical pollutants on copepods of the coastal zone. Zoological studies, 43(2), 211-217. Retrieved from http://zoolstud.sinica.edu.tw/Journals/43.2/211.pdf
  • Marcus, N. H. & Wilcox, J. A. (2007). A Guide to the Meso-Scale Production of the Copepod Acartia tonsa. Florida, FL: Florida State University Department of Oceanography Biological Oceanography.
  • Marine Species Identification Portal : Rhizostoma pulmo. (2011). Retrieved from http://species-identification.org/species.php?species_group=zsaoandid=2445andmenuentry=soorten
  • Mariottini, G. L. & Pane, L. (2010). Mediterranean Jellyfish Venoms: A Review on Scyphomedusae. Marine Drugs, 8(4), 1122-1152. DOI:10.3390/md8041122
  • Mayer, A. G. (1910). Medusae of the World: Volume III; The Scyphomedusae (1st ed.). New York, NY: Washington, D.C., The Carnegie Institution.
  • Mutlu, E. (2001). Distribution and abundance of moon jellyfish ( Aurelia aurita ) and its zooplankton food in the Black Sea. Marine Biology, 138(2), 329-339. DOI: 10.1007/s002270000459
  • Öztürk, B., Mihneva, V. & Shiganova, T. (2011). First records of Bolinopsis vitrea (L. Agassiz, 1860) (Ctenophora: Lobata) in the Black Sea. Aquatic Invasions, 6(3), 355-360. DOI: 10.3391/ai.2011.6.3.12
  • Öztürk, B. & Topaloğlu, B. (2011). A short note on the jellyfish at the Gökçeada Island, the North Aegean Sea. In C. Turan and B. Öztürk (Eds.), First National Workshop on Jellyfish and other Gelatinous Species in Turkish Marine Waters (pp. 86-89). Retrieved from http://tudav.org/wp-content/uploads/2018/04/workshop_jellyfish.pdf
  • Paffenhöfer, G. & Stearns, D. (1988). Why is Acartia tonsa (Copepoda: Calanoida) restricted to nearshore environments? Marine Ecology Progress Series, 42, 33-38. DOI: 10.3354/meps042033
  • Parsons, T. R. & Lalli, C. M. (2002). Jellyfish population explosions : Revisiting a hypothesis of possible causes. La Mer, 40, 111-121. Retrieved from http://www.sfjo-lamer.org/la_mer/40-3/40-3-2.pdf
  • Pitt, K. A., Welsh, D. T. & Condon, R. H. (2009). Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia, 616(1), 133-149. DOI: 10.1007/978-1-4020-9749-2_10
  • Proceedings of the 39th European Marine Biology Symposium, held in Genoa, Italy, 21-24 July 2004. (2007). G. Relini and J. Ryland (Eds.), Genova: Springer.
  • Pérez-Ruzafa, A., Gilabert, J., Gutiérrez, J. M., Fernández, A. I., Marcos, C. & Sabah, S. (2002). Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain. Hydrobiologia, 475/476, 359-369. DOI: 10.1007/978-94-017-2464-7_26
  • Rabalais, N. N. (2009). Eutrophication of estuarine and coastal ecosystems. In R. Mitchell and J. D. Gu (Eds.), Environmental Microbiology (Second Editionth ed., pp. 115-135). New Jersey, NJ: Wiley-Blackwell.
  • Russel, F. (1970). The Medusae of the British Isles; 11. Pelagic Scyphozoa with a Supplement to the First Volume on Hydromedusae (1st ed.). U.K.: Cambridge University Press.
  • Satılmış, H. H., Bat, L., Birinci-Özdemir, Z., Üstün, F., Şahin, F., Kıdeyş, A. E. & Erdem, Y. (2006). Composition of eggs and larvae of fish and macrogelatinious zooplankton in
  • Sinop Region (The Central Black Sea) during 2002. Ege Üniversitesi Su Ürünleri Dergisi, 23(1/1), 135-140. Retrieved from http://www.egejfas.org/download/article-file/57691 (in Turkish)
  • Selifonova, Z. P. (2009). Oithona brevicornis Giesbrecht (Copepoda, Cyclopoida) in harborages of the northeastern part of the Black Sea shelf. Inland Water Biology, 2(1), 30-32. DOI: 10.1134/s1995082909010052
  • Sever, T. M. (2009). Pelagic Copepoda fauna of the Aegean Sea and the distribution of the common species. Ege Üniversitesi Su Ürünleri Dergisi, 26(3), 203-209. Retrieved from http://www.egejfas.org/download/article-file/57446 (in Turkish)
  • Sezgin, M., Bat, L., Katagan, T. & Ates, A. S. (2010). Likely effects of global climate change on the Black Sea benthic ecosystem. Journal of Environmental Protection and Ecology, 11(1), 238-246. Retrieved from https://docs.google.com/a/jepe-journalinfoviewer?a=vandpid=sitesandsrcid=amVwZS1qb3VybmFsLmluZm98amVwZS1qb3VybmFsfGd4OjEyM2ZjZDIxYmVjZTQ3OGM
  • Shiganova, T. A. (1998). Invasion of the Black Sea by the ctenophore Mnemiopsis leidyi and recent changes in pelagic community structure. Fisheries Oceanography, 7(3-4), 305-310. DOI: 10.1046/j.1365-2419.1998.00080.x
  • Svetlichny, L., Abolmasova, G., Hubareva, E., Finenko, G., Bat, L. & Kideys, A. (2004). Respiration rates of Beroe ovata in the Black Sea. Marine Biology, 145(3), 585-593. DOI: 10.1007/s00227-004-1336-4
  • Tokarev, Y. & Shulman, G. (2007). Biodiversity in the Black Sea: effects of climate and anthropogenic factors. Hydrobiologia, 580(1), 23-33. DOI: 10.1007/s10750-006-0468-6
  • Üstün, F., Bat, L. & Mutlu, E. (2018). Seasonal variation and taxonomic composition of mesozooplankton in the Southern Black Sea (off Sinop) between 2005 and 2009. Turkish Journal of Zoology, 42, 541-556. DOI: 10.3906/zoo-1801-13
  • Vehmaa, A., Kremp, A., Tamminen, T., Hogfors, H., Spilling, K. & Engstrom-Ost, J. (2011). Copepod reproductive success in spring-bloom communities with modified diatom and dinoflagellate dominance. ICES Journal of Marine Science, 69(3), 351-357. DOI: 10.1093/icesjms/fsr138
  • Zaitsev, Y. & Mamaev, V. (Eds.). (1995). Biological Diversity in the Black Sea: A Study of Change and Decline. New York, Black Sea Environmental Series 3.
  • Zvyagintsev, A. Y. & Selifonova, J. P. (2010). Hydrobiological studies of the ballast waters of cargo ships in Russian Sea ports. Oceanology, 50(6), 924-932. DOI: 10.1134/s00014370

Detection of feeding dietary Rhizostoma pulmo (Macri, 1778) in Samsun coasts of the Black Sea, Turkey

Year 2019, Volume 36, Issue 2, 135 - 144, 15.06.2019
https://doi.org/10.12714/egejfas.2019.36.2.05

Abstract



In this study, gastric contents of the medusa Rhizostoma pulmo distributed along the Samsun coast of the Black Sea were investigated between August 2008 and January 2010. Moreover, the relationship between the umbrella diameter and prey selectivity was determined. Captured R. pulmo individuals during the sampling period varied from 14.5 to 42.5 cm in umbrella diameter. The largest umbrella diameter was observed in October in both periods of the present study. Gastric contents of total 231 R. pulmo individuals have been gathered during the sampling period from all stations. 31 taxa, 10 larvae, 2 nauplii and fish and Copepod eggs from 11 phyla have been identified in the gastric contents of R. pulmo individuals. It has been detected that, feeding choices of R. pulmo individuals have differentiated and their food count has increased due to increasing umbrella diameter (according to Spearman rank correlation, r=0.70; p<0.05). According to the gastric content analyses, the feeding dietary of this species predominantly consists of copepods and dinoflagellates. It has been observed that taxa belonging to Crustaceans (59 %; Copepods 45.9 %) and Dinoflagellates (15.4 %) were densely present in the gastric contents gathered from R. pulmo individuals. The Phylum Ciliophora was another abundantly observed group in the gastric content of R. pulmo, with a 7.2 % representation rate. It was determined that jellyfish have a wide range of nutrition from phytoplankton to fish eggs. The sort of prey and amount of nutrition in stomach contents increased in parallel with the umbrella size. It is concluded that R. pulmo has important effects on the pelagic zone of the Black Sea ecosystem.




References

  • Anninsky, B., Finenko, G., Abolmasova, G., Hubareva, E., Svetlichny, L., Bat, L. & Kideys, A. (2005). Effect of starvation on the biochemical compositions and respiration rates of ctenophores Mnemiopsis leidyi and Beroe ovata in the Black Sea. Journal of the Marine Biological Association of the UK, 85(3), 549-561. DOI: 10.1017/s0025315405011471
  • Baek, S. H., Shimode, S., Han, M. & Kikuchi, T. (2008). Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: The role of nutrients. Harmful Algae, 7(6), 729-739. DOI: 10.1016/j.hal.2008.02.007
  • Bat, L. (2014). Heavy metal pollution in the Black Sea. In E. Düzgüneş, B. Öztürk, and M. Zengin (Eds.), Turkish Fisheries in the Black Sea (pp. 71-107). İstanbul: Turkish Marine Research Foundation.
  • Bat, L. (2017). The Contamination Status of Heavy Metals in Fish from the Black Sea, Turkey and Potential Risks to Human Health. In M. Sezgin, L. Bat, D. Ürkmez, E. Arıcı, and B. Öztürk (Eds.), Black Sea Marine Environment: The Turkish Shelf (pp. 322-418). İstanbul: Turkish Marine Research Foundation.
  • Bat, L., Sezgin, M., Satılmış, H. H., Üstün, F., Birinci Özdemir, Z. & Gökkurt Baki, O. (2011). Biological diversity of the Turkish Black Sea coast. Turkish Journal of Fisheries and Aquatic Sciences, 11, 683-692. DOI: 10.4194/1303-2712-v11_4_04
  • Bat, L. & Özkan, E. Y. (2015). Heavy metal levels in sediment of the Turkish Black Sea coast. In I. Zlateva, V. Raykov, and N. Nikolov (Eds.), Progressive Engineering Practices in Marine Resource Management (pp. 399-419). Hershey, PA: IGI Global book series Advances in Environmental Engineering and Green Technologies.
  • Baytut, Ö., Gönülol, A. & Koray, T. (2010). Temporal variations of phytoplankton in relation to eutrophication in Samsun Bay, Southern Black Sea. Turkish Journal of Fisheries and Aquatic Sciences, 10, 363-372. DOI: 10.4194/trjfas.2010.0309
  • Birinci Özdemir, Z., Erdem, Y. & Bat, L. (2018). Food composition and distribution of gelatinous macrozooplankton in the southern Black Sea. Indian Journal of Geo Marine Sciences, 47(12), 2541-2548.
  • Borysova, O., Kondakov, A., Paleari, S., Rautalahti-Miettinen, E., Stolberg, F. & Daler, D. (2005). Eutrophication in the Black Sea Region; Impact Assessment and Causal Chain Analysis. Kalmar, Sweden: University of Kalmar.
  • Chang, K., DOI, H., Nishibe, Y., Obayashi, Y. & Nakano, S. (2009). Spatial and Temporal Distribution of Zooplankton Communities of Coastal Marine Waters Receiving Different Human Activities (Fish and Pearl Oyster Farmings). The Open Marine Biology Journal, 3(1), 83-88. DOI: 10.2174/1874450800903010083
  • Finenko, G. A., Romanova, Z. A., Abolmasova, G. I., Anninsky, B. E., Pavlovskaya, T. V., Bat, L. & Kideys, A. (2006). Ctenophores-invaders and their role in the trophic dynamics of the planktonic community in the coastal regions off the Crimean coasts of the Black Sea (Sevastopol Bay). Oceanology, 46(4), 472-482. DOI: 10.1134/s0001437006040047
  • Gifford, D. J. & Dagg, M. J. (1988). Feeding of the estuarine Copepod Acartia tonsa Dana: carnivory vs. herbivory in natural microplankton assemblages. Bulletin of Marine Science, 43(3), 458-468. Retrieved from https://www.ingentaconnect.com/content/umrsmas/bullmar/1988/00000043/00000003/art00011#
  • Golemansky, V. (2007). Biodiversity and Ecology of the Bulgarian Black Sea Invertebrates. In V. Fet and A. Popov (Eds.), Biogeography and Ecology of Bulgaria. Monographiae Biologicae (pp. 537-554). Dordrecht: Springer.
  • Gordina, A., Zagorodnyaya, J., Kideys, A., Bat, L. & Satilmis, H. (2005). Summer ichthyoplankton, food supply of fish larvae and impact of invasive ctenophores on the nutrition of fish larvae in the Black Sea during 2000 and 2001. Journal of the Marine Biological Association of the UK, 85(3), 537-548. DOI: 10.1017/s002531540501146x
  • Gubanova, A. & Altukhov, D. (2007). Establishment of Oithona brevicornis Giesbrecht, 1892 (Copepoda: Cyclopoida) in the Black Sea. Aquatic Invasions, 2(4), 407-410. DOI: 10.3391/ai.2007.2.4.10
  • Gubanova, A., Altukhov, D., Stefanova, K., Arashkevich, E., Kamburska, L., Prusova, I., Svetlichny, L., Timofte, F. & Uysal, Z. (2014). Species composition of Black Sea marine planktonic copepods. Journal of Marine Systems, 135, 44-52. DOI: 10.1016/j.jmarsys.2013.12.004
  • Humborg, C., Ittekkot, V., Cociasu, A. & Bodungen, B. V. (1997). Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, 386(6623), 385-388. DOI: 10.1038/386385a0
  • Hyslop, E. J. (1980). Stomach contents analysis-a review of methods and their application. Journal of Fish Biology, 17(4), 411-429. DOI: 10.1111/j.1095-8649.1980.tb02775.x
  • Isinibilir, M., Yılmaz, İ.N. & Üstün, F., (2017). Zooplankton of the Southern Black Sea. In M. Sezgin, L. Bat, D. Ürkmez, E. Arıcı, B. Öztürk (Eds.). Black Sea Marine Environment: the Turkish Shelf. (pp. 178-195). Istanbul, Turkish Marine Research Foundation (TUDAV).
  • Isinibilir, M. & Yılmaz, İ.N., (2017). Jellyfish dynamics and their socioeconomic and ecological consequences in Turkish Seas. In G.L. Mariottini (Ed.). Jellyfish: Ecology, Distribution Patterns and Human Interactions. (pp. 51-70). New York, Nova Publishers.
  • Kingsford, M. J., Pitt, K. A. & Gillanders, B. M. (2000). Management of jellyfish fisheries, with special reference to the order Rhizostomeae. Oceanography and Marine Biology: an annual review, 38, 85-156. Retrieved from https://researchonline.jcu.edu.au/1218/
  • Kleppel, G. S., Holliday, D. V. & Pieper, R. E. (1991). Trophic interactions between copepods and microplankton: A question about the role of diatoms. Limnology and Oceanography, 36(1), 172-178. DOI: 10.4319/lo.1991.36.1.0172
  • Kovalev, A. V., Skryabin, V. A., Zagorondyaya, Y. A., Bingel, F., Kıdeyş, A. E., Niermann, U. & Uysal, Z. (1999). The Black Sea zooplankton: composition, spatial/temporal distribution and history of investigations. Turkish Journal of Zoology, 23, 195-209. Retrieved from https://journals.tubitak.gov.tr/zoology/abstract.htm?id=3194
  • Lilley, M., Houghton, J. & Hays, G. (2009). Distribution, extent of inter-annual variability and diet of the bloom-forming jellyfish Rhizostoma in European waters. Journal of the Marine Biological Association of the United Kingdom, 89(01), 39-48. DOI: 10.1017/s0025315408002439
  • Marcus, N. (2004). An overview of the impacts of eutrophication and chemical pollutants on copepods of the coastal zone. Zoological studies, 43(2), 211-217. Retrieved from http://zoolstud.sinica.edu.tw/Journals/43.2/211.pdf
  • Marcus, N. H. & Wilcox, J. A. (2007). A Guide to the Meso-Scale Production of the Copepod Acartia tonsa. Florida, FL: Florida State University Department of Oceanography Biological Oceanography.
  • Marine Species Identification Portal : Rhizostoma pulmo. (2011). Retrieved from http://species-identification.org/species.php?species_group=zsaoandid=2445andmenuentry=soorten
  • Mariottini, G. L. & Pane, L. (2010). Mediterranean Jellyfish Venoms: A Review on Scyphomedusae. Marine Drugs, 8(4), 1122-1152. DOI:10.3390/md8041122
  • Mayer, A. G. (1910). Medusae of the World: Volume III; The Scyphomedusae (1st ed.). New York, NY: Washington, D.C., The Carnegie Institution.
  • Mutlu, E. (2001). Distribution and abundance of moon jellyfish ( Aurelia aurita ) and its zooplankton food in the Black Sea. Marine Biology, 138(2), 329-339. DOI: 10.1007/s002270000459
  • Öztürk, B., Mihneva, V. & Shiganova, T. (2011). First records of Bolinopsis vitrea (L. Agassiz, 1860) (Ctenophora: Lobata) in the Black Sea. Aquatic Invasions, 6(3), 355-360. DOI: 10.3391/ai.2011.6.3.12
  • Öztürk, B. & Topaloğlu, B. (2011). A short note on the jellyfish at the Gökçeada Island, the North Aegean Sea. In C. Turan and B. Öztürk (Eds.), First National Workshop on Jellyfish and other Gelatinous Species in Turkish Marine Waters (pp. 86-89). Retrieved from http://tudav.org/wp-content/uploads/2018/04/workshop_jellyfish.pdf
  • Paffenhöfer, G. & Stearns, D. (1988). Why is Acartia tonsa (Copepoda: Calanoida) restricted to nearshore environments? Marine Ecology Progress Series, 42, 33-38. DOI: 10.3354/meps042033
  • Parsons, T. R. & Lalli, C. M. (2002). Jellyfish population explosions : Revisiting a hypothesis of possible causes. La Mer, 40, 111-121. Retrieved from http://www.sfjo-lamer.org/la_mer/40-3/40-3-2.pdf
  • Pitt, K. A., Welsh, D. T. & Condon, R. H. (2009). Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia, 616(1), 133-149. DOI: 10.1007/978-1-4020-9749-2_10
  • Proceedings of the 39th European Marine Biology Symposium, held in Genoa, Italy, 21-24 July 2004. (2007). G. Relini and J. Ryland (Eds.), Genova: Springer.
  • Pérez-Ruzafa, A., Gilabert, J., Gutiérrez, J. M., Fernández, A. I., Marcos, C. & Sabah, S. (2002). Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain. Hydrobiologia, 475/476, 359-369. DOI: 10.1007/978-94-017-2464-7_26
  • Rabalais, N. N. (2009). Eutrophication of estuarine and coastal ecosystems. In R. Mitchell and J. D. Gu (Eds.), Environmental Microbiology (Second Editionth ed., pp. 115-135). New Jersey, NJ: Wiley-Blackwell.
  • Russel, F. (1970). The Medusae of the British Isles; 11. Pelagic Scyphozoa with a Supplement to the First Volume on Hydromedusae (1st ed.). U.K.: Cambridge University Press.
  • Satılmış, H. H., Bat, L., Birinci-Özdemir, Z., Üstün, F., Şahin, F., Kıdeyş, A. E. & Erdem, Y. (2006). Composition of eggs and larvae of fish and macrogelatinious zooplankton in
  • Sinop Region (The Central Black Sea) during 2002. Ege Üniversitesi Su Ürünleri Dergisi, 23(1/1), 135-140. Retrieved from http://www.egejfas.org/download/article-file/57691 (in Turkish)
  • Selifonova, Z. P. (2009). Oithona brevicornis Giesbrecht (Copepoda, Cyclopoida) in harborages of the northeastern part of the Black Sea shelf. Inland Water Biology, 2(1), 30-32. DOI: 10.1134/s1995082909010052
  • Sever, T. M. (2009). Pelagic Copepoda fauna of the Aegean Sea and the distribution of the common species. Ege Üniversitesi Su Ürünleri Dergisi, 26(3), 203-209. Retrieved from http://www.egejfas.org/download/article-file/57446 (in Turkish)
  • Sezgin, M., Bat, L., Katagan, T. & Ates, A. S. (2010). Likely effects of global climate change on the Black Sea benthic ecosystem. Journal of Environmental Protection and Ecology, 11(1), 238-246. Retrieved from https://docs.google.com/a/jepe-journalinfoviewer?a=vandpid=sitesandsrcid=amVwZS1qb3VybmFsLmluZm98amVwZS1qb3VybmFsfGd4OjEyM2ZjZDIxYmVjZTQ3OGM
  • Shiganova, T. A. (1998). Invasion of the Black Sea by the ctenophore Mnemiopsis leidyi and recent changes in pelagic community structure. Fisheries Oceanography, 7(3-4), 305-310. DOI: 10.1046/j.1365-2419.1998.00080.x
  • Svetlichny, L., Abolmasova, G., Hubareva, E., Finenko, G., Bat, L. & Kideys, A. (2004). Respiration rates of Beroe ovata in the Black Sea. Marine Biology, 145(3), 585-593. DOI: 10.1007/s00227-004-1336-4
  • Tokarev, Y. & Shulman, G. (2007). Biodiversity in the Black Sea: effects of climate and anthropogenic factors. Hydrobiologia, 580(1), 23-33. DOI: 10.1007/s10750-006-0468-6
  • Üstün, F., Bat, L. & Mutlu, E. (2018). Seasonal variation and taxonomic composition of mesozooplankton in the Southern Black Sea (off Sinop) between 2005 and 2009. Turkish Journal of Zoology, 42, 541-556. DOI: 10.3906/zoo-1801-13
  • Vehmaa, A., Kremp, A., Tamminen, T., Hogfors, H., Spilling, K. & Engstrom-Ost, J. (2011). Copepod reproductive success in spring-bloom communities with modified diatom and dinoflagellate dominance. ICES Journal of Marine Science, 69(3), 351-357. DOI: 10.1093/icesjms/fsr138
  • Zaitsev, Y. & Mamaev, V. (Eds.). (1995). Biological Diversity in the Black Sea: A Study of Change and Decline. New York, Black Sea Environmental Series 3.
  • Zvyagintsev, A. Y. & Selifonova, J. P. (2010). Hydrobiological studies of the ballast waters of cargo ships in Russian Sea ports. Oceanology, 50(6), 924-932. DOI: 10.1134/s00014370

Details

Primary Language English
Subjects Science
Journal Section Articles
Authors

Memet Ali DÖNMEZ This is me (Primary Author)
University of Ondokuz Mayis, Faculty of Science and Letters Department of Biology TR55139 Kurupelit / Samsun
0000-0002-1795-8667
Türkiye


Levent BAT
University of Sinop, Fisheries Faculty, Department of Hydrobiology, TR57000 Akliman / Sinop
0000-0002-2289-6691
Türkiye

Publication Date June 15, 2019
Application Date December 6, 2018
Acceptance Date March 5, 2019
Published in Issue Year 2019, Volume 36, Issue 2

Cite

APA Dönmez, M. A. & Bat, L. (2019). Detection of feeding dietary Rhizostoma pulmo (Macri, 1778) in Samsun coasts of the Black Sea, Turkey . Ege Journal of Fisheries and Aquatic Sciences , 36 (2) , 135-144 . DOI: 10.12714/egejfas.2019.36.2.05