Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Karadeniz Bölgesi (Türkiye) boyunca bazı akarsularda yaşayan Barbus tauricus Kessler, 1877 populasyonlarının mtDNA Sitokrom b sekans analizleri ile genetik yapısının belirlenmesi

Year 2019, Volume 36, Issue 1, 1 - 11, 15.03.2019
https://doi.org/10.12714/egejfas.2019.36.1.01

Abstract



Bu çalışma Karadeniz Bölgesi’ndeki farklı alanlarda örneklenen Barbus tauricus populasyonları arasındaki türiçi varyasyonları ortaya çıkarmak için gerçekleştirilmiştir. Karadeniz Bölgesi’ndeki farklı içsulardan (Akçay (Samsun),  Engiz Çayı (Samsun), Terme Çayı (Samsun) Karadere (Trabzon) and Değirmenağzı Deresi (Düzce)) toplamda 250 örnek yakalanmıştır.  Tür içi varyasyonlar mtDNA cyt b sekansı kullanılarak saptanmıştır. Popülasyonların genetik yapıları moleküler varyans analizi (AMOVA) ile belirlenmiştir. Bu çalışmada GENBANK veri tabanından alınan Cyprinus carpio L., 1758 (DQ868874.1)(dış grup) ve diğer Barbus türleri karşılaştırmalı analizlerde kullanılmıştır. Cyt b gen bölgesinin 1141 baz çiftlik toplam sekansı ve 11 haplotip elde edilmiştir. AMOVA analizinden elde edilen moleküler veriler B.tauricus türiçi varyasyonun varlığını ve varyasyonun % 26.1 oranında gruplar arasında olduğunu ortaya çıkarmıştır. Tüm populasyonlardan elde edilen FST değeri populasyonlardaki genetik heterojeniteyi doğrulamaktadır (FST= 0.59310). Genetik analizler, B. tauricus populasyonlarının coğrafik olarak farklılıklar gösterdiğini ortaya çıkarmıştır.




References

  • Aboim, M.A., Menezes, M.G., Schlitt, D. & Rogers, A.D. (2005). Genetic structure and history of populations of the deep-sea fish Helicolenus dactylopterus (Delaroche, 1809) inferred from mtDNA sequence analysis. Molecular Ecology, 14: 1343–1354. doi: 10.1111/j.1365-294X.2005.02518.x.
  • Adams, D.C., Rohlf, F.J. & Slice, D.E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71: 5-16. doi: 10.1080/11250000409356545.
  • Allendorf, F.W., Ryman, N. & Utter, F. (1987). Genetics and Fishery Management. (Editors: N. Ryman, Utter F.), in Past, Present and Future in Pop. Gen. Fish. Man., University of Washington Press, Seattle and London.
  • Antal, L., László, B., Kotlík, P., Mozsár, A., Czegléd, I., Oldal, M., Kemenesi, G., Jakab, F. & Nagy, S.A. (2016). Phylogenetic evidence for a new species of Barbus in the Danube River basin. Molecular Phylogenetics and Evolution, 96: 187-1941. doi: 10.1016/j.ympev.2015.11.023.
  • Avise, J.C. (1986). Mitochondrial DNA and the evolutionary genetics of higher animals. Philoshophical Transactions Royal Society B, 312: 325-342.
  • Bǎnǎrescu, P. & Bogutskaya, N.G. (2003). Barbus Cuvier, 1816: The Freshwater Fishes of Europe Volume 5/II: (Cyprinidae 2/II): Barbus. Aula Verlag GmbH, Wiebelsheim, Germany (GR), p. 1-10.
  • Behera, B.K., Kunal, S.P., Baisvar, V.S., Meena, D.K., Panda, D., Pakrashi, S, Paria, P., Das, P., Debnath, D., Parida, P.K., Das, B.K. & Jena, J. (2017). Genetic variation in wild and hatcery population of Catla catla (Hamilton, 1822) analyzed through mtDNA cytb region. Mitochondrial DNA Part A, 29: 126-131. doi: 10.1080/24701394.2016.1253072.
  • Berrebi, P. (1995). Speciation of the genus Barbus in the North Mediterranean basin: Recent advances from biochemical genetics. Biological Conservation, 72: 237–249. doi: 10.1016/0006-3207(94)00086-6.
  • Brito, R.M., Briolay, J., Galtier, N., Bouvet, Y. & Coelho, M.M. (1997). Phylogenetic relationships within genus Leuciscus (Pisces, Cyprinidae) in Portuguese fresh waters, based on mitochondrial DNA cytochrome b sequences. Molecular Phylogenetics and Evolution, 8: 435–442. doi: 10.1006/mpev.1997.0429.
  • Cabral, H.N., Marques, J.F., Rego, A.L., Catarino, A.I., Figueiredo, J. & Garcia, J. (2003). Genetic and morphological variation of Synaptura lusitanica Capello, 1868, along the Portuguese coast. Journal of Sea Research, 50: 167–175. doi: 10.1016/S1385-1101(03)00060-1.
  • Cadrin, S.X. (2000). Advances in morphometric identification of fisheries stocks. Reviews in Fish Biology and Fisheries, 10: 91–112. Cadrin, S.X. (2000). Advances in morphometric identification of fisheries stocks. Reviews in Fish Biology and Fisheries, 10: 91–112.
  • Callejas, C. & Ochando, M.D. (2002). Phylogenetic relationships among Spanish Barbus species (Pisces, Cyprinidae) shown by RAPD markers. Heredity, 89: 36-43. doi:10.1038/sj.hdy.6800091.
  • Clarke, C.R., Karl, S.A., Horn, R.L., Bernard, A.M., Lea, J.S., Hazin, F.H., Prodöhl, P.A. & Shivji, M.S. (2015). Global mitochondrial DNA phylogeography and population structure of the silky shark, Carcharhinus falciformis. Marine Biology, 162: 945–955.
  • Clement, M., Posada, D. & Crandall, K.A. (2000). TCS a computer program to estimate gene genealogies. Molecular Ecology, 9: 1657-1660. doi: 10.1046/j.1365-294x.2000.01020.x.
  • Excoffier, L., Smouse, P.E. & Quattro, J.M. (1992). Analysis of molecular variance ınferred from metric distances among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics, 131: 479-491.
  • Geldiay, R., & Balık, S. (2007). Freshwater Fishes of Turkey, İzmir, Turkey (TR), Ege Üniversitesi Su Ürünleri Fakültesi Yayınları.
  • Gilles, A., Lecointre, G., Faure, E., Chappaz, R. & Brun, G. (1998). Mitochondrial Phylogeny of the European Cyprinids: Implications for Their Systematics, Reticulate Evolution, and Colonization Time. Molecular Phylogenetics and Evolution, 10: 132-143. doi: 10.1006/mpev.1997.0480.
  • Guindon, S. & Gascuel, O. (2003). A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology, 52: 696-704.
  • Felsenstein, J. (1993). Phylogeny Inference Package (PHYLIP). Version 3.5. University of Washington, Seattle.
  • Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95-98.
  • He, S., Mayden, R.L., Wang, X., Wang, W., Tang, K.L., Chen, W.C. & Chen, Y. (2008). Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal proteincoding gene: Further evidence from a nuclear gene of the systematic chaos in the family. Molecular Phylogenetics and Evolution, 46: 818-829. doi: 10.1016/j.ympev.2007.06.001.
  • Huson, D.H. & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23: 254-267. doi: 10.1093/molbev/msj030.
  • Im, Y.J., So, H.S., Ji, H.S., Myoung, S.H. & Kim, J.K. (2017). Geographic variations of the mottled skate, Beringraja pulchra (Liu, 1932) (Rajidae) in the Yellow and East seas based on molecular and morphometric data. Journal of Applied Ichthyoogy, 33: 950-956. doi: 10.1111/jai.13408.
  • Kartavtsev, Y.P. & Lee, J.S. (2006). Analysis of nucleotide diversity at the cytochrome b and cytochrome oxidase 1 genes at the population, species, and genus levels. Russian Journal of Genetics, 42: 341–362.
  • Kartavtsev, Y.P., Batischeva, N.M., Bogutskaya, N.G., Katugina, A.O. & Hanzawa, N. (2017). Molecular systematics and DNA barcoding of Altai osmans, oreoleuciscus (pisces, cyprinidae, and leuciscinae), and their nearest relatives, inferred from sequences of cytochrome b (Cyt-b), cytochrome oxidase c (Co-1), and complete mitochondrial genome. Mitochondrial DNA Part A, 28: 502-517. doi: 10.3109/24701394.2016.1149822.
  • Kotlík, P., Bogutskaya, G. & Ekmekçi, F.G. (2004). Circum Black Sea phylogeography of Barbus freshwater fishes: divergence in the Pontic glacial refugium. Molecular Ecology, 13: 87–95. doi: 10.1046/j.1365-294X.2003.02021.x.
  • Kotlík, P., Marková, S., Choleva, L., Bogutskaya, N.G., Ekmekçi, F.G. & Ivanova, P.P. (2008). Divergence with gene flow between Ponto-Caspian refugia in an anadromous cyprinid Rutilus frisii revealed by multiple gene phylogeography. Molecular Ecology, 17: 1076–1088. doi: 10.1111/j.1365-294X.2007.03638.x.
  • Kottelat, M. & Freyhof, J. (2007). Handbook of European Freshwater Fishes. Cornol, Switzerland and Freyhof, Berlin, Germany (GR).
  • Kumar, R., Pandey, B.K., Sarkar, U.K., Nagpure, N.S., Baisvar, V.S, Agnihotri, P., Awasthi, A., Misra, A. & Kumar, N. (2017). Population genetic structure and geographic differentiation in butter catfish, Ompok bimaculatus, from Indian waters inferred by cytochrome b mitochondrial gene. Mitochondrial DNA Part A, 28: 442-450. doi: 10.3109/19401736.2015.1137898.
  • Li, D., Kang, D., Yin, Q., Sun, X. & Liang, L. (2007). Microsatellite DNA marker analysis of genetic diversity in wild common carp (Cyprinus carpio L.) populations. Journal of Genetics and Genomics (Formerly Acta Genetica Sinica), 34: 984-993. doi: 10.1016/S1673-8527(07)60111-8.
  • Librado, P. & Rozas, J. (2009). DnaSP v.5: A software for comprehensive analysis for DNA polymorphism data. Bioinformatics, 25: 1451-1452.
  • Livi, S., de Innocentiis, S., Longobardi, A., Cataudella, S, Tancioni, L, Rampacci, M. & Marino, G. (2013). Genetic structure of Barbus spp. populations in the Marches Region of central Italy and its relevance to conservation actions. Journal of Fish Biology, 82: 806–826. doi: 10.1111/jfb.12021.
  • Machordom, A. & Doadrio, I. (2001). Evolutionary history and speciation modes in the cyprinid genus Barbus. Proceedings of the Royal Society of London, Series B, 268: 1297–1306. doi: 10.1098/rspb.2001.1654.
  • Maes, G.E., Van Haudt, J.K.J., De Charleroy, D. & Volckaert, F.A.M. (2003). Indications for a recent Holarctic expansion of pike based on a preliminary study of mtDNA variation. Journal of Fish Biology, 63: 254-259. doi: 10.1046/j.1095-8649.2003.00140.x.
  • Mahe, K., Villanueva, M.C., Vaz, S., Coppin, F., Koubbi, P. & Carpentier, A. (2014). Morphological variability of the shape of striped red mullet Mullus surmuletus in relation to stock discrimination between the Bay of Biscay and the eastern English Channel. Journal of Fish Biology, 84: 1063-1073. doi: 10.1111/jfb.12345.
  • Marková, S., Šanda, R., Crivelli, A., Shumka, S., Wilson, I.F., Vukic, J., Berrebi, P. & Kotlík, P. (2010). Nuclear and mitochondrial DNA sequence data reveal the evolutionary history of Barbus (Cyprinidae) in the ancient lake systems of the Balkans. Molecular Phylogenetics and Evolution, 55: 488-500. doi: 10.1016/j.ympev.2010.01.030.
  • Murta, A.G. (2000). Morphological variation of horse mackerel (Trachurus trachurus) in the Iberian and North African Atlantic: Implications for stock identification. ICES Journal of Marine Science, 57: 1240-1248. doi: 10.1006/jmsc.2000.0810.
  • Myers, G.S. (1961). Preface to any future classification of the Cyprinid fishes of the genus Barbus. Standford Ichthyological Bulletin, 7: 212-215.
  • Myoung, S.H.& Kim, J.K. (2014). Genetic diversity and population structure of gizzard shad, Konosirus punctatus (Clupeidae, Pisces) in Korean waters based on mitochondrial DNA control region squences. Genes and Genomics, 36: 591-598.
  • Nei, M. (1987). Molecular Evolutionary Genetics. Columbia University Press.
  • Pinheiro, A., Teixeira, C.M., Rego, A.L., Marques, J.F. & Cabral, H.N. (2005). Genetic and morphological variation of Solea lascaris (Risso1810) along the Portuguese coast. Fisheries Research, 73: 67-78. doi: 10.1016/j.fishres.2005.01.004.
  • Polat, N. & Uğurlu, S. (2011). Samsun İli Tatlı Su Balık Faunası, Turkey (TR), Ceylan Ofset Baskı.
  • Posada, D. (2008). jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25: 1253–1256.
  • Raven, P.H. & Johnso, G.B. (1995). Biology (updated version). Third Edition. Wm. C. Brown publishers, Dubuque, Iowa. 399: 404-422.
  • Ryan, W.B.F., Pitman, W.C.III, Major, C.O., Shimku, K., Moskalenko, V., Jones, G.A., Dimitrov, P., Görür, N., Sakinç, M. & Yüce, H. (1997). An abrupt drowning of the Black Sea shelf. Marine Geology, 138: 119-126. doi: 10.1016/S0025-3227(97)00007-8.
  • Rylková, K. & Kalous, L. (2013). Genetic diversity in the genus Carassius (Teleostei: Cyprinidae) in the Czech Republic. Acta Societatis Zoologicae Bohemicae, 77: 73–79.
  • Saccone, C., Gissi, C., Laneve, C., Larizza, A., Pesole, G. & Reyes, A. (2000). Evolution of the mitochondrial genetic system an overview. Gene, 261: 153-159. doi: 10.1016/S0378-1119(00)00484-4.
  • Saitou, N. & Nei, M. (1987). The neighbor-joining method-a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406–425. doi: 10.1093/oxfordjournals.molbev.a040454.
  • Sakai, H., Iguchi, K., Yamazaki, Y., Sideleva, V.G. & Goto, A. (2009). Morphological and mtDNA sequence studies on three crucian carps (Carassius: Cyprinidae) including a new stock from the Ob River system, Kazakhstan. Journal of Fish Biology, 74: 1756–1773. doi: 10.1111/j.1095-8649.2009.02203.x.
  • Schneider, S., Roessli, D. & Excoffier, L. (2000). ARLEQUIN, Version 2.0: A Software for population genetic data analysis, Genetics and Biometry Laboratory, University of Geneva, Switzerland.
  • Sevilla, R.G., Diez, A., Noren, M., Mouchel, O., Jérome, M., Verres-Bagnis, V., Pelt, H.V., Favre-Krey, L., Krey, G. & The Fishtrace Consortium et al. (2007). Primers and polymerase chain reaction conditions for DNA barcoding Teleost fish based on the mitochondrial cytochrome b and nuclear rhodopsin genes. Molecular Ecology Notes, 7: 730–734. doi: 10.1111/j.1471-8286.2007.01863.x.
  • Stiling, P.D. (1992). Ecology: Theories and Applications. Prentice Hall, Upper Saddle River, NJ. 62-66.Swofford, D.L. (2003). PAUP: Phylogenetic analysis using parsimony (and other methods) Sunderland, MA: Sinauer Associates.
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28: 2731-2739. doi: 10.1093/molbev/msr121.
  • Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994). Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 4637-4680.
  • Tsigenopoulos, C.S. & Berrebi, P. (2000). Molecular phylogeny of North Mediterranean freshwater barbs (Genus Barbus: Cyprinidae) inferred from cytochrome b sequences: biogeographic and systematic implications. Molecular Phylogenetics and Evolution, 14: 165-179. doi: 10.1006/mpev.1999.0702.
  • Tsigenopoulos, C.S., Rab, P., Naran, D. & Berrebi, P. (2002). Multiple origins of polyploidy in the phylogeny of southern African barbs (Cyprinidae) as inferred from mtDNA markers. Heredity, 88: 466-473.
  • Zheng, L.P., Yang, J.X. & Chen, X.Y. (2016). Moleculer phylogeny and systematics of the Barbinae (Teleostei: Cyprinidae) in China inferred from mitochondrial DNA sequences. Biochemical Systematics and Ecology, 68: 250-259. doi: 10.1016/j.bse.2016.07.012.

Determination of genetic structure in Barbus tauricus Kessler, 1877 populations inhabiting a few streams along the Black Sea Region (Turkey) inferred from mtDNA Cytochrome b gene sequence analysis

Year 2019, Volume 36, Issue 1, 1 - 11, 15.03.2019
https://doi.org/10.12714/egejfas.2019.36.1.01

Abstract



This study was carried out in order to determine the intras-pecies variation in Barbus tauricus populations sampled from different localities in the Black Sea Region. A total of 250 B. tauricus samples were collected from inland waters (Akçay Stream (Samsun),  Engiz Stream (Samsun), Terme Stream (Samsun) Karadere Stream (Trabzon) and Değirmenağzı Stream (Düzce)) of Black Sea Region. Intra-species variations in the species of B. tauricus were determined using mitochondrial DNA cyt b squencing. The population genetic structure was revealed by analyzing the molecular variance (AMOVA). For this study, a member of the related fish group, Cyprinus carpio L., 1758 (DQ868874.1)(as an outgroup) and other Barbus species from the GENBANK database was used in comparative analyses. Therefore, total sequence of 1141 bp of the cyt b gene region was obtained and 11 haplotypes were determined. The molecular data obtained by AMOVA revealed that there were intraspecific variations of B. tauricus and that 26.61% of the variation were among the populations. The FST value estimated for all populations and loci confirms genetic heterogeneity in B.tauricus populations (FST= 0.59310). Genetic analyses revealed that B. tauricus populations are geographically structured.




References

  • Aboim, M.A., Menezes, M.G., Schlitt, D. & Rogers, A.D. (2005). Genetic structure and history of populations of the deep-sea fish Helicolenus dactylopterus (Delaroche, 1809) inferred from mtDNA sequence analysis. Molecular Ecology, 14: 1343–1354. doi: 10.1111/j.1365-294X.2005.02518.x.
  • Adams, D.C., Rohlf, F.J. & Slice, D.E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71: 5-16. doi: 10.1080/11250000409356545.
  • Allendorf, F.W., Ryman, N. & Utter, F. (1987). Genetics and Fishery Management. (Editors: N. Ryman, Utter F.), in Past, Present and Future in Pop. Gen. Fish. Man., University of Washington Press, Seattle and London.
  • Antal, L., László, B., Kotlík, P., Mozsár, A., Czegléd, I., Oldal, M., Kemenesi, G., Jakab, F. & Nagy, S.A. (2016). Phylogenetic evidence for a new species of Barbus in the Danube River basin. Molecular Phylogenetics and Evolution, 96: 187-1941. doi: 10.1016/j.ympev.2015.11.023.
  • Avise, J.C. (1986). Mitochondrial DNA and the evolutionary genetics of higher animals. Philoshophical Transactions Royal Society B, 312: 325-342.
  • Bǎnǎrescu, P. & Bogutskaya, N.G. (2003). Barbus Cuvier, 1816: The Freshwater Fishes of Europe Volume 5/II: (Cyprinidae 2/II): Barbus. Aula Verlag GmbH, Wiebelsheim, Germany (GR), p. 1-10.
  • Behera, B.K., Kunal, S.P., Baisvar, V.S., Meena, D.K., Panda, D., Pakrashi, S, Paria, P., Das, P., Debnath, D., Parida, P.K., Das, B.K. & Jena, J. (2017). Genetic variation in wild and hatcery population of Catla catla (Hamilton, 1822) analyzed through mtDNA cytb region. Mitochondrial DNA Part A, 29: 126-131. doi: 10.1080/24701394.2016.1253072.
  • Berrebi, P. (1995). Speciation of the genus Barbus in the North Mediterranean basin: Recent advances from biochemical genetics. Biological Conservation, 72: 237–249. doi: 10.1016/0006-3207(94)00086-6.
  • Brito, R.M., Briolay, J., Galtier, N., Bouvet, Y. & Coelho, M.M. (1997). Phylogenetic relationships within genus Leuciscus (Pisces, Cyprinidae) in Portuguese fresh waters, based on mitochondrial DNA cytochrome b sequences. Molecular Phylogenetics and Evolution, 8: 435–442. doi: 10.1006/mpev.1997.0429.
  • Cabral, H.N., Marques, J.F., Rego, A.L., Catarino, A.I., Figueiredo, J. & Garcia, J. (2003). Genetic and morphological variation of Synaptura lusitanica Capello, 1868, along the Portuguese coast. Journal of Sea Research, 50: 167–175. doi: 10.1016/S1385-1101(03)00060-1.
  • Cadrin, S.X. (2000). Advances in morphometric identification of fisheries stocks. Reviews in Fish Biology and Fisheries, 10: 91–112. Cadrin, S.X. (2000). Advances in morphometric identification of fisheries stocks. Reviews in Fish Biology and Fisheries, 10: 91–112.
  • Callejas, C. & Ochando, M.D. (2002). Phylogenetic relationships among Spanish Barbus species (Pisces, Cyprinidae) shown by RAPD markers. Heredity, 89: 36-43. doi:10.1038/sj.hdy.6800091.
  • Clarke, C.R., Karl, S.A., Horn, R.L., Bernard, A.M., Lea, J.S., Hazin, F.H., Prodöhl, P.A. & Shivji, M.S. (2015). Global mitochondrial DNA phylogeography and population structure of the silky shark, Carcharhinus falciformis. Marine Biology, 162: 945–955.
  • Clement, M., Posada, D. & Crandall, K.A. (2000). TCS a computer program to estimate gene genealogies. Molecular Ecology, 9: 1657-1660. doi: 10.1046/j.1365-294x.2000.01020.x.
  • Excoffier, L., Smouse, P.E. & Quattro, J.M. (1992). Analysis of molecular variance ınferred from metric distances among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics, 131: 479-491.
  • Geldiay, R., & Balık, S. (2007). Freshwater Fishes of Turkey, İzmir, Turkey (TR), Ege Üniversitesi Su Ürünleri Fakültesi Yayınları.
  • Gilles, A., Lecointre, G., Faure, E., Chappaz, R. & Brun, G. (1998). Mitochondrial Phylogeny of the European Cyprinids: Implications for Their Systematics, Reticulate Evolution, and Colonization Time. Molecular Phylogenetics and Evolution, 10: 132-143. doi: 10.1006/mpev.1997.0480.
  • Guindon, S. & Gascuel, O. (2003). A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology, 52: 696-704.
  • Felsenstein, J. (1993). Phylogeny Inference Package (PHYLIP). Version 3.5. University of Washington, Seattle.
  • Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95-98.
  • He, S., Mayden, R.L., Wang, X., Wang, W., Tang, K.L., Chen, W.C. & Chen, Y. (2008). Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal proteincoding gene: Further evidence from a nuclear gene of the systematic chaos in the family. Molecular Phylogenetics and Evolution, 46: 818-829. doi: 10.1016/j.ympev.2007.06.001.
  • Huson, D.H. & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23: 254-267. doi: 10.1093/molbev/msj030.
  • Im, Y.J., So, H.S., Ji, H.S., Myoung, S.H. & Kim, J.K. (2017). Geographic variations of the mottled skate, Beringraja pulchra (Liu, 1932) (Rajidae) in the Yellow and East seas based on molecular and morphometric data. Journal of Applied Ichthyoogy, 33: 950-956. doi: 10.1111/jai.13408.
  • Kartavtsev, Y.P. & Lee, J.S. (2006). Analysis of nucleotide diversity at the cytochrome b and cytochrome oxidase 1 genes at the population, species, and genus levels. Russian Journal of Genetics, 42: 341–362.
  • Kartavtsev, Y.P., Batischeva, N.M., Bogutskaya, N.G., Katugina, A.O. & Hanzawa, N. (2017). Molecular systematics and DNA barcoding of Altai osmans, oreoleuciscus (pisces, cyprinidae, and leuciscinae), and their nearest relatives, inferred from sequences of cytochrome b (Cyt-b), cytochrome oxidase c (Co-1), and complete mitochondrial genome. Mitochondrial DNA Part A, 28: 502-517. doi: 10.3109/24701394.2016.1149822.
  • Kotlík, P., Bogutskaya, G. & Ekmekçi, F.G. (2004). Circum Black Sea phylogeography of Barbus freshwater fishes: divergence in the Pontic glacial refugium. Molecular Ecology, 13: 87–95. doi: 10.1046/j.1365-294X.2003.02021.x.
  • Kotlík, P., Marková, S., Choleva, L., Bogutskaya, N.G., Ekmekçi, F.G. & Ivanova, P.P. (2008). Divergence with gene flow between Ponto-Caspian refugia in an anadromous cyprinid Rutilus frisii revealed by multiple gene phylogeography. Molecular Ecology, 17: 1076–1088. doi: 10.1111/j.1365-294X.2007.03638.x.
  • Kottelat, M. & Freyhof, J. (2007). Handbook of European Freshwater Fishes. Cornol, Switzerland and Freyhof, Berlin, Germany (GR).
  • Kumar, R., Pandey, B.K., Sarkar, U.K., Nagpure, N.S., Baisvar, V.S, Agnihotri, P., Awasthi, A., Misra, A. & Kumar, N. (2017). Population genetic structure and geographic differentiation in butter catfish, Ompok bimaculatus, from Indian waters inferred by cytochrome b mitochondrial gene. Mitochondrial DNA Part A, 28: 442-450. doi: 10.3109/19401736.2015.1137898.
  • Li, D., Kang, D., Yin, Q., Sun, X. & Liang, L. (2007). Microsatellite DNA marker analysis of genetic diversity in wild common carp (Cyprinus carpio L.) populations. Journal of Genetics and Genomics (Formerly Acta Genetica Sinica), 34: 984-993. doi: 10.1016/S1673-8527(07)60111-8.
  • Librado, P. & Rozas, J. (2009). DnaSP v.5: A software for comprehensive analysis for DNA polymorphism data. Bioinformatics, 25: 1451-1452.
  • Livi, S., de Innocentiis, S., Longobardi, A., Cataudella, S, Tancioni, L, Rampacci, M. & Marino, G. (2013). Genetic structure of Barbus spp. populations in the Marches Region of central Italy and its relevance to conservation actions. Journal of Fish Biology, 82: 806–826. doi: 10.1111/jfb.12021.
  • Machordom, A. & Doadrio, I. (2001). Evolutionary history and speciation modes in the cyprinid genus Barbus. Proceedings of the Royal Society of London, Series B, 268: 1297–1306. doi: 10.1098/rspb.2001.1654.
  • Maes, G.E., Van Haudt, J.K.J., De Charleroy, D. & Volckaert, F.A.M. (2003). Indications for a recent Holarctic expansion of pike based on a preliminary study of mtDNA variation. Journal of Fish Biology, 63: 254-259. doi: 10.1046/j.1095-8649.2003.00140.x.
  • Mahe, K., Villanueva, M.C., Vaz, S., Coppin, F., Koubbi, P. & Carpentier, A. (2014). Morphological variability of the shape of striped red mullet Mullus surmuletus in relation to stock discrimination between the Bay of Biscay and the eastern English Channel. Journal of Fish Biology, 84: 1063-1073. doi: 10.1111/jfb.12345.
  • Marková, S., Šanda, R., Crivelli, A., Shumka, S., Wilson, I.F., Vukic, J., Berrebi, P. & Kotlík, P. (2010). Nuclear and mitochondrial DNA sequence data reveal the evolutionary history of Barbus (Cyprinidae) in the ancient lake systems of the Balkans. Molecular Phylogenetics and Evolution, 55: 488-500. doi: 10.1016/j.ympev.2010.01.030.
  • Murta, A.G. (2000). Morphological variation of horse mackerel (Trachurus trachurus) in the Iberian and North African Atlantic: Implications for stock identification. ICES Journal of Marine Science, 57: 1240-1248. doi: 10.1006/jmsc.2000.0810.
  • Myers, G.S. (1961). Preface to any future classification of the Cyprinid fishes of the genus Barbus. Standford Ichthyological Bulletin, 7: 212-215.
  • Myoung, S.H.& Kim, J.K. (2014). Genetic diversity and population structure of gizzard shad, Konosirus punctatus (Clupeidae, Pisces) in Korean waters based on mitochondrial DNA control region squences. Genes and Genomics, 36: 591-598.
  • Nei, M. (1987). Molecular Evolutionary Genetics. Columbia University Press.
  • Pinheiro, A., Teixeira, C.M., Rego, A.L., Marques, J.F. & Cabral, H.N. (2005). Genetic and morphological variation of Solea lascaris (Risso1810) along the Portuguese coast. Fisheries Research, 73: 67-78. doi: 10.1016/j.fishres.2005.01.004.
  • Polat, N. & Uğurlu, S. (2011). Samsun İli Tatlı Su Balık Faunası, Turkey (TR), Ceylan Ofset Baskı.
  • Posada, D. (2008). jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25: 1253–1256.
  • Raven, P.H. & Johnso, G.B. (1995). Biology (updated version). Third Edition. Wm. C. Brown publishers, Dubuque, Iowa. 399: 404-422.
  • Ryan, W.B.F., Pitman, W.C.III, Major, C.O., Shimku, K., Moskalenko, V., Jones, G.A., Dimitrov, P., Görür, N., Sakinç, M. & Yüce, H. (1997). An abrupt drowning of the Black Sea shelf. Marine Geology, 138: 119-126. doi: 10.1016/S0025-3227(97)00007-8.
  • Rylková, K. & Kalous, L. (2013). Genetic diversity in the genus Carassius (Teleostei: Cyprinidae) in the Czech Republic. Acta Societatis Zoologicae Bohemicae, 77: 73–79.
  • Saccone, C., Gissi, C., Laneve, C., Larizza, A., Pesole, G. & Reyes, A. (2000). Evolution of the mitochondrial genetic system an overview. Gene, 261: 153-159. doi: 10.1016/S0378-1119(00)00484-4.
  • Saitou, N. & Nei, M. (1987). The neighbor-joining method-a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406–425. doi: 10.1093/oxfordjournals.molbev.a040454.
  • Sakai, H., Iguchi, K., Yamazaki, Y., Sideleva, V.G. & Goto, A. (2009). Morphological and mtDNA sequence studies on three crucian carps (Carassius: Cyprinidae) including a new stock from the Ob River system, Kazakhstan. Journal of Fish Biology, 74: 1756–1773. doi: 10.1111/j.1095-8649.2009.02203.x.
  • Schneider, S., Roessli, D. & Excoffier, L. (2000). ARLEQUIN, Version 2.0: A Software for population genetic data analysis, Genetics and Biometry Laboratory, University of Geneva, Switzerland.
  • Sevilla, R.G., Diez, A., Noren, M., Mouchel, O., Jérome, M., Verres-Bagnis, V., Pelt, H.V., Favre-Krey, L., Krey, G. & The Fishtrace Consortium et al. (2007). Primers and polymerase chain reaction conditions for DNA barcoding Teleost fish based on the mitochondrial cytochrome b and nuclear rhodopsin genes. Molecular Ecology Notes, 7: 730–734. doi: 10.1111/j.1471-8286.2007.01863.x.
  • Stiling, P.D. (1992). Ecology: Theories and Applications. Prentice Hall, Upper Saddle River, NJ. 62-66.Swofford, D.L. (2003). PAUP: Phylogenetic analysis using parsimony (and other methods) Sunderland, MA: Sinauer Associates.
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28: 2731-2739. doi: 10.1093/molbev/msr121.
  • Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994). Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 4637-4680.
  • Tsigenopoulos, C.S. & Berrebi, P. (2000). Molecular phylogeny of North Mediterranean freshwater barbs (Genus Barbus: Cyprinidae) inferred from cytochrome b sequences: biogeographic and systematic implications. Molecular Phylogenetics and Evolution, 14: 165-179. doi: 10.1006/mpev.1999.0702.
  • Tsigenopoulos, C.S., Rab, P., Naran, D. & Berrebi, P. (2002). Multiple origins of polyploidy in the phylogeny of southern African barbs (Cyprinidae) as inferred from mtDNA markers. Heredity, 88: 466-473.
  • Zheng, L.P., Yang, J.X. & Chen, X.Y. (2016). Moleculer phylogeny and systematics of the Barbinae (Teleostei: Cyprinidae) in China inferred from mitochondrial DNA sequences. Biochemical Systematics and Ecology, 68: 250-259. doi: 10.1016/j.bse.2016.07.012.

Details

Primary Language English
Subjects Science
Journal Section Articles
Authors

Melek ÖZPİÇAK (Primary Author)
Ondokuz Mayıs Üniversitesi | Ondokuz Mayıs University
0000-0003-3506-4242
Türkiye


Nazmi POLAT
Ondokuz Mayıs Üniversitesi | Ondokuz Mayıs University
0000-0001-9785-9927
Türkiye

Publication Date March 15, 2019
Application Date April 17, 2018
Acceptance Date October 12, 2018
Published in Issue Year 2019, Volume 36, Issue 1

Cite

APA Özpiçak, M. & Polat, N. (2019). Determination of genetic structure in Barbus tauricus Kessler, 1877 populations inhabiting a few streams along the Black Sea Region (Turkey) inferred from mtDNA Cytochrome b gene sequence analysis . Ege Journal of Fisheries and Aquatic Sciences , 36 (1) , 1-11 . DOI: 10.12714/egejfas.2019.36.1.01