Su ürünleri üretiminde doğal kaynakların korunması ve çevresel
standartlara uygun yetiştiricilik yapılması için sürdürülebilir metotların
geliştirilmesi bir gerekliliktir. Hayvan refahı ve gıda etiğine uygun ürün
arzı, günümüzde önem gösterilen başlıca bir konudur. Çevre dostu yeni üretim
metotlarından biri biyoyumak (biofloc) teknolojisidir. Bu teknoloji, su
ürünleri yetiştiricilik sistemlerinde karbon ve azot dengesine dayanan ve su
kalitesini artıran bir sistemdir. Bu çalışmada, su ürünleri yetiştiriciliğinde
son yıllarda etkin bir biçimde kullanılmaya başlanan biyoyumak teknolojisinin
yetiştiricilikte sunduğu faydalar derlenmiştir.
Aquacop, (1975). Maturation and spawning in captivity of penaeid shrimp: Penaeus merguiensis de Man, Penaeus japonicus Bate, Penaeus aztecus Ives, Metapenaeus ensis de Haan and Penaeus semisulcatus de Haan. In: Proceedings of the Sixth Annual Meeting World Mariculture Society (ed. by J.W. Avault & R. Miller), pp. 123–129. Lousiana State University, Baton Roug.
Anand, P. S., Kohli, M. P. S., Kumar, S., Sundaray, J. K., Roy, S. D., Venkateshwarlu, G., Sinha, A., & Pailan, G. H. (2014). Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture, 418, 108-115. DOI: 10.1016/j.aquaculture.2013.09.051
Arnold, SJ., Coman, FE., Jackson, CJ., & Groves, SA. (2009). High-intensity, zero water exchange production of juvenile tiger shrimp, Penaeus monodon: An evaluation of artificial substrates and stocking density. Aquaculture, 293, 42-48. DOI: 10.1016/j.aquaculture.2009.03.049
Avnimelech, Y. (2006). Bio-filters: the need for an new comprehensive approach. Aquacultural engineering, 34(3), 172-178. DOI: 10.1016/j.aquaeng.2005.04.001
Azim, ME., & Little, DC. (2008) The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283, 29–35. DOI: 10.1016/j.aquaculture.2008.06.036
Azim, M. E., Little, D. C., & Bron, J. E. (2008). Microbial protein production in activated suspension tanks manipulating C: N ratio in feed and the implications for fish culture. Bioresource Technology, 99(9), 3590-3599. DOI: 10.1016/j.biortech.2007.07.063
Bakhshi, F., Najdegerami, E. H., Manaffar, R., Tukmechi, A., & Farah, K. R. (2018a). Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture, 484, 259-267. DOI: 10.1016/j.aquaculture.2017.11.036
Bakhshi, F., Najdegerami, E. H., Manaffar, R., Tokmechi, A., Farah, K. R., & Jalali, A. S. (2018b). Growth performance, haematology, antioxidant status, immune response and histology of common carp (Cyprinus carpio L.) fed biofloc grown on different carbon sources. Aquaculture Research, 49(1), 393-403. DOI: 10.1111/are.13469
Ballester, ELC., Abreu, PC., Cavalli, RO., Emerenciano, M., Abreu, L., & Wasielesky, W. (2010). Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, 163-172. DOI: 10.1111/j.1365-2095.2009.00648.x
Chen, J., Ren, Y., Wang, G., Xia, B., & Li, Y. (2018). Dietary supplementation of biofloc influences growth performance, physiological stress, antioxidant status and immune response of juvenile sea cucumber Apostichopus japonicus (Selenka). Fish & shellfish immunology, 72, 143-152. DOI: 10.1016/j.fsi.2017.10.061
Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., & Verstraete, W. (2007). Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270: (1-4), 1-14. DOI: 10.1016/j.aquaculture.2007.05.006
Crab, R., Chielens, B., Wille, M., Bossier, P., & Verstraete, W. (2010). The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41(4), 559-567. DOI: 10.1111/j.1365-2109.2009.02353.x
Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W. (2012). Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 356, 351-356. DOI: 10.1016/j.aquaculture.2012.04.046
Crab, R., Kochva, M., Verstraete, W., & Avnimelech, Y. (2009). Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering, 40(3), 105-112. DOI: 10.1016/j.aquaeng.2008.12.004
Dauda, A. B., Romano, N., Ebrahimi, M., Teh, J. C., Ajadi, A., Chong, C. M., Karim, M., Natrah, I., & Kamarudin, M. S. (2018). Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aquaculture, 483, 120-130. DOI: 10.1016/j.aquaculture.2017.10.016
Deng, M., Chen, J., Gou, J., Hou, J., Li, D., & He, X. (2018). The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture, 482, 103-110. DOI:10.1016/j.aquaculture.2017.09.030
Ekasari, J., & Maryam, S. (2012). Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities. HAYATI Journal of Biosciences, 19(2), 73-80. DOI: 10.4308/hjb.19.2.73
Ekasari, J., Angela, D., Waluyo, S. H., Bachtiar, T., Surawidjaja, E. H., Bossier, P., & De Schryver, P. (2014). The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture, 426, 105-111. DOI: 10.1016/j.aquaculture.2014.01.023
Ekasari, J., Rivandi, D. R., Firdausi, A. P., Surawidjaja, E. H., Zairin Jr, M., Bossier, P., & De Schryver, P. (2015). Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441, 72-77. DOI: 10.1016/j.aquaculture.2015.02.019
Emerenciano, M., Ballester, ELC., Cavalli, RO., & Wasielesky, W. (2011b). Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis: growth performance, floc composition and salinity stress tolerance. Aquaculture International, 19(5), 891-901. DOI: 10.1007/s10499-010-9408-6
Emerenciano, M., Cuzon, G., Goguenheim, J., & Gaxiola, G. (2012a). Floc contribution on spawning performance of blue shrimp Litopenaeus stylirostris. Aquaculture Research, 44(1), 75-85.
Emerenciano, M., Ballester, E. L., Cavalli, R. O., & Wasielesky, W. (2012b). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43(3), 447-457. DOI: 10.1111/j.1365-2109.2011.02848.x
Emerenciano, M., Cuzon, G., Paredes, A., & Gaxiola, G. (2013a). Evaluation of biofloc technology in pink shrimp Farfantepenaeus duorarum culture: growth performance, water quality, microorganisms profile and proximate analysis of biofloc. Aquaculture İnternational, 21(6), 1381-1394. DOI: 10.1007/s10499-013-9640-y
Emerenciano, M., Gaxiola, G., & Cuzon, G. (2013b). Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Matovic MD (ed.) Biomass Now -Cultivation and Utilization, pp. 301–328. InTech, Queen's University, Belfast, Canada.
FAO (2015). FAO Global Aquaculture Production statistics database updated to 2013: Summary information. Rome: Food and Agriculture Organization of the United Nations.
Fauji, H., Budiardi, T., & Ekasari, J. (2018). Growth performance and robustness of African Catfish Clarias gariepinus (Burchell) in biofloc‐based nursery production with different stocking densities. Aquaculture Research. 00, 1–8. DOI: 10.1111/are.13595
Furtado, P. S., Campos, B. R., Serra, F. P., Klosterhoff, M., Romano, L. A., & Wasielesky, W. (2015). Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeus vannamei, reared with biofloc technology (BFT). Aquaculture international, 23(1), 315-327. DOI: 10.1007/s10499-014-9817-z
Gaona, C. A. P., Almeida, M. S., Viau, V., Poersch, L. H., & Wasielesky, W. (2017). Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, 48(3), 1070-1079. DOI: 10.1111/are.12949
Gaona, C. A. P., Poersch, L. H., Krummenauer, D., Foes, G. K., & Wasielesky, W. J. (2011). The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. International Journal of Recirculating Aquaculture, 12(1).
Hargreaves, J. A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquacultural engineering, 34(3), 344-363. DOI: 10.1016/j.aquaeng.2005.08.009
Hargreaves, J. A. (2013). Biofloc production systems for aquaculture. Southern Regional Aquaculture Center.
Krummenauer, D., Peixoto, S., Cavalli, R. O., Poersch, L. H., & Wasielesky, W. (2011). Superintensive culture of white shrimp, Litopenaeus vannamei, in a biofloc technology system in southern Brazil at different stocking densities. Journal of the World Aquaculture Society, 42(5), 726-733.
Kuhn, D. D., Lawrence, A. L., Boardman, G. D., Patnaik, S., Marsh, L., & Flick, G. J. (2010). Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 303(1), 28-33. DOI: 10.1016/j.aquaculture.2010.03.001
Long, L., Yang, J., Li, Y., Guan, C., & Wu, F. (2015). Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture, 448, 135-141. DOI: 10.1016/j.aquaculture.2015.05.017
Luo, G. Z., Avnimelech, Y., Pan, Y. F., & Tan, H. X. (2013). Inorganic nitrogen dynamics in sequencing batch reactors using biofloc technology to treat aquaculture sludge. Aquacultural Engineering, 52, 73-79. DOI: 10.1016/j.aquaeng.2012.09.003
Mansour, A. T., & Esteban, M. Á. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish & shellfish immunology, 64, 202-209. DOI: 10.1016/j.fsi.2017.03.025
Megahed, M. E. (2010). The effect of microbial biofloc on water quality, survival and growth of the green tiger shrimp (Penaeus semisulcatus) fed with different crude protein levels. Journal of the Arabian Aquaculture Society, 5(2), 119-142.
Mishra, J. K., Samocha, T. M., Patnaik, S., Speed, M., Gandy, R. L., & Ali, A. M. (2008). Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquacultural Engineering, 38(1), 2-15. DOI: 10.1016/j.aquaeng.2007.10.003
Moreno-Arias, A., López-Elías, J. A., Martínez-Córdova, L. R., Ramírez-Suárez, J. C., Carvallo-Ruiz, M. G., García-Sánchez, G., Lugo-Sánchez, M. E., & Miranda-Baeza, A. (2018). Effect of fishmeal replacement with a vegetable protein mixture on the amino acid and fatty acid profiles of diets, biofloc and shrimp cultured in BFT system. Aquaculture, 483, 53-62. DOI: 10.1016/j.aquaculture.2017.10.011
Najdegerami, E. H., Bakhshi, F., & Lakani, F. B. (2016). Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish physiology and biochemistry, 42(2), 457-465.
Peixoto, S., Silva, E., Costa, C. B., Nery, R. C., Rodrigues, F., Silva, J. F., Bezerra, R., & Soares, R. (2018). Effect of feeding frequency on growth and enzymatic activity of Litopenaeus vannamei during nursery phase in biofloc system. Aquaculture Nutrition, 24(1), 579-585. DOI: 10.1016/j.aquaculture.2017.10.011
Ray, A. J., Dillon, K. S., & Lotz, J. M. (2011). Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquacultural Engineering, 45(3), 127-136. DOI: 10.1016/j.aquaeng.2011.09.001
Samocha, TM., Patnaik, S., Speed, M., Ali, AM., Burger, JM., Almeida, RV., Ayub, Z., Samocha, T. M., Patnaik, S., Speed, M., Ali, A. M., Burger, J. M., Almeida, R. V., & Brock, D. L. (2007). Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36(2), 184-191. DOI: 10.1016/j.aquaeng.2006.10.004
Schveitzer, R., Arantes, R., Costódio, P. F. S., do Espírito Santo, C. M., Arana, L. V., Seiffert, W. Q., & Andreatta, E. R. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, 59-70. DOI: 10.1016/j.aquaeng.2013.04.006
Silva, K. R., Wasielesky, W., & Abreu, P. C. (2013). Nitrogen and phosphorus dynamics in the biofloc production of the pacific white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 44(1), 30-41.
Souza, D. M., Suita, S. M., Romano, L. A., Wasielesky, W., & Ballester, E. L. C. (2014). Use of molasses as a carbon source during the nursery rearing of Farfantepenaeus brasiliensis (Latreille, 1817) in a Biofloc technology system. Aquaculture Research, 45(2), 270-277. DOI: 10.1111/j.1365-2109.2012.03223.x
Xu, W. J., Pan, L. Q., Sun, X. H., & Huang, J. (2013). Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero‐water exchange culture tanks. Aquaculture Research, 44(7), 1093-1102. DOI: 10.1111/j.1365-2109.2012.03115.x
Xu, W. J., & Pan, L. Q. (2013). Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture, 412, 117-124. DOI: 10.1016/j.aquaculture.2013.07.017
Zhao, P., Huang, J., Wang, X. H., Song, X. L., Yang, C. H., Zhang, X. G., & Wang, G. C. (2012). The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus. Aquaculture, 354, 97-106. DOI: 10.1016/j.aquaculture.2012.03.034
Biofloc technology in aquaculture
Year 2018,
Volume: 35 Issue: 2, 219 - 225, 15.06.2018
It is necessary to develop sustainable methods for the conservation of
natural resources and the production in accordance with environmental standards
in aquaculture. Animal welfare and product supply suitable for food ethics is a
major issue that is important today. One of the eco-friendly new production
methods is biofloc technology. This technology is based on carbon and nitrogen
balance in aquaculture systems and improves water quality. In this study,
biofloc technology, which has been used effectively in aquaculture in recent
years, has been compiled.
Aquacop, (1975). Maturation and spawning in captivity of penaeid shrimp: Penaeus merguiensis de Man, Penaeus japonicus Bate, Penaeus aztecus Ives, Metapenaeus ensis de Haan and Penaeus semisulcatus de Haan. In: Proceedings of the Sixth Annual Meeting World Mariculture Society (ed. by J.W. Avault & R. Miller), pp. 123–129. Lousiana State University, Baton Roug.
Anand, P. S., Kohli, M. P. S., Kumar, S., Sundaray, J. K., Roy, S. D., Venkateshwarlu, G., Sinha, A., & Pailan, G. H. (2014). Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture, 418, 108-115. DOI: 10.1016/j.aquaculture.2013.09.051
Arnold, SJ., Coman, FE., Jackson, CJ., & Groves, SA. (2009). High-intensity, zero water exchange production of juvenile tiger shrimp, Penaeus monodon: An evaluation of artificial substrates and stocking density. Aquaculture, 293, 42-48. DOI: 10.1016/j.aquaculture.2009.03.049
Avnimelech, Y. (2006). Bio-filters: the need for an new comprehensive approach. Aquacultural engineering, 34(3), 172-178. DOI: 10.1016/j.aquaeng.2005.04.001
Azim, ME., & Little, DC. (2008) The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283, 29–35. DOI: 10.1016/j.aquaculture.2008.06.036
Azim, M. E., Little, D. C., & Bron, J. E. (2008). Microbial protein production in activated suspension tanks manipulating C: N ratio in feed and the implications for fish culture. Bioresource Technology, 99(9), 3590-3599. DOI: 10.1016/j.biortech.2007.07.063
Bakhshi, F., Najdegerami, E. H., Manaffar, R., Tukmechi, A., & Farah, K. R. (2018a). Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture, 484, 259-267. DOI: 10.1016/j.aquaculture.2017.11.036
Bakhshi, F., Najdegerami, E. H., Manaffar, R., Tokmechi, A., Farah, K. R., & Jalali, A. S. (2018b). Growth performance, haematology, antioxidant status, immune response and histology of common carp (Cyprinus carpio L.) fed biofloc grown on different carbon sources. Aquaculture Research, 49(1), 393-403. DOI: 10.1111/are.13469
Ballester, ELC., Abreu, PC., Cavalli, RO., Emerenciano, M., Abreu, L., & Wasielesky, W. (2010). Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, 163-172. DOI: 10.1111/j.1365-2095.2009.00648.x
Chen, J., Ren, Y., Wang, G., Xia, B., & Li, Y. (2018). Dietary supplementation of biofloc influences growth performance, physiological stress, antioxidant status and immune response of juvenile sea cucumber Apostichopus japonicus (Selenka). Fish & shellfish immunology, 72, 143-152. DOI: 10.1016/j.fsi.2017.10.061
Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., & Verstraete, W. (2007). Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270: (1-4), 1-14. DOI: 10.1016/j.aquaculture.2007.05.006
Crab, R., Chielens, B., Wille, M., Bossier, P., & Verstraete, W. (2010). The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41(4), 559-567. DOI: 10.1111/j.1365-2109.2009.02353.x
Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W. (2012). Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 356, 351-356. DOI: 10.1016/j.aquaculture.2012.04.046
Crab, R., Kochva, M., Verstraete, W., & Avnimelech, Y. (2009). Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering, 40(3), 105-112. DOI: 10.1016/j.aquaeng.2008.12.004
Dauda, A. B., Romano, N., Ebrahimi, M., Teh, J. C., Ajadi, A., Chong, C. M., Karim, M., Natrah, I., & Kamarudin, M. S. (2018). Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aquaculture, 483, 120-130. DOI: 10.1016/j.aquaculture.2017.10.016
Deng, M., Chen, J., Gou, J., Hou, J., Li, D., & He, X. (2018). The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture, 482, 103-110. DOI:10.1016/j.aquaculture.2017.09.030
Ekasari, J., & Maryam, S. (2012). Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities. HAYATI Journal of Biosciences, 19(2), 73-80. DOI: 10.4308/hjb.19.2.73
Ekasari, J., Angela, D., Waluyo, S. H., Bachtiar, T., Surawidjaja, E. H., Bossier, P., & De Schryver, P. (2014). The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture, 426, 105-111. DOI: 10.1016/j.aquaculture.2014.01.023
Ekasari, J., Rivandi, D. R., Firdausi, A. P., Surawidjaja, E. H., Zairin Jr, M., Bossier, P., & De Schryver, P. (2015). Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441, 72-77. DOI: 10.1016/j.aquaculture.2015.02.019
Emerenciano, M., Ballester, ELC., Cavalli, RO., & Wasielesky, W. (2011b). Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis: growth performance, floc composition and salinity stress tolerance. Aquaculture International, 19(5), 891-901. DOI: 10.1007/s10499-010-9408-6
Emerenciano, M., Cuzon, G., Goguenheim, J., & Gaxiola, G. (2012a). Floc contribution on spawning performance of blue shrimp Litopenaeus stylirostris. Aquaculture Research, 44(1), 75-85.
Emerenciano, M., Ballester, E. L., Cavalli, R. O., & Wasielesky, W. (2012b). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43(3), 447-457. DOI: 10.1111/j.1365-2109.2011.02848.x
Emerenciano, M., Cuzon, G., Paredes, A., & Gaxiola, G. (2013a). Evaluation of biofloc technology in pink shrimp Farfantepenaeus duorarum culture: growth performance, water quality, microorganisms profile and proximate analysis of biofloc. Aquaculture İnternational, 21(6), 1381-1394. DOI: 10.1007/s10499-013-9640-y
Emerenciano, M., Gaxiola, G., & Cuzon, G. (2013b). Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Matovic MD (ed.) Biomass Now -Cultivation and Utilization, pp. 301–328. InTech, Queen's University, Belfast, Canada.
FAO (2015). FAO Global Aquaculture Production statistics database updated to 2013: Summary information. Rome: Food and Agriculture Organization of the United Nations.
Fauji, H., Budiardi, T., & Ekasari, J. (2018). Growth performance and robustness of African Catfish Clarias gariepinus (Burchell) in biofloc‐based nursery production with different stocking densities. Aquaculture Research. 00, 1–8. DOI: 10.1111/are.13595
Furtado, P. S., Campos, B. R., Serra, F. P., Klosterhoff, M., Romano, L. A., & Wasielesky, W. (2015). Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeus vannamei, reared with biofloc technology (BFT). Aquaculture international, 23(1), 315-327. DOI: 10.1007/s10499-014-9817-z
Gaona, C. A. P., Almeida, M. S., Viau, V., Poersch, L. H., & Wasielesky, W. (2017). Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, 48(3), 1070-1079. DOI: 10.1111/are.12949
Gaona, C. A. P., Poersch, L. H., Krummenauer, D., Foes, G. K., & Wasielesky, W. J. (2011). The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. International Journal of Recirculating Aquaculture, 12(1).
Hargreaves, J. A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquacultural engineering, 34(3), 344-363. DOI: 10.1016/j.aquaeng.2005.08.009
Hargreaves, J. A. (2013). Biofloc production systems for aquaculture. Southern Regional Aquaculture Center.
Krummenauer, D., Peixoto, S., Cavalli, R. O., Poersch, L. H., & Wasielesky, W. (2011). Superintensive culture of white shrimp, Litopenaeus vannamei, in a biofloc technology system in southern Brazil at different stocking densities. Journal of the World Aquaculture Society, 42(5), 726-733.
Kuhn, D. D., Lawrence, A. L., Boardman, G. D., Patnaik, S., Marsh, L., & Flick, G. J. (2010). Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 303(1), 28-33. DOI: 10.1016/j.aquaculture.2010.03.001
Long, L., Yang, J., Li, Y., Guan, C., & Wu, F. (2015). Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture, 448, 135-141. DOI: 10.1016/j.aquaculture.2015.05.017
Luo, G. Z., Avnimelech, Y., Pan, Y. F., & Tan, H. X. (2013). Inorganic nitrogen dynamics in sequencing batch reactors using biofloc technology to treat aquaculture sludge. Aquacultural Engineering, 52, 73-79. DOI: 10.1016/j.aquaeng.2012.09.003
Mansour, A. T., & Esteban, M. Á. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish & shellfish immunology, 64, 202-209. DOI: 10.1016/j.fsi.2017.03.025
Megahed, M. E. (2010). The effect of microbial biofloc on water quality, survival and growth of the green tiger shrimp (Penaeus semisulcatus) fed with different crude protein levels. Journal of the Arabian Aquaculture Society, 5(2), 119-142.
Mishra, J. K., Samocha, T. M., Patnaik, S., Speed, M., Gandy, R. L., & Ali, A. M. (2008). Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquacultural Engineering, 38(1), 2-15. DOI: 10.1016/j.aquaeng.2007.10.003
Moreno-Arias, A., López-Elías, J. A., Martínez-Córdova, L. R., Ramírez-Suárez, J. C., Carvallo-Ruiz, M. G., García-Sánchez, G., Lugo-Sánchez, M. E., & Miranda-Baeza, A. (2018). Effect of fishmeal replacement with a vegetable protein mixture on the amino acid and fatty acid profiles of diets, biofloc and shrimp cultured in BFT system. Aquaculture, 483, 53-62. DOI: 10.1016/j.aquaculture.2017.10.011
Najdegerami, E. H., Bakhshi, F., & Lakani, F. B. (2016). Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish physiology and biochemistry, 42(2), 457-465.
Peixoto, S., Silva, E., Costa, C. B., Nery, R. C., Rodrigues, F., Silva, J. F., Bezerra, R., & Soares, R. (2018). Effect of feeding frequency on growth and enzymatic activity of Litopenaeus vannamei during nursery phase in biofloc system. Aquaculture Nutrition, 24(1), 579-585. DOI: 10.1016/j.aquaculture.2017.10.011
Ray, A. J., Dillon, K. S., & Lotz, J. M. (2011). Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquacultural Engineering, 45(3), 127-136. DOI: 10.1016/j.aquaeng.2011.09.001
Samocha, TM., Patnaik, S., Speed, M., Ali, AM., Burger, JM., Almeida, RV., Ayub, Z., Samocha, T. M., Patnaik, S., Speed, M., Ali, A. M., Burger, J. M., Almeida, R. V., & Brock, D. L. (2007). Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36(2), 184-191. DOI: 10.1016/j.aquaeng.2006.10.004
Schveitzer, R., Arantes, R., Costódio, P. F. S., do Espírito Santo, C. M., Arana, L. V., Seiffert, W. Q., & Andreatta, E. R. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, 59-70. DOI: 10.1016/j.aquaeng.2013.04.006
Silva, K. R., Wasielesky, W., & Abreu, P. C. (2013). Nitrogen and phosphorus dynamics in the biofloc production of the pacific white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 44(1), 30-41.
Souza, D. M., Suita, S. M., Romano, L. A., Wasielesky, W., & Ballester, E. L. C. (2014). Use of molasses as a carbon source during the nursery rearing of Farfantepenaeus brasiliensis (Latreille, 1817) in a Biofloc technology system. Aquaculture Research, 45(2), 270-277. DOI: 10.1111/j.1365-2109.2012.03223.x
Xu, W. J., Pan, L. Q., Sun, X. H., & Huang, J. (2013). Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero‐water exchange culture tanks. Aquaculture Research, 44(7), 1093-1102. DOI: 10.1111/j.1365-2109.2012.03115.x
Xu, W. J., & Pan, L. Q. (2013). Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture, 412, 117-124. DOI: 10.1016/j.aquaculture.2013.07.017
Zhao, P., Huang, J., Wang, X. H., Song, X. L., Yang, C. H., Zhang, X. G., & Wang, G. C. (2012). The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus. Aquaculture, 354, 97-106. DOI: 10.1016/j.aquaculture.2012.03.034
Kaya, D., & Genç, E. (2018). Su ürünleri yetiştiriciliğinde biyoyumak teknolojisi. Ege Journal of Fisheries and Aquatic Sciences, 35(2), 219-225. https://doi.org/10.12714/egejfas.2018.35.2.16