Review
BibTex RIS Cite

Su ürünleri yetiştiriciliğinde biyoyumak teknolojisi

Year 2018, Volume: 35 Issue: 2, 219 - 225, 15.06.2018
https://doi.org/10.12714/egejfas.2018.35.2.16

Abstract



Su ürünleri üretiminde doğal kaynakların korunması ve çevresel
standartlara uygun yetiştiricilik yapılması için sürdürülebilir metotların
geliştirilmesi bir gerekliliktir. Hayvan refahı ve gıda etiğine uygun ürün
arzı, günümüzde önem gösterilen başlıca bir konudur. Çevre dostu yeni üretim
metotlarından biri biyoyumak (biofloc) teknolojisidir. Bu teknoloji, su
ürünleri yetiştiricilik sistemlerinde karbon ve azot dengesine dayanan ve su
kalitesini artıran bir sistemdir. Bu çalışmada, su ürünleri yetiştiriciliğinde
son yıllarda etkin bir biçimde kullanılmaya başlanan biyoyumak teknolojisinin
yetiştiricilikte sunduğu faydalar derlenmiştir.



References

  • Aquacop, (1975). Maturation and spawning in captivity of penaeid shrimp: Penaeus merguiensis de Man, Penaeus japonicus Bate, Penaeus aztecus Ives, Metapenaeus ensis de Haan and Penaeus semisulcatus de Haan. In: Proceedings of the Sixth Annual Meeting World Mariculture Society (ed. by J.W. Avault & R. Miller), pp. 123–129. Lousiana State University, Baton Roug.
  • Anand, P. S., Kohli, M. P. S., Kumar, S., Sundaray, J. K., Roy, S. D., Venkateshwarlu, G., Sinha, A., & Pailan, G. H. (2014). Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture, 418, 108-115. DOI: 10.1016/j.aquaculture.2013.09.051
  • Arnold, SJ., Coman, FE., Jackson, CJ., & Groves, SA. (2009). High-intensity, zero water exchange production of juvenile tiger shrimp, Penaeus monodon: An evaluation of artificial substrates and stocking density. Aquaculture, 293, 42-48. DOI: 10.1016/j.aquaculture.2009.03.049
  • Avnimelech, Y. (2006). Bio-filters: the need for an new comprehensive approach. Aquacultural engineering, 34(3), 172-178. DOI: 10.1016/j.aquaeng.2005.04.001
  • Azim, ME., & Little, DC. (2008) The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283, 29–35. DOI: 10.1016/j.aquaculture.2008.06.036
  • Azim, M. E., Little, D. C., & Bron, J. E. (2008). Microbial protein production in activated suspension tanks manipulating C: N ratio in feed and the implications for fish culture. Bioresource Technology, 99(9), 3590-3599. DOI: 10.1016/j.biortech.2007.07.063
  • Bakhshi, F., Najdegerami, E. H., Manaffar, R., Tukmechi, A., & Farah, K. R. (2018a). Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture, 484, 259-267. DOI: 10.1016/j.aquaculture.2017.11.036
  • Bakhshi, F., Najdegerami, E. H., Manaffar, R., Tokmechi, A., Farah, K. R., & Jalali, A. S. (2018b). Growth performance, haematology, antioxidant status, immune response and histology of common carp (Cyprinus carpio L.) fed biofloc grown on different carbon sources. Aquaculture Research, 49(1), 393-403. DOI: 10.1111/are.13469
  • Ballester, ELC., Abreu, PC., Cavalli, RO., Emerenciano, M., Abreu, L., & Wasielesky, W. (2010). Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, 163-172. DOI: 10.1111/j.1365-2095.2009.00648.x
  • Chen, J., Ren, Y., Wang, G., Xia, B., & Li, Y. (2018). Dietary supplementation of biofloc influences growth performance, physiological stress, antioxidant status and immune response of juvenile sea cucumber Apostichopus japonicus (Selenka). Fish & shellfish immunology, 72, 143-152. DOI: 10.1016/j.fsi.2017.10.061
  • Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., & Verstraete, W. (2007). Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270: (1-4), 1-14. DOI: 10.1016/j.aquaculture.2007.05.006
  • Crab, R., Chielens, B., Wille, M., Bossier, P., & Verstraete, W. (2010). The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41(4), 559-567. DOI: 10.1111/j.1365-2109.2009.02353.x
  • Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W. (2012). Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 356, 351-356. DOI: 10.1016/j.aquaculture.2012.04.046
  • Crab, R., Kochva, M., Verstraete, W., & Avnimelech, Y. (2009). Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering, 40(3), 105-112. DOI: 10.1016/j.aquaeng.2008.12.004
  • Dauda, A. B., Romano, N., Ebrahimi, M., Teh, J. C., Ajadi, A., Chong, C. M., Karim, M., Natrah, I., & Kamarudin, M. S. (2018). Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aquaculture, 483, 120-130. DOI: 10.1016/j.aquaculture.2017.10.016
  • Deng, M., Chen, J., Gou, J., Hou, J., Li, D., & He, X. (2018). The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture, 482, 103-110. DOI:10.1016/j.aquaculture.2017.09.030
  • Ekasari, J., & Maryam, S. (2012). Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities. HAYATI Journal of Biosciences, 19(2), 73-80. DOI: 10.4308/hjb.19.2.73
  • Ekasari, J., Angela, D., Waluyo, S. H., Bachtiar, T., Surawidjaja, E. H., Bossier, P., & De Schryver, P. (2014). The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture, 426, 105-111. DOI: 10.1016/j.aquaculture.2014.01.023
  • Ekasari, J., Rivandi, D. R., Firdausi, A. P., Surawidjaja, E. H., Zairin Jr, M., Bossier, P., & De Schryver, P. (2015). Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441, 72-77. DOI: 10.1016/j.aquaculture.2015.02.019
  • Emerenciano, M., Ballester, ELC., Cavalli, RO., & Wasielesky, W. (2011b). Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis: growth performance, floc composition and salinity stress tolerance. Aquaculture International, 19(5), 891-901. DOI: 10.1007/s10499-010-9408-6
  • Emerenciano, M., Cuzon, G., Goguenheim, J., & Gaxiola, G. (2012a). Floc contribution on spawning performance of blue shrimp Litopenaeus stylirostris. Aquaculture Research, 44(1), 75-85.
  • Emerenciano, M., Ballester, E. L., Cavalli, R. O., & Wasielesky, W. (2012b). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43(3), 447-457. DOI: 10.1111/j.1365-2109.2011.02848.x
  • Emerenciano, M., Cuzon, G., Paredes, A., & Gaxiola, G. (2013a). Evaluation of biofloc technology in pink shrimp Farfantepenaeus duorarum culture: growth performance, water quality, microorganisms profile and proximate analysis of biofloc. Aquaculture İnternational, 21(6), 1381-1394. DOI: 10.1007/s10499-013-9640-y
  • Emerenciano, M., Gaxiola, G., & Cuzon, G. (2013b). Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Matovic MD (ed.) Biomass Now -Cultivation and Utilization, pp. 301–328. InTech, Queen's University, Belfast, Canada.
  • FAO (2015). FAO Global Aquaculture Production statistics database updated to 2013: Summary information. Rome: Food and Agriculture Organization of the United Nations.
  • Fauji, H., Budiardi, T., & Ekasari, J. (2018). Growth performance and robustness of African Catfish Clarias gariepinus (Burchell) in biofloc‐based nursery production with different stocking densities. Aquaculture Research. 00, 1–8. DOI: 10.1111/are.13595
  • Furtado, P. S., Campos, B. R., Serra, F. P., Klosterhoff, M., Romano, L. A., & Wasielesky, W. (2015). Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeus vannamei, reared with biofloc technology (BFT). Aquaculture international, 23(1), 315-327. DOI: 10.1007/s10499-014-9817-z
  • Gaona, C. A. P., Almeida, M. S., Viau, V., Poersch, L. H., & Wasielesky, W. (2017). Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, 48(3), 1070-1079. DOI: 10.1111/are.12949
  • Gaona, C. A. P., Poersch, L. H., Krummenauer, D., Foes, G. K., & Wasielesky, W. J. (2011). The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. International Journal of Recirculating Aquaculture, 12(1).
  • Hargreaves, J. A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquacultural engineering, 34(3), 344-363. DOI: 10.1016/j.aquaeng.2005.08.009
  • Hargreaves, J. A. (2013). Biofloc production systems for aquaculture. Southern Regional Aquaculture Center.
  • Krummenauer, D., Peixoto, S., Cavalli, R. O., Poersch, L. H., & Wasielesky, W. (2011). Superintensive culture of white shrimp, Litopenaeus vannamei, in a biofloc technology system in southern Brazil at different stocking densities. Journal of the World Aquaculture Society, 42(5), 726-733.
  • Kuhn, D. D., Lawrence, A. L., Boardman, G. D., Patnaik, S., Marsh, L., & Flick, G. J. (2010). Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 303(1), 28-33. DOI: 10.1016/j.aquaculture.2010.03.001
  • Long, L., Yang, J., Li, Y., Guan, C., & Wu, F. (2015). Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture, 448, 135-141. DOI: 10.1016/j.aquaculture.2015.05.017
  • Luo, G. Z., Avnimelech, Y., Pan, Y. F., & Tan, H. X. (2013). Inorganic nitrogen dynamics in sequencing batch reactors using biofloc technology to treat aquaculture sludge. Aquacultural Engineering, 52, 73-79. DOI: 10.1016/j.aquaeng.2012.09.003
  • Mansour, A. T., & Esteban, M. Á. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish & shellfish immunology, 64, 202-209. DOI: 10.1016/j.fsi.2017.03.025
  • Megahed, M. E. (2010). The effect of microbial biofloc on water quality, survival and growth of the green tiger shrimp (Penaeus semisulcatus) fed with different crude protein levels. Journal of the Arabian Aquaculture Society, 5(2), 119-142.
  • Mishra, J. K., Samocha, T. M., Patnaik, S., Speed, M., Gandy, R. L., & Ali, A. M. (2008). Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquacultural Engineering, 38(1), 2-15. DOI: 10.1016/j.aquaeng.2007.10.003
  • Moreno-Arias, A., López-Elías, J. A., Martínez-Córdova, L. R., Ramírez-Suárez, J. C., Carvallo-Ruiz, M. G., García-Sánchez, G., Lugo-Sánchez, M. E., & Miranda-Baeza, A. (2018). Effect of fishmeal replacement with a vegetable protein mixture on the amino acid and fatty acid profiles of diets, biofloc and shrimp cultured in BFT system. Aquaculture, 483, 53-62. DOI: 10.1016/j.aquaculture.2017.10.011
  • Najdegerami, E. H., Bakhshi, F., & Lakani, F. B. (2016). Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish physiology and biochemistry, 42(2), 457-465.
  • Peixoto, S., Silva, E., Costa, C. B., Nery, R. C., Rodrigues, F., Silva, J. F., Bezerra, R., & Soares, R. (2018). Effect of feeding frequency on growth and enzymatic activity of Litopenaeus vannamei during nursery phase in biofloc system. Aquaculture Nutrition, 24(1), 579-585. DOI: 10.1016/j.aquaculture.2017.10.011
  • Ray, A. J., Dillon, K. S., & Lotz, J. M. (2011). Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquacultural Engineering, 45(3), 127-136. DOI: 10.1016/j.aquaeng.2011.09.001
  • Samocha, TM., Patnaik, S., Speed, M., Ali, AM., Burger, JM., Almeida, RV., Ayub, Z., Samocha, T. M., Patnaik, S., Speed, M., Ali, A. M., Burger, J. M., Almeida, R. V., & Brock, D. L. (2007). Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36(2), 184-191. DOI: 10.1016/j.aquaeng.2006.10.004
  • Schveitzer, R., Arantes, R., Costódio, P. F. S., do Espírito Santo, C. M., Arana, L. V., Seiffert, W. Q., & Andreatta, E. R. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, 59-70. DOI: 10.1016/j.aquaeng.2013.04.006
  • Silva, K. R., Wasielesky, W., & Abreu, P. C. (2013). Nitrogen and phosphorus dynamics in the biofloc production of the pacific white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 44(1), 30-41.
  • Souza, D. M., Suita, S. M., Romano, L. A., Wasielesky, W., & Ballester, E. L. C. (2014). Use of molasses as a carbon source during the nursery rearing of Farfantepenaeus brasiliensis (Latreille, 1817) in a Biofloc technology system. Aquaculture Research, 45(2), 270-277. DOI: 10.1111/j.1365-2109.2012.03223.x
  • Xu, W. J., Pan, L. Q., Sun, X. H., & Huang, J. (2013). Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero‐water exchange culture tanks. Aquaculture Research, 44(7), 1093-1102. DOI: 10.1111/j.1365-2109.2012.03115.x
  • Xu, W. J., & Pan, L. Q. (2013). Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture, 412, 117-124. DOI: 10.1016/j.aquaculture.2013.07.017
  • Zhao, P., Huang, J., Wang, X. H., Song, X. L., Yang, C. H., Zhang, X. G., & Wang, G. C. (2012). The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus. Aquaculture, 354, 97-106. DOI: 10.1016/j.aquaculture.2012.03.034

Biofloc technology in aquaculture

Year 2018, Volume: 35 Issue: 2, 219 - 225, 15.06.2018
https://doi.org/10.12714/egejfas.2018.35.2.16

Abstract



It is necessary to develop sustainable methods for the conservation of
natural resources and the production in accordance with environmental standards
in aquaculture. Animal welfare and product supply suitable for food ethics is a
major issue that is important today. One of the eco-friendly new production
methods is biofloc technology. This technology is based on carbon and nitrogen
balance in aquaculture systems and improves water quality. In this study,
biofloc technology, which has been used effectively in aquaculture in recent
years, has been compiled.



References

  • Aquacop, (1975). Maturation and spawning in captivity of penaeid shrimp: Penaeus merguiensis de Man, Penaeus japonicus Bate, Penaeus aztecus Ives, Metapenaeus ensis de Haan and Penaeus semisulcatus de Haan. In: Proceedings of the Sixth Annual Meeting World Mariculture Society (ed. by J.W. Avault & R. Miller), pp. 123–129. Lousiana State University, Baton Roug.
  • Anand, P. S., Kohli, M. P. S., Kumar, S., Sundaray, J. K., Roy, S. D., Venkateshwarlu, G., Sinha, A., & Pailan, G. H. (2014). Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture, 418, 108-115. DOI: 10.1016/j.aquaculture.2013.09.051
  • Arnold, SJ., Coman, FE., Jackson, CJ., & Groves, SA. (2009). High-intensity, zero water exchange production of juvenile tiger shrimp, Penaeus monodon: An evaluation of artificial substrates and stocking density. Aquaculture, 293, 42-48. DOI: 10.1016/j.aquaculture.2009.03.049
  • Avnimelech, Y. (2006). Bio-filters: the need for an new comprehensive approach. Aquacultural engineering, 34(3), 172-178. DOI: 10.1016/j.aquaeng.2005.04.001
  • Azim, ME., & Little, DC. (2008) The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283, 29–35. DOI: 10.1016/j.aquaculture.2008.06.036
  • Azim, M. E., Little, D. C., & Bron, J. E. (2008). Microbial protein production in activated suspension tanks manipulating C: N ratio in feed and the implications for fish culture. Bioresource Technology, 99(9), 3590-3599. DOI: 10.1016/j.biortech.2007.07.063
  • Bakhshi, F., Najdegerami, E. H., Manaffar, R., Tukmechi, A., & Farah, K. R. (2018a). Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture, 484, 259-267. DOI: 10.1016/j.aquaculture.2017.11.036
  • Bakhshi, F., Najdegerami, E. H., Manaffar, R., Tokmechi, A., Farah, K. R., & Jalali, A. S. (2018b). Growth performance, haematology, antioxidant status, immune response and histology of common carp (Cyprinus carpio L.) fed biofloc grown on different carbon sources. Aquaculture Research, 49(1), 393-403. DOI: 10.1111/are.13469
  • Ballester, ELC., Abreu, PC., Cavalli, RO., Emerenciano, M., Abreu, L., & Wasielesky, W. (2010). Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, 163-172. DOI: 10.1111/j.1365-2095.2009.00648.x
  • Chen, J., Ren, Y., Wang, G., Xia, B., & Li, Y. (2018). Dietary supplementation of biofloc influences growth performance, physiological stress, antioxidant status and immune response of juvenile sea cucumber Apostichopus japonicus (Selenka). Fish & shellfish immunology, 72, 143-152. DOI: 10.1016/j.fsi.2017.10.061
  • Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., & Verstraete, W. (2007). Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270: (1-4), 1-14. DOI: 10.1016/j.aquaculture.2007.05.006
  • Crab, R., Chielens, B., Wille, M., Bossier, P., & Verstraete, W. (2010). The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41(4), 559-567. DOI: 10.1111/j.1365-2109.2009.02353.x
  • Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W. (2012). Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 356, 351-356. DOI: 10.1016/j.aquaculture.2012.04.046
  • Crab, R., Kochva, M., Verstraete, W., & Avnimelech, Y. (2009). Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering, 40(3), 105-112. DOI: 10.1016/j.aquaeng.2008.12.004
  • Dauda, A. B., Romano, N., Ebrahimi, M., Teh, J. C., Ajadi, A., Chong, C. M., Karim, M., Natrah, I., & Kamarudin, M. S. (2018). Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aquaculture, 483, 120-130. DOI: 10.1016/j.aquaculture.2017.10.016
  • Deng, M., Chen, J., Gou, J., Hou, J., Li, D., & He, X. (2018). The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture, 482, 103-110. DOI:10.1016/j.aquaculture.2017.09.030
  • Ekasari, J., & Maryam, S. (2012). Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities. HAYATI Journal of Biosciences, 19(2), 73-80. DOI: 10.4308/hjb.19.2.73
  • Ekasari, J., Angela, D., Waluyo, S. H., Bachtiar, T., Surawidjaja, E. H., Bossier, P., & De Schryver, P. (2014). The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture, 426, 105-111. DOI: 10.1016/j.aquaculture.2014.01.023
  • Ekasari, J., Rivandi, D. R., Firdausi, A. P., Surawidjaja, E. H., Zairin Jr, M., Bossier, P., & De Schryver, P. (2015). Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441, 72-77. DOI: 10.1016/j.aquaculture.2015.02.019
  • Emerenciano, M., Ballester, ELC., Cavalli, RO., & Wasielesky, W. (2011b). Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis: growth performance, floc composition and salinity stress tolerance. Aquaculture International, 19(5), 891-901. DOI: 10.1007/s10499-010-9408-6
  • Emerenciano, M., Cuzon, G., Goguenheim, J., & Gaxiola, G. (2012a). Floc contribution on spawning performance of blue shrimp Litopenaeus stylirostris. Aquaculture Research, 44(1), 75-85.
  • Emerenciano, M., Ballester, E. L., Cavalli, R. O., & Wasielesky, W. (2012b). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43(3), 447-457. DOI: 10.1111/j.1365-2109.2011.02848.x
  • Emerenciano, M., Cuzon, G., Paredes, A., & Gaxiola, G. (2013a). Evaluation of biofloc technology in pink shrimp Farfantepenaeus duorarum culture: growth performance, water quality, microorganisms profile and proximate analysis of biofloc. Aquaculture İnternational, 21(6), 1381-1394. DOI: 10.1007/s10499-013-9640-y
  • Emerenciano, M., Gaxiola, G., & Cuzon, G. (2013b). Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Matovic MD (ed.) Biomass Now -Cultivation and Utilization, pp. 301–328. InTech, Queen's University, Belfast, Canada.
  • FAO (2015). FAO Global Aquaculture Production statistics database updated to 2013: Summary information. Rome: Food and Agriculture Organization of the United Nations.
  • Fauji, H., Budiardi, T., & Ekasari, J. (2018). Growth performance and robustness of African Catfish Clarias gariepinus (Burchell) in biofloc‐based nursery production with different stocking densities. Aquaculture Research. 00, 1–8. DOI: 10.1111/are.13595
  • Furtado, P. S., Campos, B. R., Serra, F. P., Klosterhoff, M., Romano, L. A., & Wasielesky, W. (2015). Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeus vannamei, reared with biofloc technology (BFT). Aquaculture international, 23(1), 315-327. DOI: 10.1007/s10499-014-9817-z
  • Gaona, C. A. P., Almeida, M. S., Viau, V., Poersch, L. H., & Wasielesky, W. (2017). Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, 48(3), 1070-1079. DOI: 10.1111/are.12949
  • Gaona, C. A. P., Poersch, L. H., Krummenauer, D., Foes, G. K., & Wasielesky, W. J. (2011). The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. International Journal of Recirculating Aquaculture, 12(1).
  • Hargreaves, J. A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquacultural engineering, 34(3), 344-363. DOI: 10.1016/j.aquaeng.2005.08.009
  • Hargreaves, J. A. (2013). Biofloc production systems for aquaculture. Southern Regional Aquaculture Center.
  • Krummenauer, D., Peixoto, S., Cavalli, R. O., Poersch, L. H., & Wasielesky, W. (2011). Superintensive culture of white shrimp, Litopenaeus vannamei, in a biofloc technology system in southern Brazil at different stocking densities. Journal of the World Aquaculture Society, 42(5), 726-733.
  • Kuhn, D. D., Lawrence, A. L., Boardman, G. D., Patnaik, S., Marsh, L., & Flick, G. J. (2010). Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 303(1), 28-33. DOI: 10.1016/j.aquaculture.2010.03.001
  • Long, L., Yang, J., Li, Y., Guan, C., & Wu, F. (2015). Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture, 448, 135-141. DOI: 10.1016/j.aquaculture.2015.05.017
  • Luo, G. Z., Avnimelech, Y., Pan, Y. F., & Tan, H. X. (2013). Inorganic nitrogen dynamics in sequencing batch reactors using biofloc technology to treat aquaculture sludge. Aquacultural Engineering, 52, 73-79. DOI: 10.1016/j.aquaeng.2012.09.003
  • Mansour, A. T., & Esteban, M. Á. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish & shellfish immunology, 64, 202-209. DOI: 10.1016/j.fsi.2017.03.025
  • Megahed, M. E. (2010). The effect of microbial biofloc on water quality, survival and growth of the green tiger shrimp (Penaeus semisulcatus) fed with different crude protein levels. Journal of the Arabian Aquaculture Society, 5(2), 119-142.
  • Mishra, J. K., Samocha, T. M., Patnaik, S., Speed, M., Gandy, R. L., & Ali, A. M. (2008). Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquacultural Engineering, 38(1), 2-15. DOI: 10.1016/j.aquaeng.2007.10.003
  • Moreno-Arias, A., López-Elías, J. A., Martínez-Córdova, L. R., Ramírez-Suárez, J. C., Carvallo-Ruiz, M. G., García-Sánchez, G., Lugo-Sánchez, M. E., & Miranda-Baeza, A. (2018). Effect of fishmeal replacement with a vegetable protein mixture on the amino acid and fatty acid profiles of diets, biofloc and shrimp cultured in BFT system. Aquaculture, 483, 53-62. DOI: 10.1016/j.aquaculture.2017.10.011
  • Najdegerami, E. H., Bakhshi, F., & Lakani, F. B. (2016). Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish physiology and biochemistry, 42(2), 457-465.
  • Peixoto, S., Silva, E., Costa, C. B., Nery, R. C., Rodrigues, F., Silva, J. F., Bezerra, R., & Soares, R. (2018). Effect of feeding frequency on growth and enzymatic activity of Litopenaeus vannamei during nursery phase in biofloc system. Aquaculture Nutrition, 24(1), 579-585. DOI: 10.1016/j.aquaculture.2017.10.011
  • Ray, A. J., Dillon, K. S., & Lotz, J. M. (2011). Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquacultural Engineering, 45(3), 127-136. DOI: 10.1016/j.aquaeng.2011.09.001
  • Samocha, TM., Patnaik, S., Speed, M., Ali, AM., Burger, JM., Almeida, RV., Ayub, Z., Samocha, T. M., Patnaik, S., Speed, M., Ali, A. M., Burger, J. M., Almeida, R. V., & Brock, D. L. (2007). Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36(2), 184-191. DOI: 10.1016/j.aquaeng.2006.10.004
  • Schveitzer, R., Arantes, R., Costódio, P. F. S., do Espírito Santo, C. M., Arana, L. V., Seiffert, W. Q., & Andreatta, E. R. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, 59-70. DOI: 10.1016/j.aquaeng.2013.04.006
  • Silva, K. R., Wasielesky, W., & Abreu, P. C. (2013). Nitrogen and phosphorus dynamics in the biofloc production of the pacific white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 44(1), 30-41.
  • Souza, D. M., Suita, S. M., Romano, L. A., Wasielesky, W., & Ballester, E. L. C. (2014). Use of molasses as a carbon source during the nursery rearing of Farfantepenaeus brasiliensis (Latreille, 1817) in a Biofloc technology system. Aquaculture Research, 45(2), 270-277. DOI: 10.1111/j.1365-2109.2012.03223.x
  • Xu, W. J., Pan, L. Q., Sun, X. H., & Huang, J. (2013). Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero‐water exchange culture tanks. Aquaculture Research, 44(7), 1093-1102. DOI: 10.1111/j.1365-2109.2012.03115.x
  • Xu, W. J., & Pan, L. Q. (2013). Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture, 412, 117-124. DOI: 10.1016/j.aquaculture.2013.07.017
  • Zhao, P., Huang, J., Wang, X. H., Song, X. L., Yang, C. H., Zhang, X. G., & Wang, G. C. (2012). The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus. Aquaculture, 354, 97-106. DOI: 10.1016/j.aquaculture.2012.03.034
There are 49 citations in total.

Details

Primary Language Turkish
Journal Section Review
Authors

Doğukan Kaya 0000-0002-8832-5496

Ercüment Genç 0000-0001-7474-2208

Publication Date June 15, 2018
Submission Date February 8, 2018
Published in Issue Year 2018Volume: 35 Issue: 2

Cite

APA Kaya, D., & Genç, E. (2018). Su ürünleri yetiştiriciliğinde biyoyumak teknolojisi. Ege Journal of Fisheries and Aquatic Sciences, 35(2), 219-225. https://doi.org/10.12714/egejfas.2018.35.2.16