Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Antifouling bakır pritiyonun midye (Mytilus galloprovincialis)’de toplam hemosit sayıları üzerine etkilerinin belirlenmesi

Year 2018, Volume 35, Issue 1, 15 - 17, 15.03.2018
https://doi.org/10.12714/egejfas.2018.35.1.03

Abstract

Bu çalışmada, 24 ve 96 saat süre ile 10 ve 30 µg/L subletal bakır pritiyona (CuPT) maruz kalan denizel kirliliğin indikatör canlılarından kara midyelerin  (Mytilus galloprovincialis) total hemosit sayıları üzerindeki etkisi incelenmiştir.Yapılan mikroskobik sayımlar sonunda  Bakır pritiyona maruz kalan midyelerde toplam hemosit sayıları kontrol grubuna göre azalmıştır. Toplam hemosit sayısı (THS) sağlık göstergesi ve stres indikatörü olan bir parametredir.

References

  • Auffret, M., Rousseau, S., Boutet, I., Tanguy, A., Baron, J., Moraga, D. & Duchemin, M., 2006. A multiparametric approach for monitoring immunotoxic responses in mussels from contaminated sites in Western Mediterranea. Ecotoxicology and Environmental Safety 63, 393–405.
  • Bao, V.W.W., Lui, G.C.S. & Leung, M.Y. (2014). Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to marine copepod Tigriopus japonicus. Aquatic Toxicology. 157, 81-93.
  • Brousseau, P., Pellerin, J., Morin, Y., Cyr, D., Blakley, B., Boermans, H. & Fournier, M. (2000). Flow cytometry as a tool to monitor the disturbance of phagocytosis in the clam Mya arenaria hemocytes following in vitro exposure to heavy metals. Toxicology 142, 145–156.
  • Chandurvelan, R., Marsden, I.D., Gaw, S., Chris N. & Glover, C.N. (2013) Waterborne cadmium impacts immunocytotoxic and cytogenotoxic endpoints in green-lipped mussel, Perna canaliculus Aquatic Toxicology 142– 143: 283– 293.
  • Cheng, T.C. (1988). In vivo effects of heavy metals on cellular defense mechanisms of Crassostrea virginica: total and differential haemocyte counts. Journal of Invertebrate Pathology 51, 207–214.
  • Chora, S., Starita-Geribaldi, M., Guigonis, J.-M., Samson, M., Romeo, M. & Bebianno, M.J. (2009). Effect of cadmium in the clam Ruditapes decussatus assessed by proteomic analysis. Aquatic Toxicology 94, 300–308.
  • Cima F, Martin MG, Matozzo V, DaRos L. & Ballarin, L. (1999). Biomarkers for TBT immunotoxicity studies and the cultivatedclam Tapes philippinarum (Adams and Reeve,1850). Mar Pollut Bull 39:112–115.
  • Dyrynda, E.A., Pipe, R.K. & Ratcliffe, N.A. (1997a). Sub-populations of haemocytes in the adult and developing marine mussel, Mytilus edulis, identified by use of monoclonal antibodies. Cell and Tissue Research 289, 527–536.
  • Dyrynda, E.A., Pipe, R.K., Burt, G.R. & Ratcliffe, N.A. (1997b). Modulations in the immune defences of mussels (Mytilus edulis) from contaminated sites in the UK. Aquatic Toxicology 42, 169–185.
  • Gatidou, G.; Thomaidis, N.S. & Zhou, J.L. (2007). Fate of Irgarol 1051, Diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints. Environ. Int. 33, 70– 77.
  • Le Moullac, G. & Haffner, P. (2000). Environmental factors affecting immune responses in Crustacea. Aquaculture 191, pp. 121–131.
  • Olabarrieta, I., L’Azou, B., Yuric, S., Cambar, J. & Cajaraville, M.P. (2001). In vitro effects of cadmium on two different animal cell models. Toxicology in Vitro 15, 511–517.
  • Pipe, R.K. (1992). Generation of reactive oxygen metabolites by the haemocytes of the mussel Mytilus edulis. Developmental and Comparative Immunology 16, 111–122.
  • Pipe, R.K. & Coles, J.A. (1995). Environmental contaminants influencing immune function in marine bivalve molluscs. Fish and Shellfish Immunology 5, 581–595.
  • Turley, P.A., Fenn, R.J. & Ritter, J.C. (2000). Pyrithiones as antifoulants: environmentalchemistry and preliminary risk assessment. Biofouling 15, 175–182.
  • Turley, P.A., Fenn, R.J., Ritter, J.C. & Callow, M.E., (2005). Pyrithione as antifoulants:environmental fate and loss of toxicity. Biofouling 21, 31–40.
  • Yebra, D,M., Kiil, S. & Dam-Johansen., K. (2004). Antifouling technology past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat., 50, 75– 104.

Determination of the effects of antifouling copper pyrithione on total hemocyte counts of mussel (Mytilus galloprovincialis)

Year 2018, Volume 35, Issue 1, 15 - 17, 15.03.2018
https://doi.org/10.12714/egejfas.2018.35.1.03

Abstract

In the present study, total hemocyte counts of Mytilus galloprovincialis (Black mussel), indicator species for marine pollution, was investigated after exposed to 10 and 30 µg/L sublethal CuPT for 24 and 96 hours. The total hemocyte counts were significantly decreased at group exposed to CuPT for control group. Total hemocyte counts are good biomarker for determining the effects of antifouling agents and other contaminants to the marine ecosystems.

References

  • Auffret, M., Rousseau, S., Boutet, I., Tanguy, A., Baron, J., Moraga, D. & Duchemin, M., 2006. A multiparametric approach for monitoring immunotoxic responses in mussels from contaminated sites in Western Mediterranea. Ecotoxicology and Environmental Safety 63, 393–405.
  • Bao, V.W.W., Lui, G.C.S. & Leung, M.Y. (2014). Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to marine copepod Tigriopus japonicus. Aquatic Toxicology. 157, 81-93.
  • Brousseau, P., Pellerin, J., Morin, Y., Cyr, D., Blakley, B., Boermans, H. & Fournier, M. (2000). Flow cytometry as a tool to monitor the disturbance of phagocytosis in the clam Mya arenaria hemocytes following in vitro exposure to heavy metals. Toxicology 142, 145–156.
  • Chandurvelan, R., Marsden, I.D., Gaw, S., Chris N. & Glover, C.N. (2013) Waterborne cadmium impacts immunocytotoxic and cytogenotoxic endpoints in green-lipped mussel, Perna canaliculus Aquatic Toxicology 142– 143: 283– 293.
  • Cheng, T.C. (1988). In vivo effects of heavy metals on cellular defense mechanisms of Crassostrea virginica: total and differential haemocyte counts. Journal of Invertebrate Pathology 51, 207–214.
  • Chora, S., Starita-Geribaldi, M., Guigonis, J.-M., Samson, M., Romeo, M. & Bebianno, M.J. (2009). Effect of cadmium in the clam Ruditapes decussatus assessed by proteomic analysis. Aquatic Toxicology 94, 300–308.
  • Cima F, Martin MG, Matozzo V, DaRos L. & Ballarin, L. (1999). Biomarkers for TBT immunotoxicity studies and the cultivatedclam Tapes philippinarum (Adams and Reeve,1850). Mar Pollut Bull 39:112–115.
  • Dyrynda, E.A., Pipe, R.K. & Ratcliffe, N.A. (1997a). Sub-populations of haemocytes in the adult and developing marine mussel, Mytilus edulis, identified by use of monoclonal antibodies. Cell and Tissue Research 289, 527–536.
  • Dyrynda, E.A., Pipe, R.K., Burt, G.R. & Ratcliffe, N.A. (1997b). Modulations in the immune defences of mussels (Mytilus edulis) from contaminated sites in the UK. Aquatic Toxicology 42, 169–185.
  • Gatidou, G.; Thomaidis, N.S. & Zhou, J.L. (2007). Fate of Irgarol 1051, Diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints. Environ. Int. 33, 70– 77.
  • Le Moullac, G. & Haffner, P. (2000). Environmental factors affecting immune responses in Crustacea. Aquaculture 191, pp. 121–131.
  • Olabarrieta, I., L’Azou, B., Yuric, S., Cambar, J. & Cajaraville, M.P. (2001). In vitro effects of cadmium on two different animal cell models. Toxicology in Vitro 15, 511–517.
  • Pipe, R.K. (1992). Generation of reactive oxygen metabolites by the haemocytes of the mussel Mytilus edulis. Developmental and Comparative Immunology 16, 111–122.
  • Pipe, R.K. & Coles, J.A. (1995). Environmental contaminants influencing immune function in marine bivalve molluscs. Fish and Shellfish Immunology 5, 581–595.
  • Turley, P.A., Fenn, R.J. & Ritter, J.C. (2000). Pyrithiones as antifoulants: environmentalchemistry and preliminary risk assessment. Biofouling 15, 175–182.
  • Turley, P.A., Fenn, R.J., Ritter, J.C. & Callow, M.E., (2005). Pyrithione as antifoulants:environmental fate and loss of toxicity. Biofouling 21, 31–40.
  • Yebra, D,M., Kiil, S. & Dam-Johansen., K. (2004). Antifouling technology past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat., 50, 75– 104.

Details

Primary Language Turkish
Subjects Science
Journal Section Articles
Authors

A. Çağlan GÜNAL
GAZİ ÜNİVERSİTESİ, FEN BİLİMLERİ ENSTİTÜSÜ, ÇEVRE BİLİMLERİ (DR)
0000-0002-9072-543X
Türkiye


Selma KATALAY (Primary Author)
0000-0001-7024-5730
Türkiye


Belda ERKMEN
Aksaray Üniversitesi, Fen Edebiyat Fakültesi, Biyoloji Bölümü, Ankara, Türkiye
0000-0003-2841-0928
Türkiye


Melike Merve AYHAN
MANİSA CELÂL BAYAR ÜNİVERSİTESİ, FEN-EDEBİYAT FAKÜLTESİ, BİYOLOJİ BÖLÜMÜ
0000-0002-3696-486X
Türkiye


Göktuğ Gül This is me
Gazi Üniversitesi, Sağlık Hizmetleri Meslek Yüksekokulu, Ankara, Türkiye
0000-0003-1925-0803
Türkiye


Figen ERKOÇ
Gazi Üniversitesi, Eğitim Fakültesi, Ortaöğretim Fen ve Matematik Alanlar Eğitimi Biyoloji Eğitimi, Ankara
0000-0003-0658-2243
Türkiye

Publication Date March 15, 2018
Application Date July 3, 2017
Acceptance Date December 5, 2017
Published in Issue Year 2018, Volume 35, Issue 1

Cite

APA Günal, A. Ç. , Katalay, S. , Erkmen, B. , Ayhan, M. M. , Gül, G. & Erkoç, F. (2018). Antifouling bakır pritiyonun midye (Mytilus galloprovincialis)’de toplam hemosit sayıları üzerine etkilerinin belirlenmesi . Ege Journal of Fisheries and Aquatic Sciences , 35 (1) , 15-17 . DOI: 10.12714/egejfas.2018.35.1.03