Research Article
BibTex RIS Cite

Antifouling bakır pritiyonun midye (Mytilus galloprovincialis)’de toplam hemosit sayıları üzerine etkilerinin belirlenmesi

Year 2018, Volume: 35 Issue: 1, 15 - 17, 15.03.2018
https://doi.org/10.12714/egejfas.2018.35.1.03

Abstract



Bu çalışmada, 24 ve 96 saat süre ile 10 ve 30 µg/L
subletal bakır pritiyona (CuPT) maruz kalan denizel kirliliğin indikatör
canlılarından kara midyelerin  (Mytilus
galloprovinciali
s) total hemosit sayıları üzerindeki etkisi incelenmiştir.Yapılan
mikroskobik sayımlar sonunda  Bakır pritiyona
maruz kalan midyelerde toplam hemosit sayıları kontrol grubuna göre azalmıştır.
Toplam hemosit sayısı (THS) sağlık göstergesi ve stres indikatörü olan bir
parametredir.



References

  • Auffret, M., Rousseau, S., Boutet, I., Tanguy, A., Baron, J., Moraga, D. & Duchemin, M., 2006. A multiparametric approach for monitoring immunotoxic responses in mussels from contaminated sites in Western Mediterranea. Ecotoxicology and Environmental Safety 63, 393–405.
  • Bao, V.W.W., Lui, G.C.S. & Leung, M.Y. (2014). Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to marine copepod Tigriopus japonicus. Aquatic Toxicology. 157, 81-93.
  • Brousseau, P., Pellerin, J., Morin, Y., Cyr, D., Blakley, B., Boermans, H. & Fournier, M. (2000). Flow cytometry as a tool to monitor the disturbance of phagocytosis in the clam Mya arenaria hemocytes following in vitro exposure to heavy metals. Toxicology 142, 145–156.
  • Chandurvelan, R., Marsden, I.D., Gaw, S., Chris N. & Glover, C.N. (2013) Waterborne cadmium impacts immunocytotoxic and cytogenotoxic endpoints in green-lipped mussel, Perna canaliculus Aquatic Toxicology 142– 143: 283– 293.
  • Cheng, T.C. (1988). In vivo effects of heavy metals on cellular defense mechanisms of Crassostrea virginica: total and differential haemocyte counts. Journal of Invertebrate Pathology 51, 207–214.
  • Chora, S., Starita-Geribaldi, M., Guigonis, J.-M., Samson, M., Romeo, M. & Bebianno, M.J. (2009). Effect of cadmium in the clam Ruditapes decussatus assessed by proteomic analysis. Aquatic Toxicology 94, 300–308.
  • Cima F, Martin MG, Matozzo V, DaRos L. & Ballarin, L. (1999). Biomarkers for TBT immunotoxicity studies and the cultivatedclam Tapes philippinarum (Adams and Reeve,1850). Mar Pollut Bull 39:112–115.
  • Dyrynda, E.A., Pipe, R.K. & Ratcliffe, N.A. (1997a). Sub-populations of haemocytes in the adult and developing marine mussel, Mytilus edulis, identified by use of monoclonal antibodies. Cell and Tissue Research 289, 527–536.
  • Dyrynda, E.A., Pipe, R.K., Burt, G.R. & Ratcliffe, N.A. (1997b). Modulations in the immune defences of mussels (Mytilus edulis) from contaminated sites in the UK. Aquatic Toxicology 42, 169–185.
  • Gatidou, G.; Thomaidis, N.S. & Zhou, J.L. (2007). Fate of Irgarol 1051, Diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints. Environ. Int. 33, 70– 77.
  • Le Moullac, G. & Haffner, P. (2000). Environmental factors affecting immune responses in Crustacea. Aquaculture 191, pp. 121–131.
  • Olabarrieta, I., L’Azou, B., Yuric, S., Cambar, J. & Cajaraville, M.P. (2001). In vitro effects of cadmium on two different animal cell models. Toxicology in Vitro 15, 511–517.
  • Pipe, R.K. (1992). Generation of reactive oxygen metabolites by the haemocytes of the mussel Mytilus edulis. Developmental and Comparative Immunology 16, 111–122.
  • Pipe, R.K. & Coles, J.A. (1995). Environmental contaminants influencing immune function in marine bivalve molluscs. Fish and Shellfish Immunology 5, 581–595.
  • Turley, P.A., Fenn, R.J. & Ritter, J.C. (2000). Pyrithiones as antifoulants: environmentalchemistry and preliminary risk assessment. Biofouling 15, 175–182.
  • Turley, P.A., Fenn, R.J., Ritter, J.C. & Callow, M.E., (2005). Pyrithione as antifoulants:environmental fate and loss of toxicity. Biofouling 21, 31–40.
  • Yebra, D,M., Kiil, S. & Dam-Johansen., K. (2004). Antifouling technology past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat., 50, 75– 104.

Determination of the effects of antifouling copper pyrithione on total hemocyte counts of mussel (Mytilus galloprovincialis)

Year 2018, Volume: 35 Issue: 1, 15 - 17, 15.03.2018
https://doi.org/10.12714/egejfas.2018.35.1.03

Abstract



In the present study, total hemocyte
counts of Mytilus galloprovincialis (Black mussel), indicator species
for marine pollution, was investigated after exposed to 10 and 30 µg/L
sublethal CuPT for 24 and 96 hours. The total hemocyte counts were
significantly decreased at group exposed to CuPT for control group. Total
hemocyte counts are good biomarker for determining the effects of antifouling
agents and other contaminants to the marine ecosystems
.



References

  • Auffret, M., Rousseau, S., Boutet, I., Tanguy, A., Baron, J., Moraga, D. & Duchemin, M., 2006. A multiparametric approach for monitoring immunotoxic responses in mussels from contaminated sites in Western Mediterranea. Ecotoxicology and Environmental Safety 63, 393–405.
  • Bao, V.W.W., Lui, G.C.S. & Leung, M.Y. (2014). Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to marine copepod Tigriopus japonicus. Aquatic Toxicology. 157, 81-93.
  • Brousseau, P., Pellerin, J., Morin, Y., Cyr, D., Blakley, B., Boermans, H. & Fournier, M. (2000). Flow cytometry as a tool to monitor the disturbance of phagocytosis in the clam Mya arenaria hemocytes following in vitro exposure to heavy metals. Toxicology 142, 145–156.
  • Chandurvelan, R., Marsden, I.D., Gaw, S., Chris N. & Glover, C.N. (2013) Waterborne cadmium impacts immunocytotoxic and cytogenotoxic endpoints in green-lipped mussel, Perna canaliculus Aquatic Toxicology 142– 143: 283– 293.
  • Cheng, T.C. (1988). In vivo effects of heavy metals on cellular defense mechanisms of Crassostrea virginica: total and differential haemocyte counts. Journal of Invertebrate Pathology 51, 207–214.
  • Chora, S., Starita-Geribaldi, M., Guigonis, J.-M., Samson, M., Romeo, M. & Bebianno, M.J. (2009). Effect of cadmium in the clam Ruditapes decussatus assessed by proteomic analysis. Aquatic Toxicology 94, 300–308.
  • Cima F, Martin MG, Matozzo V, DaRos L. & Ballarin, L. (1999). Biomarkers for TBT immunotoxicity studies and the cultivatedclam Tapes philippinarum (Adams and Reeve,1850). Mar Pollut Bull 39:112–115.
  • Dyrynda, E.A., Pipe, R.K. & Ratcliffe, N.A. (1997a). Sub-populations of haemocytes in the adult and developing marine mussel, Mytilus edulis, identified by use of monoclonal antibodies. Cell and Tissue Research 289, 527–536.
  • Dyrynda, E.A., Pipe, R.K., Burt, G.R. & Ratcliffe, N.A. (1997b). Modulations in the immune defences of mussels (Mytilus edulis) from contaminated sites in the UK. Aquatic Toxicology 42, 169–185.
  • Gatidou, G.; Thomaidis, N.S. & Zhou, J.L. (2007). Fate of Irgarol 1051, Diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints. Environ. Int. 33, 70– 77.
  • Le Moullac, G. & Haffner, P. (2000). Environmental factors affecting immune responses in Crustacea. Aquaculture 191, pp. 121–131.
  • Olabarrieta, I., L’Azou, B., Yuric, S., Cambar, J. & Cajaraville, M.P. (2001). In vitro effects of cadmium on two different animal cell models. Toxicology in Vitro 15, 511–517.
  • Pipe, R.K. (1992). Generation of reactive oxygen metabolites by the haemocytes of the mussel Mytilus edulis. Developmental and Comparative Immunology 16, 111–122.
  • Pipe, R.K. & Coles, J.A. (1995). Environmental contaminants influencing immune function in marine bivalve molluscs. Fish and Shellfish Immunology 5, 581–595.
  • Turley, P.A., Fenn, R.J. & Ritter, J.C. (2000). Pyrithiones as antifoulants: environmentalchemistry and preliminary risk assessment. Biofouling 15, 175–182.
  • Turley, P.A., Fenn, R.J., Ritter, J.C. & Callow, M.E., (2005). Pyrithione as antifoulants:environmental fate and loss of toxicity. Biofouling 21, 31–40.
  • Yebra, D,M., Kiil, S. & Dam-Johansen., K. (2004). Antifouling technology past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat., 50, 75– 104.

Details

Primary Language Turkish
Journal Section Articles
Authors

A. Çağlan GÜNAL 0000-0002-9072-543X

Selma KATALAY 0000-0001-7024-5730

Belda ERKMEN 0000-0003-2841-0928

Melike Merve AYHAN 0000-0002-3696-486X

Göktuğ Gül 0000-0003-1925-0803

Figen ERKOÇ 0000-0003-0658-2243

Publication Date March 15, 2018
Submission Date July 3, 2017
Published in Issue Year 2018Volume: 35 Issue: 1

Cite

APA GÜNAL, A. Ç., KATALAY, S., ERKMEN, B., AYHAN, M. M., et al. (2018). Antifouling bakır pritiyonun midye (Mytilus galloprovincialis)’de toplam hemosit sayıları üzerine etkilerinin belirlenmesi. Ege Journal of Fisheries and Aquatic Sciences, 35(1), 15-17. https://doi.org/10.12714/egejfas.2018.35.1.03