Bazı deniz mikroalglerinin (Nannochloropsis oculata, Tetraselmis chuii ve Dunaliella salina) kültüründe tuzluluk konsantrasyonunun büyüme ve pigment yapısına etkisinin araştırılması
Year 2017,
Volume: 34 Issue: 1, 75 - 80, 21.02.2017
Bu çalışmada; Nannochloropsis oculata, Tetraselmis chuii ve Dunaliella salina türlerinin farklı
tuzluluk değerlerinde büyümesi ve optimum tuzluluk değerinin belirlenmesi
amaçlanmıştır. Kültürler, F/2 ortamında, balonlarda, pH 8’de, kültür sıcaklığı
22±2ºC ve üçer tekrarlı olarak yapıldı. Farklı tuzluluk değerlerinde en yüksek
hücre yoğunluğu Nannochloropsis oculata
türünde ‰20 ile ‰30 arasında, Tetraselmis
chuii türü için en yüksek hücre sayısı ise ‰30 ile ‰ 40 arasında elde
edilmiştir. Dunaliella salina
mikroalg türü için ‰ 40 tuzluluk konsantrasyonunda en yüksek hücre sayısı elde edilmiştir.
Alsull, M. & Wan Omar, W. M. (2012). Responses of Tetraselmis sp. and Nannochloropsis sp. Isolated from Penang National Park Coastal Waters, Malaysia, to the Combined Influences of Salinity, Light and Nitrogen Limitation, International Conference on Chemical, Ecology and Environmental Sciences, Bangkok.
Asulabh K.S., Supriya, G. & Ramachandra, T.V. (2012) Effect of Salinity Concentrations on Growth Rate and Lipid Concentration in Microcystis Sp., Chlorococcum sp. and Chaetoceros sp., LAKE: National Conference on Conservation and Management of Wetland Ecosystems, School of Environmental Sciences Mahatma Gandhi University, Kottayam, Kerala.
Bartley, M., Boeing, W. J., Corcoran, A. A., Holguin, F. O. & Schaub, T. (2013). Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass and Bioenergy 54: 83-88. doi: 10.1016/j.biombioe.2013.03.026
Ben-Amotz, A. & Avron, M. (1983). On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiology 72: 593–597. doi: 10.1104/pp.72.3.593
Ben-Amotz, A. & Shaish, A. (1992). Carotene bio-synthesis. In: Avron, M., Ben-Amotz, A. (Eds.), Dunaliella: Physiology, Biochemistry and Biotechnology. CRC Press, (206–216pp) Boca Raton, FL.
Borowitzka, M.A. & Borowitzka, L.J. (1992). Microalgal biotechnology, Cambridge University press, Vol :1, (477pp).Cambridge.
Brown, M.R., Jeffrey, S.W. & Garland, C.D. (1989). Nutritional aspects of microalgae used in mariculture: a literature review. CSIRO Marine Laboratory Representative 205, 44.
Coutteau, P., (1996). Micro-algae. In: Lavens, P. & Sorgeloos, P. (Eds.). Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper 361. FAO, Rome, 7-48.
Çelekli, A. & Dönmez, G. (2001). Effect of pH and Salt Concentrations on Growth and β-carotene Accumulation by Dunaliella sp. (in Turkish with English abstract) Ege Journal of Fisheries and Aquatic Sciences, 1. Algae Technology Sym, 18: 79-86.
Dudu, Evren, Ü., Kanlıtepe, Ç., Çıracı, C. & Dönmez, G. (2001). The Determination of Glycerol Production in Dunaliella spp. Isolated from Lake Tuz (Konya-Turkey). (in Turkish with English abstract) Ege Journal of Fisheries and Aquatic Sciences, 1. Algae Technology Sym, 18: 225-232.
Durmaz, Y. & Gökpınar, Ş. (2006) Effects of salinity concentrations on growth Dunaliella salina (Dunal) Teodoresco (Chlorophyceae). (in Turkish with English abstract) Ege Journal of Fisheries and Aquatic Sciences 23 (1-2): 121-124.
Goyal, A. (2007). Osmoregulation in Dunaliella, Part II: Photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta, Plant Physiology and Biochemistry 45: 705-710. doi: 10.1016/j.plaphy.2007.05.009
Gökpınar, Ş., (1983). Observations on the culture of a marine diyatom Phaeodactylum tricornitum bohlinin different nutrient and salinity concentration. Ege Journal of Fisheries and Aquatic Sciences, 6: 77-86.
Guillard, R. R. (1975). Culture of phytoplankton for feeding marine invertebrates, In culture of marine invertebrate animals, (29-60 pp), Springer US.
Lourenco, S., Barbarino, E., Mancini-Filho, J., Schinke, K. & Aidar, E. (2002). Effect of different nitrojen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: An evaluation for aquaculture, Phycology 12: 249-255.
Owens, T.G., Gallagher, J.C. & Alberte, R.S. (1987) Photosynthetic light-harvesting function of viyolaxanthin in Nannochloropsis spp. Eustigmatophyceae, Journal of Phycology 23: 79-85pp.
Özdamar, K., (2004). Programs and Statistical Data Analysis, (in Turkish) I. Kaan Press, 649s, Eskişehir.
Sanchez, M.D., Mantell, C., Rodriguez, M., Martinez de la Ossa, E., Lubian, L.M. & Montero, O. (2005). Supercritical fluid extraction of carotenoids and chlorophyl a, Journal of Food Engineering 66:245-251pp.
Schneider, J. & Roessler, P. (1994). Radilabeling studies of lipids and fatty acids in Nannochloropsis (Eustigmatophyceae) an oleaginous marine alga, Journal of Phycology 30, 594-598pp.
Sukenik, A., Carmeli, Y. & Berner, T. (1989). Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp., 1. Journal of Phycology, 25(4): 686-692. doi: 10.1111/j.0022-3646.1989.00686.x
Sukenik, A., Zmora, O. & Carmeli, Y. (1993) Biochemical quality of marine unicellular algae with special emphasis on lipit composition: II. Nannochloropsis sp., Aquaculture, 117: 313-326. doi: 10.1016/0044-8486(93)90328-V
Utting, S.D. (1985). Influance of nitrogen availability on the biochemical composition of three unicelluar marine algae of commercial importance. Aquaculture Enginering 4: 175-190. doi: 10.1016/0144-8609(85)90012-3
Vonshak, A. (Ed.) (1997). Spirulina platensis arthrospira: physiology, cell-biology and biotechnology, CRC Press.
Vonshak, A. & Tomaselli, L. (2000). Arthrospira (Spirulina): systematics and ecophysiology. In. The ecology of Cyanobacteria, B.A. Whitton and M. Potts (Eds), (505-22pp), Kluwer Academic Publishers, The Netherlands.
Zhang, T., Gong, H., Wen, X. & Lu, C. (2010). Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis. Journal of Plant Physiology, 167: 951-958. doi: 10.1016/j.jplph.2009.12.020
Zou, N. & Richmond, A. (2000). Light-path length and population density in photoacclimation, Journal of Applied Phycology 12:349-354. doi: 10.1023/A:1008151004317
Investigation of the effect of salinity concentration on growth and pigment composition on the some marine microalgae (Nannochloropsis oculata, Tetraselmis chuisi and Dunaliella salina)
Year 2017,
Volume: 34 Issue: 1, 75 - 80, 21.02.2017
In this study, it
has aimed that Nannochloropsis oculata, Tetraselmis chuii, and Dunaliella salina microalgae species
were examined effects on growth in different salinity and to determine the
optimum salinity concentration for the culture. Cultures were growth in flask
enriched with F/2 medium arranged to be pH 8 as culture temperature to be
22±2ºC and were performed in triplicate. In different salinity concentration,
the highest cell density for Nannochloropsis
oculata was obtained at ‰20 between ‰30 concentrations of salinity, for Tetraselmis chuii the highest cell
density was determined at ‰30 and ‰40 concentrations of salinity. For Dunaliella salina microalga, the highest
cell density was obtained at ‰40 concentrations of salinity.
Alsull, M. & Wan Omar, W. M. (2012). Responses of Tetraselmis sp. and Nannochloropsis sp. Isolated from Penang National Park Coastal Waters, Malaysia, to the Combined Influences of Salinity, Light and Nitrogen Limitation, International Conference on Chemical, Ecology and Environmental Sciences, Bangkok.
Asulabh K.S., Supriya, G. & Ramachandra, T.V. (2012) Effect of Salinity Concentrations on Growth Rate and Lipid Concentration in Microcystis Sp., Chlorococcum sp. and Chaetoceros sp., LAKE: National Conference on Conservation and Management of Wetland Ecosystems, School of Environmental Sciences Mahatma Gandhi University, Kottayam, Kerala.
Bartley, M., Boeing, W. J., Corcoran, A. A., Holguin, F. O. & Schaub, T. (2013). Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass and Bioenergy 54: 83-88. doi: 10.1016/j.biombioe.2013.03.026
Ben-Amotz, A. & Avron, M. (1983). On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiology 72: 593–597. doi: 10.1104/pp.72.3.593
Ben-Amotz, A. & Shaish, A. (1992). Carotene bio-synthesis. In: Avron, M., Ben-Amotz, A. (Eds.), Dunaliella: Physiology, Biochemistry and Biotechnology. CRC Press, (206–216pp) Boca Raton, FL.
Borowitzka, M.A. & Borowitzka, L.J. (1992). Microalgal biotechnology, Cambridge University press, Vol :1, (477pp).Cambridge.
Brown, M.R., Jeffrey, S.W. & Garland, C.D. (1989). Nutritional aspects of microalgae used in mariculture: a literature review. CSIRO Marine Laboratory Representative 205, 44.
Coutteau, P., (1996). Micro-algae. In: Lavens, P. & Sorgeloos, P. (Eds.). Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper 361. FAO, Rome, 7-48.
Çelekli, A. & Dönmez, G. (2001). Effect of pH and Salt Concentrations on Growth and β-carotene Accumulation by Dunaliella sp. (in Turkish with English abstract) Ege Journal of Fisheries and Aquatic Sciences, 1. Algae Technology Sym, 18: 79-86.
Dudu, Evren, Ü., Kanlıtepe, Ç., Çıracı, C. & Dönmez, G. (2001). The Determination of Glycerol Production in Dunaliella spp. Isolated from Lake Tuz (Konya-Turkey). (in Turkish with English abstract) Ege Journal of Fisheries and Aquatic Sciences, 1. Algae Technology Sym, 18: 225-232.
Durmaz, Y. & Gökpınar, Ş. (2006) Effects of salinity concentrations on growth Dunaliella salina (Dunal) Teodoresco (Chlorophyceae). (in Turkish with English abstract) Ege Journal of Fisheries and Aquatic Sciences 23 (1-2): 121-124.
Goyal, A. (2007). Osmoregulation in Dunaliella, Part II: Photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta, Plant Physiology and Biochemistry 45: 705-710. doi: 10.1016/j.plaphy.2007.05.009
Gökpınar, Ş., (1983). Observations on the culture of a marine diyatom Phaeodactylum tricornitum bohlinin different nutrient and salinity concentration. Ege Journal of Fisheries and Aquatic Sciences, 6: 77-86.
Guillard, R. R. (1975). Culture of phytoplankton for feeding marine invertebrates, In culture of marine invertebrate animals, (29-60 pp), Springer US.
Lourenco, S., Barbarino, E., Mancini-Filho, J., Schinke, K. & Aidar, E. (2002). Effect of different nitrojen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: An evaluation for aquaculture, Phycology 12: 249-255.
Owens, T.G., Gallagher, J.C. & Alberte, R.S. (1987) Photosynthetic light-harvesting function of viyolaxanthin in Nannochloropsis spp. Eustigmatophyceae, Journal of Phycology 23: 79-85pp.
Özdamar, K., (2004). Programs and Statistical Data Analysis, (in Turkish) I. Kaan Press, 649s, Eskişehir.
Sanchez, M.D., Mantell, C., Rodriguez, M., Martinez de la Ossa, E., Lubian, L.M. & Montero, O. (2005). Supercritical fluid extraction of carotenoids and chlorophyl a, Journal of Food Engineering 66:245-251pp.
Schneider, J. & Roessler, P. (1994). Radilabeling studies of lipids and fatty acids in Nannochloropsis (Eustigmatophyceae) an oleaginous marine alga, Journal of Phycology 30, 594-598pp.
Sukenik, A., Carmeli, Y. & Berner, T. (1989). Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp., 1. Journal of Phycology, 25(4): 686-692. doi: 10.1111/j.0022-3646.1989.00686.x
Sukenik, A., Zmora, O. & Carmeli, Y. (1993) Biochemical quality of marine unicellular algae with special emphasis on lipit composition: II. Nannochloropsis sp., Aquaculture, 117: 313-326. doi: 10.1016/0044-8486(93)90328-V
Utting, S.D. (1985). Influance of nitrogen availability on the biochemical composition of three unicelluar marine algae of commercial importance. Aquaculture Enginering 4: 175-190. doi: 10.1016/0144-8609(85)90012-3
Vonshak, A. (Ed.) (1997). Spirulina platensis arthrospira: physiology, cell-biology and biotechnology, CRC Press.
Vonshak, A. & Tomaselli, L. (2000). Arthrospira (Spirulina): systematics and ecophysiology. In. The ecology of Cyanobacteria, B.A. Whitton and M. Potts (Eds), (505-22pp), Kluwer Academic Publishers, The Netherlands.
Zhang, T., Gong, H., Wen, X. & Lu, C. (2010). Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis. Journal of Plant Physiology, 167: 951-958. doi: 10.1016/j.jplph.2009.12.020
Zou, N. & Richmond, A. (2000). Light-path length and population density in photoacclimation, Journal of Applied Phycology 12:349-354. doi: 10.1023/A:1008151004317
Durmaz, Y., & Pirinç, P. (2017). Investigation of the effect of salinity concentration on growth and pigment composition on the some marine microalgae (Nannochloropsis oculata, Tetraselmis chuisi and Dunaliella salina). Ege Journal of Fisheries and Aquatic Sciences, 34(1), 75-80. https://doi.org/10.12714/egejfas.2017.34.1.11