Year 2018, Volume 35 , Issue 4, Pages 387 - 396 2018-12-15

Serbest yüzme safhasına ulaşanOncorhynchus mykiss (Walbaum 1792) yavrularında açlık sonrası oksidatif stres ve antioksidan savunmalar
Oxidative stress and antioxidant defenses after starvation in Oncorhynchus mykiss (Walbaum 1792) larvae reached free swimming stage

Hatayi Zengin [1]


Bu çalışmada Oncorhynchus mykiss larvalarının açlıktan sonra oksidatif stres ve antioksidan enzim aktiviteleri çalışılmıştır. Yumurta kesesinin emilimiyle birlikte serbest yüzmeye geçen larvalar 21 gün boyunca aç bırakılmıştır. Balık örnekleri her hafta alınmış ve bütün vücutları, süperoksit dismutaz (SOD), katalaz (CAT), glutatyon peroksidaz (GSHpx), glutatyon redüktaz (GR), glutatyon S-transferaz (GST) analizi ve ayrıca malondialdehit (MDA) ve glutatyon (GSH) analizinde kullanılmıştır. 14 gün aç bırakılmış serbest yüzen yavrularda, analizi yapılan bütün antioksidan enzim aktiviteleri içerisinde, GST ve CAT en yüksek aktiviteye sahipken, SOD and GSHpx en düşük aktiviteye sahip olmuştur. 7 gün aç bırakılan larvalarda MDA’nın yüksek düzeyi ortaya çıkmadan önce SOD aktivitesi serbest yüzen yavrularda zirveye ulaşmıştır. MDA düzeyi 7 gün aç bırakılan larvalarda belirgin olarak daha yüksek ve 14 gün aç bırakılan larvalarda belirgin olarak daha düşük bulunmuştur. ΣPUFA ve Σn-3 yağ asidi, 7 gün aç bırakılan larvalarda en yüksek, 14 gün aç bırakılan larvalarda ise en düşük seviyeye sahip olmuştur. Serbest yüzen larvalardan sonra, aç bırakılan larvaların hepsinde E vitamini (α-tokoferol ve δ- tokoferol) seviyesinde belirgin bir azalma olmuştur.

Oxidative stress and antioxidant enzyme activities after starvation of Oncorhynchus mykiss larvae were studied. Just after yolk-sac absorption, free-swimming larvae were maintained under starved condition for a period of 21 days. Sampling of fish were carried out every week and their whole bodies were used for the analysis of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHpx), glutathione reductase (GR), glutathione S-transferase (GST) and also analysis of malondialdehyde (MDA) and glutathione (GSH). Antioxidant enzymes activities showed that GST and CAT had the highest activity, whilts SOD and GSHpx had the lowest activity of all the enzymes assayed in 14 day free swimming starved larvae. SOD activity were reached to the peak in free swimming larvae before the appearance of higher level of MDA in 7 day starved larvae. The level of MDA was significantly higher in 7 day starved larvae and significantly lower in 14 day starved larvae. ΣPUFA and Σn-3 fatty acid have the highest level in 7 day starved larvae and lowest level in 14 day starved larvae. After the free swimming larvae, there was a significant decrease in vitamin E (α-tocopherol and δ-tocopherol) level in all starved larvae.

  • Abi-Ayad, S., Boutiba, Z., Mélard, C., & Kestemont, P. (2004). Dynamics of Total Body Fatty Acids During Early Ontogeny of Pikeperch (Sander lucioperca) Larvae. Fish Physiology and Biochemistry, 30(2), 129-136. DOI: 10.1007/s10695-005-3417-9
  • Antonopoulou, E., Kentepozidou, E., Feidantsis, K., Roufidou, C., Despoti, S., & Chatzifotis, S. (2013). Starvation and re-feeding affect Hsp expression, MAPK activation and antioxidant enzymes activity of European Sea Bass (Dicentrarchus labrax). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 165(1), 79-88. DOI: 10.1016/j.cbpa.2013.02.019
  • Bae, J., Kim, D., Yoo, K., Kim, S., Lee, J., & Bai, S. C. (2010). Effects of Dietary Arachidonic Acid (20:4n-6) Levels on Growth Performance and Fatty Acid Composition of Juvenile Eel, Anguilla japonica. Asian-Australasian Journal of Animal Sciences, 23(4), 508-514. DOI: 10.5713/ajas.2010.90491
  • Beers, R.F., Sizer, I.W. (1952). Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. The Journal of Biological Chemistry, 195, 133–140. PMID: 14938361
  • Bell, J. G., Cowey, C. B., Adron, J. W., & Shanks, A. M. (1985). Some effects of vitamin E and selenium deprivation on tissue enzyme levels and indices of tissue peroxidation in rainbow trout (Salmo gairdneri). British Journal of Nutrition, 53(01), 149-157. DOI: 10.1079/bjn19850019
  • Cejas, J. R., Almansa, E., Jérez, S., Bolaños, A., Felipe, B., & Lorenzo, A. (2004). Changes in lipid class and fatty acid composition during development in white seabream (Diplodus sargus) eggs and larvae. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 139(2), 209-216. DOI: 10.1016/j.cbpc.2004.07.010
  • Choi, C. Y., An, K. W., & An, M. I. (2008). Molecular characterization and mRNA expression of glutathione peroxidase and glutathione S-transferase during osmotic stress in olive flounder (Paralichthys olivaceus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 149(3), 330-337. DOI: 10.1016/j.cbpa.2008.01.013
  • Christie, W. W. (1998). Gas chromatography-mass spectrometry methods for structural analysis of fatty acids. Lipids, 33(4), 343-353. DOI: 10.1007/s11745-998-0214-x
  • Doyen, P., Bigot, A., Vasseur, P., & Rodius, F. (2008). Molecular cloning and expression study of pi-class glutathione S-transferase (pi-GST) and selenium-dependent glutathione peroxidase (Se-GPx) transcripts in the freshwater bivalve Dreissena polymorpha. Comparative
  • Biochemistry and Physiology Part C: Toxicology & Pharmacology, 147(1), 69-77. DOI: 10.1016/j.cbpc.2007.08.002
  • Elia, A. C., Galarini, R., Taticchi, M. I., Dörr, A. J., & Mantilacci, L. (2003). Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicology and Environmental Safety, 55(2), 162-167. DOI: 10.1016/s0147-6513(02)00123-9
  • Furné, M., Morales, A. E., Trenzado, C. E., García-Gallego, M., Carmen Hidalgo, M., Domezain, A., & Sanz Rus, A. (2011). The metabolic effects of prolonged starvation and refeeding in sturgeon and rainbow trout. Journal of Comparative Physiology B, 182(1), 63-76. DOI: 10.1007/s00360-011-0596-9
  • Guderley, H., Lapointe, D., Bédard, M., & Dutil, J. (2003). Metabolic priorities during starvation: enzyme sparing in liver and white muscle of Atlantic cod, Gadus morhua L. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 135(2),347-356. DOI:10.1016/s1095-6433(03)00089-8
  • Hara, A., & Radin, N. S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90(1), 420-426. DOI: 10.1016/0003-2697(78)90046-5
  • Harlıoğlu, A. (2014). Araşidonik Asidin Balık Beslemesinde Önemi (The Importance of Arachidonic Acid in Fish Nutrition.) Yunus Araştırma Bülteni, 2014(3). DOI: 10.17693/yunusae.v2014i21953.235716
  • Katsanidis, E., & Addis, P. B. (1999). Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue. Free Radical Biology and Medicine, 27(11-12), 1137-1140. DOI: 10.1016/s0891-5849(99)00205-1
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry 193(1), 265–275. PMID:14907713
  • Morales, A. E., Pérez-Jiménez, A., Carmen Hidalgo, M., Abellán, E., & Cardenete, G. (2004). Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 139(1-3), 153-161. DOI: 10.1016/j.cca.2004.10.008
  • Mourente, G., Tocher, D. R., Diaz, E., Grau, A., & Pastor, E. (1999). Relationships between antioxidants, antioxidant enzyme activities and lipid peroxidation products during early development in Dentex dentex eggs and larvae. Aquaculture, 179(1-4), 309-324. DOI: 10.1016/s0044-8486(99)00167-2
  • Ortuño, J., Esteban, M., & Meseguer, J. (2000). High dietary intake of α-tocopherol acetate enhances the non-specific immune response of gilthead seabream (Sparus aurata L.). Fish & Shellfish Immunology, 10(4), 293-307. DOI: 10.1006/fsim.1999.0238
  • Oxley, A., Tocher, D. R., Torstensen, B. E., & Olsen, R. E. (2005). Fatty acid utilisation and metabolism in caecal enterocytes of rainbow trout (Oncorhynchus mykiss) fed dietary fish or copepod oil. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1737(2-3), 119-129. DOI: 10.1016/j.bbalip.2005.09.008
  • Pan, J., Feng, L., Jiang, W., Wu, P., Kuang, S., Tang, L., Tang, W.N., Zhang, Y.A., Zhou, X.Q., Liu, Y. (2017). Vitamin E deficiency depressed fish growth, disease resistance, and the immunity and structural integrity of immune organs in grass carp (Ctenopharyngodon idella ): Referring to NF-κB, TOR and Nrf2 signaling. Fish & Shellfish Immunology, 60, 219-236. DOI: 10.1016/j.fsi.2016.11.044
  • Panchenko, L. F., Brusov, O. S., Gerasimov, A. M., & Loktaeva, T. D. (1975). Intramitochondrial localization and release of rat liver superoxide dismutase. FEBS Letters, 55(1-2), 84-87. DOI: 10.1016/0014-5793(75)80964-1
  • Pascual, P., Pedrajas, J., Toribio, F., López-Barea, J., & Peinado, J. (2003). Effect of food deprivation on oxidative stress biomarkers in fish (Sparus aurata). Chemico-Biological Interactions, 145(2), 191-199. DOI: 10.1016/s0009-2797(03)00002-4
  • Paterson, P. G., Lyon, A. W., Kamencic, H., Andersen, L. B., & Juurlink, B. H. (2001). Sulfur Amino Acid Deficiency Depresses Brain Glutathione Concentration. Nutritional Neuroscience, 4(3), 213-222. DOI: 10.1080/1028415x.2001.11747364
  • Pérez-Jiménez, A., Guedes, M. J., Morales, A. E., & Oliva-Teles, A. (2007). Metabolic responses to short starvation and refeeding in Dicentrarchus labrax. Effect of dietary composition. Aquaculture, 265(1-4), 325-335. DOI: 10.1016/j.aquaculture.2007.01.021
  • Piccinetti, C. C., Donati, M., Radaelli, G., Caporale, G., Mosconi, G., Palermo, F., Cossignani, L., Salvatori, R., Lopez, R.P. & Olivotto, I. (2014). The effects of starving and feeding on Dover sole (Solea solea, Soleidae, Linnaeus, 1758) stress response and early larval development. Aquaculture Research, 46(10), 2512-2526. DOI: 10.1111/are.12410
  • Porter, N. A., Caldwell, S. E., & Mills, K. A. (1995). Mechanisms of free radical oxidation of unsaturated lipids. Lipids, 30(4), 277-290. DOI: 10.1007/bf02536034
  • Portner, H. O., & Farrell, A. P. (2008). Ecology: Physiology and Climate Change. Science, 322(5902), 690-692. DOI: 10.1126/science.1163156
  • Ritola, O., Peters, L. D., Livingstone, D. R., & Lindstrom-Seppa, P. (2002). Effects of in vitro exposure to ozone and/or hyperoxia on superoxide dismutase, catalase, glutathione and lipid peroxidation in red blood cells and plasma of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture Research, 33(3), 165-175. DOI: 10.1046/j.1365-2109.2002.00649.x
  • Roman-Padilla, J., Rodríguez-Rua, A., Claros, M., Hachero-Cruzado, I., & Manchado, M. (2016). Genomic characterization and expression analysis of four apolipoprotein A-IV paralogs in Senegalese sole (Solea senegalensis Kaup). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 191, 84-98. DOI: 10.1016/j.cbpb.2015.09.010
  • Salem, M., Silverstein, J., Rexroad, C. E., & Yao, J. (2007). Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss). BMC Genomics, 8(1), 328. DOI: 10.1186/1471-2164-8-328
  • Salih, A. M., Smith, D. M., Price, J. F., & Dawson, L. E. (1987). Modified Extraction 2-Thiobarbituric Acid Method for Measuring Lipid Oxidation in Poultry. Poultry Science, 66(9), 1483-1488. DOI: 10.3382/ps.0661483
  • Silva, T. V., Barbas, L. A., Torres, M. F., Sampaio, L. A., & Monserrat, J. M. (2017). Lipid peroxidation and antioxidant capacity in Peckoltia oligospila (Günther, 1864) submitted to transport under different concentration of dissolved oxygen. Aquaculture, 481, 72-78. DOI: 10.1016/j.aquaculture.2017.08.024
  • Sinha, A. K., AbdElgawad, H., Zinta, G., Dasan, A. F., Rasoloniriana, R., Asard, H., Blust, R., & De Boeck, G. (2015). Nutritional Status as the Key Modulator of Antioxidant Responses Induced by High Environmental Ammonia and Salinity Stress in European Sea Bass (Dicentrarchus labrax). PLOS ONE, 10(8), e0135091. DOI: 10.1371/journal.pone.0135091
  • Solé, M., Potrykus, J., Fernández-Díaz, C., & Blasco, J. (2004). Variations on stress defences and metallothionein levels in the Senegal sole, Solea senegalensis, during early larval stages. Fish Physiology and Biochemistry, 30(1), 57-66. DOI: 10.1007/s10695-004-6786-6
  • Stephensen, E., Sturve, J., & Förlin, L. (2002). Effects of redox cycling compounds on glutathione content and activity of glutathione-related enzymes in rainbow trout liver. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 133(3), 435-442. DOI: 10.1016/s1532-0456(02)00129-1
  • Teare, J.P., Punchard, N.A., Powell, J.J., Lumb, P.J., Mitchel, W.D. & Thompson, R.P. (1993). Automated spectrophotometric method for determining oxidized and reduced glutathione in liver. Clinical. Chemistry. 39 (4), 686–689. PMID: 8472367
  • Tian, J., Lei, C., Ji, H., Kaneko, G., Zhou, J., Yu, H., Li, Y., Yu,E.M. &Xie, J. (2017). Comparative analysis of effects of dietary arachidonic acid and EPA on growth, tissue fatty acid composition, antioxidant response and lipid metabolism in juvenile grass carp, Ctenopharyngodon idellus. British Journal of Nutrition, 118(06), 411-422. DOI: 10.1017/s000711451700215x
  • Tocher, D. R. (2003). Metabolism and Functions of Lipids and Fatty Acids in Teleost Fish. Reviews in Fisheries Science, 11(2), 107-184. DOI: 10.1080/713610925
  • Valko, M., Rhodes, C., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160(1), 1-40. DOI: 10.1016/j.cbi.2005.12.009
  • Yengkokpam, S., Pal, A., Sahu, N., Jain, K., Dalvi, R., Misra, S., & Debnath, D. (2008). Metabolic modulation in Labeo rohita fingerlings during starvation: Hsp70 expression and oxygen consumption. Aquaculture, 285(1-4), 234-237. DOI: 10.1016/j.aquaculture.2008.08.034
  • Zengin, H., & Yilmaz, Ö. (2016). Antioxidant defence of the actively feeding Oncorhynchus mykiss (Walbaum 1792) larvae in relation to dietary PUFA and vitamin E contents. Regional Studies in Marine Science, 8, 515-522. DOI: 10.1016/j.rsma.2016.03.003
Primary Language en
Subjects Science
Journal Section Articles
Authors

Orcid: 0000-0002-8148-4056
Author: Hatayi Zengin (Primary Author)
Institution: Cumhuriyet Üniversitesi | Cumhuriyet University
Country: Turkey


Dates

Publication Date : December 15, 2018

Bibtex @research article { egejfas412304, journal = {Ege Journal of Fisheries and Aquatic Sciences}, issn = {1300-1590}, eissn = {2148-3140}, address = {}, publisher = {Ege University}, year = {2018}, volume = {35}, pages = {387 - 396}, doi = {10.12714/egejfas.2018.35.4.04}, title = {Oxidative stress and antioxidant defenses after starvation in Oncorhynchus mykiss (Walbaum 1792) larvae reached free swimming stage}, key = {cite}, author = {Zengin, Hatayi} }
APA Zengin, H . (2018). Oxidative stress and antioxidant defenses after starvation in Oncorhynchus mykiss (Walbaum 1792) larvae reached free swimming stage. Ege Journal of Fisheries and Aquatic Sciences , 35 (4) , 387-396 . DOI: 10.12714/egejfas.2018.35.4.04
MLA Zengin, H . "Oxidative stress and antioxidant defenses after starvation in Oncorhynchus mykiss (Walbaum 1792) larvae reached free swimming stage". Ege Journal of Fisheries and Aquatic Sciences 35 (2018 ): 387-396 <http://www.egejfas.org/en/issue/37248/412304>
Chicago Zengin, H . "Oxidative stress and antioxidant defenses after starvation in Oncorhynchus mykiss (Walbaum 1792) larvae reached free swimming stage". Ege Journal of Fisheries and Aquatic Sciences 35 (2018 ): 387-396
RIS TY - JOUR T1 - Oxidative stress and antioxidant defenses after starvation in Oncorhynchus mykiss (Walbaum 1792) larvae reached free swimming stage AU - Hatayi Zengin Y1 - 2018 PY - 2018 N1 - doi: 10.12714/egejfas.2018.35.4.04 DO - 10.12714/egejfas.2018.35.4.04 T2 - Ege Journal of Fisheries and Aquatic Sciences JF - Journal JO - JOR SP - 387 EP - 396 VL - 35 IS - 4 SN - 1300-1590-2148-3140 M3 - doi: 10.12714/egejfas.2018.35.4.04 UR - https://doi.org/10.12714/egejfas.2018.35.4.04 Y2 - 2018 ER -
EndNote %0 Su Ürünleri Dergisi Oxidative stress and antioxidant defenses after starvation in Oncorhynchus mykiss (Walbaum 1792) larvae reached free swimming stage %A Hatayi Zengin %T Oxidative stress and antioxidant defenses after starvation in Oncorhynchus mykiss (Walbaum 1792) larvae reached free swimming stage %D 2018 %J Ege Journal of Fisheries and Aquatic Sciences %P 1300-1590-2148-3140 %V 35 %N 4 %R doi: 10.12714/egejfas.2018.35.4.04 %U 10.12714/egejfas.2018.35.4.04
ISNAD Zengin, Hatayi . "Oxidative stress and antioxidant defenses after starvation in Oncorhynchus mykiss (Walbaum 1792) larvae reached free swimming stage". Ege Journal of Fisheries and Aquatic Sciences 35 / 4 (December 2018): 387-396 . https://doi.org/10.12714/egejfas.2018.35.4.04
AMA Zengin H . Oxidative stress and antioxidant defenses after starvation in Oncorhynchus mykiss (Walbaum 1792) larvae reached free swimming stage. EgeJFAS. 2018; 35(4): 387-396.
Vancouver Zengin H . Oxidative stress and antioxidant defenses after starvation in Oncorhynchus mykiss (Walbaum 1792) larvae reached free swimming stage. Ege Journal of Fisheries and Aquatic Sciences. 2018; 35(4): 396-387.