Araştırma Makalesi
BibTex RIS Kaynak Göster

Gallik asidinin gökkuşağı alabalığında (Oncorhynchus mykiss) büyüme endeksleri ve antioksidan, stres ve bağışıklık ilgili genlerin ekspresyonu üzerindeki etkisi

Yıl 2025, Cilt: 42 Sayı: 1, 15 - 20, 08.03.2025
https://doi.org/10.12714/egejfas.42.1.02

Öz

Bu çalışmada, gökkuşağı alabalığında (Oncorhynchus mykiss) diyet gallik asit (GA) takviyesinin büyüme performansı ve antioksidan, stres ve bağışıklık fonksiyonlarıyla bağlantılı genlerin ifadesi üzerindeki etkileri araştırılmıştır. Ortalama vücut ağırlığı 2,84 ± 0,25 g olan balıklar, 60 gün boyunca 0 mg/kg (kontrol), 300 mg/kg (G300), 450 mg/kg (G450) ve 600 mg/kg (G600) GA içeren diyetlerle beslenmiştir. Sonuçlar, GA takviyeli gruplarda kontrole kıyasla kilo alımı, özgül büyüme oranı ve yem dönüşüm oranı da dahil olmak üzere büyüme endekslerinde önemli iyileşmeler olduğunu ortaya koymuştur (P<0,05). Moleküler düzeyde, GA takviyesi antioksidanla ilişkili genlerin (SOD, CAT, GPX), stresle ilişkili genlerin (HSP70) ve bağışıklık ile ilişkili genlerin (TNF-α, IL-1β) ifadesini önemli ölçüde artırmıştır. G300 grubu sürekli olarak en belirgin transkripsiyonel tepkileri sergilerken, daha yüksek dozlar (G450 ve G600) azalan veya tutarsız etkiler gösterdi. Bu bulgular, 300 mg/kg GA'nın diyete dahil edilmesinin, temel moleküler yolları düzenleyerek balık sağlığını ve üretkenliğini en iyi şekilde artırdığını göstermektedir. Bu dozaj, su ürünleri yetiştiriciliğinde gökkuşağı alabalığının performansını ve dayanıklılığını iyileştirmek için etkili bir yem katkı maddesi olarak önerilmektedir.

Kaynakça

  • Alkan, Z., Karataş, B., & Sepil, A. (2025). Evaluation of global warming effects on juvenile rainbow trout: focus on immunohistochemistry and osmoregulation. Fish Physiology and Biochemistry, 51(1), 1-13. https://doi.org/10.1007/s10695-024-01431-5
  • Ciji, A., & Akhtar, M.S. (2021). Stress management in aquaculture: A review of dietary interventions. Reviews in Aquaculture, 13(4), 2190-2247. https://doi.org/10.1111/raq.12565
  • das Neves, S.C., da Silva, S.M., Costa, G.K., Correia, E.S., Santos, A.L., da Silva, L.C., & Bicudo, Á.J. (2021). Dietary supplementation with fumaric acid improves growth performance in nile tilapia juveniles. Animals, 12(1), 8. https://doi.org/10.3390/ani12010008
  • Duan, Y., Wang, Y., Zhang, J., Sun, Y., & Wang, J. (2018). Dietary effects of succinic acid on the growth, digestive enzymes, immune response and resistance to ammonia stress of Litopenaeus vannamei. Fish & shellfish immunology, 78, 10-17. https://doi.org/10.1016/j.fsi.2018.04.008
  • Ferk, F., Chakraborty, A., Jäger, W., Kundi, M., Bichler, J., Mišík, M., Wagner, K. H., Grasl-Kraupp, B., Sagmeister, S., Haidinger, G., Hoelzl, C., Nersesyan, A., Dušinská, M., Simić, T., & Knasmüller, S. (2011). Potent protection of gallic acid against DNA oxidation: results of human and animal experiments. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 715(1 2), 61 71. https://doi.org/10.1016/j.mrfmmm.2011.07.010
  • Ghafarifarsani, H., Hoseinifar, S.H., Adorian, T.J., Ferrigolo, F.R.G., Raissy, M., & Van Doan, H. (2021). The effects of combined inclusion of Malvae sylvestris, Origanum vulgare, and Allium hirtifolium Boiss. for common carp (Cyprinus carpio) diet: Growth performance, antioxidant defense, and immunological parameters. Fish & Shellfish Immunology, 119, 670-677. https://doi.org/10.1016/j.fsi.2021.10.014
  • Ghafarifarsani, H., Hoseinifar, S.H., Adhami, B., Rohani, M.F., & Van Doan, H. (2023). Dietary gallic acid influences serum enzymatic parameters and immunological responses in Cyprinus carpio exposed to crowding stress. Aquaculture Reports, 30, 101630. https://doi.org/10.1016/j.aqrep.2023.101630
  • Hadidi, M., Liñán-Atero, R., Tarahi, M., Christodoulou, M.C., & Aghababaei, F. (2024). The potential health benefits of gallic acid: Therapeutic and food applications. Antioxidants, 13(8), 1001. https://doi.org/10.3390/antiox13081001
  • Hassaan, M.S., Soltan, M.A., Jarmołowicz, S., & Abdo, H.S. (2018). Combined effects of dietary malic acid and Bacillus subtilis on growth, gut microbiota and blood parameters of Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition, 24(1), 83 93. https://doi.org/10.1111/anu.12536
  • Hoseinifar, S.H., Zou, H. K., Miandare, H.K., Van Doan, H., Romano, N., & Dadar, M. (2017). Enrichment of common carp (Cyprinus carpio) diet with medlar (Mespilus germanica) leaf extract: Effects on skin mucosal immunity and growth performance. Fish & shellfish immunology, 67, 346-352. https://doi.org/10.1016/j.fsi.2017.06.023
  • Huan, D., Li, X., Chowdhury, M. A.K., Yang, H., Liang, G., & Leng, X. (2018). Organic acid salts, protease and their combination in fish meal‐free diets improved growth, nutrient retention and digestibility of tilapia (Oreochromis niloticus× O. aureus). Aquaculture Nutrition, 24(6), 1813-1821. https://doi.org/10.1111/anu.12820
  • Jiang, X., Guan, X., Yao, L., Zhang, H., Jin, X., & Han, Y. (2016). Effects of single and joint subacute exposure of copper and cadmium on heat shock proteins in common carp (Cyprinus carpio). Biological Trace Element Research, 169, 374-381. https://doi.org/10.1007/s12011-015-0402-8
  • Jin, X., Su, M., Liang, Y., & Li, Y. (2023) Effects of chlorogenic acid on growth, metabolism, antioxidation, immunity, and intestinal flora of crucian carp (Carassius auratus). Frontiers in Microbiology, 13, 1084500. https://doi.org/10.3389/fmicb.2022.1084500
  • Karataş, B. (2024). Dietary Cyanus depressus (M. Bieb.) Soják plant extract enhances growth performance, modulates intestinal microbiota, and alters gene expression associated with digestion, antioxidant, stress, and immune responses in rainbow trout (Oncorhynchus mykiss). Aquaculture International, 32, 7929–7951. https://doi.org/10.1007/s10499-024-01548-7
  • Karataş, B. (2025). Effects of Chlorella sp. and Schizochytrium sp. extracts on growth indices, body composition, and gene expression profiles in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 276, 111047. https://doi.org/10.1016/j.cbpb.2024.111047
  • Kaya, D., Karataş, B., & Guroy, D. (2025). Dietary pot marigold (Calendula officinalis) extract improved the growth performance, expression of digestive enzymes, antioxidant enzymes and immune-related genes in rainbow trout (Oncorhynchus mykiss). Aquaculture International, 33(1), 1. https://doi.org/10.1007/s10499-024-01688-w
  • Livak, K.J., & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402 408. https://doi.org/10.1006/meth.2001.1262
  • Obirikorang, K.A., Quagrainie, K., Kassah, J.E., & Von Ahnen, M. (2024). Sustainable aquaculture production for improved food security. Frontiers in Sustainable Food Systems, 8, 1485956. https://doi.org/10.3389/fsufs.2024.1485956
  • Önalan, Ş. (2019). Expression differences of stress and immunity genes in rainbow trout (Oncorhynchus mykiss Walbaum, 1792) with different bacterial fish diseases. Israeli Journal of Aquaculture-Bamidgeh, 71. https://doi.org/10.46989/001c.20978
  • Safari, R., Hoseinifar, S.H., & Dadar, M. (2021). Enrichment of common carp diet with Malic acid: Effects on skin mucosal immunity, antioxidant defecne and growth performance. Annals of Animal Science, 21(2), 561-573. https://doi.org/10.2478/aoas-2020-0092
  • Samuel, K.G., Wang, J., Yue, H.Y., Wu, S.G., Zhang, H.J., Duan, Z.Y., & Qi, G.H. (2017). Effects of dietary gallic acid supplementation on performance, antioxidant status, and jejunum intestinal morphology in broiler chicks. Poultry Science, 96(8), 2768 2775. https://doi.org/10.3382/ps/pex091
  • Shah, S.Z.H., Muhammad Afzal, M.A., Khan, S.Y., Hussain, S.M., & Habib, R.Z. (2015). Prospects of using citric acid as fish feed supplement. International Journal of Agriculture and Biology, 17, 1−8
  • Sousa, J.N., de Oliveira Sousa, B.V., Dos Santos, E.P., Ribeiro, G. H.M., Pereira, A.P.M., Guimarães, V.H.D., Queiroz, L.D.R.P., Motta-Santos, D., Farias, L.C., Guimarães, A.L.S., de Paula, A.M.B., & Santos, S.H.S. (2024). Effects of gallic acid and physical training on liver damage, force, and anxiety in obese mice: Hepatic modulation of Sestrin 2 (SESN2) and PGC α expression. Gene, 926, 148606. https://doi.org/10.1016/j.gene.2024.148606
  • Toomey, L., Gesto, M., Alfonso, S., Lund, I., Jokumsen, A., Lembo, G., & Carbonara, P. (2024). Monitoring welfare indicators of rainbow trout (Oncorhynchus mykiss) in a commercial organic farm: Effects of an innovative diet and accelerometer tag implantation. Aquaculture, 582, 740549. https://doi.org/10.1016/j.aquaculture.2024.740549
  • Vasdravanidis, C., Alvanou, M.V., Lattos, A., Papadopoulos, D.K., Chatzigeorgiou, I., Ravani, M., Liantas, G., Georgoulis, I., Feidantsis, K., Ntinas, G.K., & Giantsis, I.A. (2022). Aquaponics as a promising strategy to mitigate impacts of climate change on rainbow trout culture. Animals, 12(19), 2523. https://doi.org/10.3390/ani12192523
  • Verdegem, M., Buschmann, A.H., Latt, U.W., Dalsgaard, A.J., & Lovatelli, A. (2023). The contribution of aquaculture systems to global aquaculture production. Journal of the World Aquaculture Society, 54(2), 206-250. https://doi.org/10.1111/jwas.12963
  • Vogel, C., & Marcotte, E.M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature reviews genetics, 13(4), 227-232. https://doi.org/10.1038/nrg3185
  • Wei, C., Yang, K., Zhao, G., Lin, S., & Xu, Z. (2016). Effect of dietary supplementation of gallic acid on nitrogen balance, nitrogen excretion pattern and urinary nitrogenous constituents in beef cattle. Archives of Animal Nutrition, 70(5), 416 423. https://doi.org/10.1080/1745039X.2016.1214345
  • Xiang, Z., Guan, H., Zhao, X., Xie, Q., Xie, Z., Cai, F., Dang, R., Li, M., & Wang, C. (2024). Dietary gallic acid as an antioxidant: A review of its food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions. Food Research International, 114068. https://doi.org/10.1016/j.foodres.2024.114068
  • Xu, H.J., Zhang, Q.Y., Wang, L.H., Zhang, C.R., Li, Y., & Zhang, Y.G. (2022). Growth performance, digestibility, blood metabolites, ruminal fermentation, and bacterial communities in response to the inclusion of gallic acid in the starter feed of preweaning dairy calves. Journal of dairy science, 105(4), 3078-3089. https://doi.org/10.3168/jds.2021-20838
  • Yilmaz, S. (2019). Effects of dietary caffeic acid supplement on antioxidant, immunological and liver gene expression responses, and resistance of Nile tilapia, Oreochromis niloticus to Aeromonas veronii. Fish & Shellfish immunology, 86, 384-392. https://doi.org/10.1016/j.fsi.2018.11.068
  • Yousefi, M., Ghafarifarsani, H., Raissy, M., Yilmaz, S., Vatnikov, Y.A., & Kulikov, E.V. (2023). Effects of dietary malic acid supplementation on growth performance, antioxidant and immunological parameters, and intestinal gene expressions in rainbow trout, Oncorhynchus mykiss. Aquaculture, 563, 738864. https://doi.org/10.1016/j.aquaculture.2022.738864
  • Zhang, J., Wang, Z., Shi, Y., Xia, L., Hu, Y., & Zhong, L. (2023). Protective effects of chlorogenic acid on growth, intestinal inflammation, hepatic antioxidant capacity, muscle development and skin color in channel catfish Ictalurus punctatus fed an oxidized fish oil diet. Fish & Shellfish Immunology, 134, 108511. https://doi.org/10.1016/j.fsi.2022.108511
  • Zhang, L., Zhang, P., Xia, C., Cheng, Y., Guo, X., & Li, Y. (2020). Effects of malic acid and citric acid on growth performance, antioxidant capacity, haematology and immune response of Carassius auratus gibelio. Aquaculture Research, 51(7), 2766 2776. https://doi.org/10.1111/are.14616
  • Zhao, X., Wang, J., Gao, G., Bontempo, V., Chen, C., Schroyen, M., Li, X., & Jiang, X. (2021). The influence of dietary gallic acid on growth performance and plasma antioxidant status of high and low weaning weight piglets. Animals, 11(11), 3323. https://doi.org/10.3390/ani11113323
  • Zhao, X., Zhang, L., Wu, N., Liu, Y., Xie, J., Su, L., Zhu, Q., Unger, B.H., Altaf, F., Hu, Y., Ye, W., Qiao, Z., Cheng, Y., Zhang, W., Wang, Y., & Xia, X.Q. (2024). Gallic acid acts as an anti-inflammatory agent via PPARγ-mediated immunomodulation and antioxidation in fish gut-liver axis. Aquaculture, 578, 740142. https://doi.org/10.1016/j.aquaculture.2023.740142

Impact of dietary gallic acid on growth indices and the expression of antioxidant, stress, and immunity-related genes in rainbow trout (Oncorhynchus mykiss)

Yıl 2025, Cilt: 42 Sayı: 1, 15 - 20, 08.03.2025
https://doi.org/10.12714/egejfas.42.1.02

Öz

This study investigates the effects of dietary gallic acid (GA) supplementation on growth performance and the expression of genes linked to antioxidant, stress, and immune functions in rainbow trout (Oncorhynchus mykiss). Fish with an average body weight of 2.84 ± 0.25 g were fed diets containing 0 mg/kg (control), 300 mg/kg (G300), 450 mg/kg (G450), and 600 mg/kg (G600) of GA over 60 days. The results revealed significant improvements in growth indices, including weight gain, specific growth rate, and feed conversion ratio, in GA-supplemented groups compared to the control (P<0.05). At the molecular level, GA supplementation significantly upregulated the expression of antioxidant-related genes (SOD, CAT, GPX), stress-related genes (HSP70), and immune-related genes (TNF-α, IL-1β). The G300 group consistently exhibited the most pronounced transcriptional responses, while higher doses (G450 and G600) showed diminished or inconsistent effects. These findings suggest that a dietary inclusion of 300 mg/kg GA optimally enhances fish health and productivity by modulating key molecular pathways. This dosage is recommended as an effective feed additive for improving the performance and resilience of rainbow trout in aquaculture.

Etik Beyan

The experiment was approved by the Van Yuzuncu Yil University Aquatic Vertebrates Local Ethics Committee (protocol no: 2024/04-05) and conducted in accordance with standard ethical guidelines.

Destekleyen Kurum

This study did not receive any financial support, grant, or assistance from any public, commercial, or nonprofit funding organization.

Kaynakça

  • Alkan, Z., Karataş, B., & Sepil, A. (2025). Evaluation of global warming effects on juvenile rainbow trout: focus on immunohistochemistry and osmoregulation. Fish Physiology and Biochemistry, 51(1), 1-13. https://doi.org/10.1007/s10695-024-01431-5
  • Ciji, A., & Akhtar, M.S. (2021). Stress management in aquaculture: A review of dietary interventions. Reviews in Aquaculture, 13(4), 2190-2247. https://doi.org/10.1111/raq.12565
  • das Neves, S.C., da Silva, S.M., Costa, G.K., Correia, E.S., Santos, A.L., da Silva, L.C., & Bicudo, Á.J. (2021). Dietary supplementation with fumaric acid improves growth performance in nile tilapia juveniles. Animals, 12(1), 8. https://doi.org/10.3390/ani12010008
  • Duan, Y., Wang, Y., Zhang, J., Sun, Y., & Wang, J. (2018). Dietary effects of succinic acid on the growth, digestive enzymes, immune response and resistance to ammonia stress of Litopenaeus vannamei. Fish & shellfish immunology, 78, 10-17. https://doi.org/10.1016/j.fsi.2018.04.008
  • Ferk, F., Chakraborty, A., Jäger, W., Kundi, M., Bichler, J., Mišík, M., Wagner, K. H., Grasl-Kraupp, B., Sagmeister, S., Haidinger, G., Hoelzl, C., Nersesyan, A., Dušinská, M., Simić, T., & Knasmüller, S. (2011). Potent protection of gallic acid against DNA oxidation: results of human and animal experiments. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 715(1 2), 61 71. https://doi.org/10.1016/j.mrfmmm.2011.07.010
  • Ghafarifarsani, H., Hoseinifar, S.H., Adorian, T.J., Ferrigolo, F.R.G., Raissy, M., & Van Doan, H. (2021). The effects of combined inclusion of Malvae sylvestris, Origanum vulgare, and Allium hirtifolium Boiss. for common carp (Cyprinus carpio) diet: Growth performance, antioxidant defense, and immunological parameters. Fish & Shellfish Immunology, 119, 670-677. https://doi.org/10.1016/j.fsi.2021.10.014
  • Ghafarifarsani, H., Hoseinifar, S.H., Adhami, B., Rohani, M.F., & Van Doan, H. (2023). Dietary gallic acid influences serum enzymatic parameters and immunological responses in Cyprinus carpio exposed to crowding stress. Aquaculture Reports, 30, 101630. https://doi.org/10.1016/j.aqrep.2023.101630
  • Hadidi, M., Liñán-Atero, R., Tarahi, M., Christodoulou, M.C., & Aghababaei, F. (2024). The potential health benefits of gallic acid: Therapeutic and food applications. Antioxidants, 13(8), 1001. https://doi.org/10.3390/antiox13081001
  • Hassaan, M.S., Soltan, M.A., Jarmołowicz, S., & Abdo, H.S. (2018). Combined effects of dietary malic acid and Bacillus subtilis on growth, gut microbiota and blood parameters of Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition, 24(1), 83 93. https://doi.org/10.1111/anu.12536
  • Hoseinifar, S.H., Zou, H. K., Miandare, H.K., Van Doan, H., Romano, N., & Dadar, M. (2017). Enrichment of common carp (Cyprinus carpio) diet with medlar (Mespilus germanica) leaf extract: Effects on skin mucosal immunity and growth performance. Fish & shellfish immunology, 67, 346-352. https://doi.org/10.1016/j.fsi.2017.06.023
  • Huan, D., Li, X., Chowdhury, M. A.K., Yang, H., Liang, G., & Leng, X. (2018). Organic acid salts, protease and their combination in fish meal‐free diets improved growth, nutrient retention and digestibility of tilapia (Oreochromis niloticus× O. aureus). Aquaculture Nutrition, 24(6), 1813-1821. https://doi.org/10.1111/anu.12820
  • Jiang, X., Guan, X., Yao, L., Zhang, H., Jin, X., & Han, Y. (2016). Effects of single and joint subacute exposure of copper and cadmium on heat shock proteins in common carp (Cyprinus carpio). Biological Trace Element Research, 169, 374-381. https://doi.org/10.1007/s12011-015-0402-8
  • Jin, X., Su, M., Liang, Y., & Li, Y. (2023) Effects of chlorogenic acid on growth, metabolism, antioxidation, immunity, and intestinal flora of crucian carp (Carassius auratus). Frontiers in Microbiology, 13, 1084500. https://doi.org/10.3389/fmicb.2022.1084500
  • Karataş, B. (2024). Dietary Cyanus depressus (M. Bieb.) Soják plant extract enhances growth performance, modulates intestinal microbiota, and alters gene expression associated with digestion, antioxidant, stress, and immune responses in rainbow trout (Oncorhynchus mykiss). Aquaculture International, 32, 7929–7951. https://doi.org/10.1007/s10499-024-01548-7
  • Karataş, B. (2025). Effects of Chlorella sp. and Schizochytrium sp. extracts on growth indices, body composition, and gene expression profiles in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 276, 111047. https://doi.org/10.1016/j.cbpb.2024.111047
  • Kaya, D., Karataş, B., & Guroy, D. (2025). Dietary pot marigold (Calendula officinalis) extract improved the growth performance, expression of digestive enzymes, antioxidant enzymes and immune-related genes in rainbow trout (Oncorhynchus mykiss). Aquaculture International, 33(1), 1. https://doi.org/10.1007/s10499-024-01688-w
  • Livak, K.J., & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402 408. https://doi.org/10.1006/meth.2001.1262
  • Obirikorang, K.A., Quagrainie, K., Kassah, J.E., & Von Ahnen, M. (2024). Sustainable aquaculture production for improved food security. Frontiers in Sustainable Food Systems, 8, 1485956. https://doi.org/10.3389/fsufs.2024.1485956
  • Önalan, Ş. (2019). Expression differences of stress and immunity genes in rainbow trout (Oncorhynchus mykiss Walbaum, 1792) with different bacterial fish diseases. Israeli Journal of Aquaculture-Bamidgeh, 71. https://doi.org/10.46989/001c.20978
  • Safari, R., Hoseinifar, S.H., & Dadar, M. (2021). Enrichment of common carp diet with Malic acid: Effects on skin mucosal immunity, antioxidant defecne and growth performance. Annals of Animal Science, 21(2), 561-573. https://doi.org/10.2478/aoas-2020-0092
  • Samuel, K.G., Wang, J., Yue, H.Y., Wu, S.G., Zhang, H.J., Duan, Z.Y., & Qi, G.H. (2017). Effects of dietary gallic acid supplementation on performance, antioxidant status, and jejunum intestinal morphology in broiler chicks. Poultry Science, 96(8), 2768 2775. https://doi.org/10.3382/ps/pex091
  • Shah, S.Z.H., Muhammad Afzal, M.A., Khan, S.Y., Hussain, S.M., & Habib, R.Z. (2015). Prospects of using citric acid as fish feed supplement. International Journal of Agriculture and Biology, 17, 1−8
  • Sousa, J.N., de Oliveira Sousa, B.V., Dos Santos, E.P., Ribeiro, G. H.M., Pereira, A.P.M., Guimarães, V.H.D., Queiroz, L.D.R.P., Motta-Santos, D., Farias, L.C., Guimarães, A.L.S., de Paula, A.M.B., & Santos, S.H.S. (2024). Effects of gallic acid and physical training on liver damage, force, and anxiety in obese mice: Hepatic modulation of Sestrin 2 (SESN2) and PGC α expression. Gene, 926, 148606. https://doi.org/10.1016/j.gene.2024.148606
  • Toomey, L., Gesto, M., Alfonso, S., Lund, I., Jokumsen, A., Lembo, G., & Carbonara, P. (2024). Monitoring welfare indicators of rainbow trout (Oncorhynchus mykiss) in a commercial organic farm: Effects of an innovative diet and accelerometer tag implantation. Aquaculture, 582, 740549. https://doi.org/10.1016/j.aquaculture.2024.740549
  • Vasdravanidis, C., Alvanou, M.V., Lattos, A., Papadopoulos, D.K., Chatzigeorgiou, I., Ravani, M., Liantas, G., Georgoulis, I., Feidantsis, K., Ntinas, G.K., & Giantsis, I.A. (2022). Aquaponics as a promising strategy to mitigate impacts of climate change on rainbow trout culture. Animals, 12(19), 2523. https://doi.org/10.3390/ani12192523
  • Verdegem, M., Buschmann, A.H., Latt, U.W., Dalsgaard, A.J., & Lovatelli, A. (2023). The contribution of aquaculture systems to global aquaculture production. Journal of the World Aquaculture Society, 54(2), 206-250. https://doi.org/10.1111/jwas.12963
  • Vogel, C., & Marcotte, E.M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature reviews genetics, 13(4), 227-232. https://doi.org/10.1038/nrg3185
  • Wei, C., Yang, K., Zhao, G., Lin, S., & Xu, Z. (2016). Effect of dietary supplementation of gallic acid on nitrogen balance, nitrogen excretion pattern and urinary nitrogenous constituents in beef cattle. Archives of Animal Nutrition, 70(5), 416 423. https://doi.org/10.1080/1745039X.2016.1214345
  • Xiang, Z., Guan, H., Zhao, X., Xie, Q., Xie, Z., Cai, F., Dang, R., Li, M., & Wang, C. (2024). Dietary gallic acid as an antioxidant: A review of its food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions. Food Research International, 114068. https://doi.org/10.1016/j.foodres.2024.114068
  • Xu, H.J., Zhang, Q.Y., Wang, L.H., Zhang, C.R., Li, Y., & Zhang, Y.G. (2022). Growth performance, digestibility, blood metabolites, ruminal fermentation, and bacterial communities in response to the inclusion of gallic acid in the starter feed of preweaning dairy calves. Journal of dairy science, 105(4), 3078-3089. https://doi.org/10.3168/jds.2021-20838
  • Yilmaz, S. (2019). Effects of dietary caffeic acid supplement on antioxidant, immunological and liver gene expression responses, and resistance of Nile tilapia, Oreochromis niloticus to Aeromonas veronii. Fish & Shellfish immunology, 86, 384-392. https://doi.org/10.1016/j.fsi.2018.11.068
  • Yousefi, M., Ghafarifarsani, H., Raissy, M., Yilmaz, S., Vatnikov, Y.A., & Kulikov, E.V. (2023). Effects of dietary malic acid supplementation on growth performance, antioxidant and immunological parameters, and intestinal gene expressions in rainbow trout, Oncorhynchus mykiss. Aquaculture, 563, 738864. https://doi.org/10.1016/j.aquaculture.2022.738864
  • Zhang, J., Wang, Z., Shi, Y., Xia, L., Hu, Y., & Zhong, L. (2023). Protective effects of chlorogenic acid on growth, intestinal inflammation, hepatic antioxidant capacity, muscle development and skin color in channel catfish Ictalurus punctatus fed an oxidized fish oil diet. Fish & Shellfish Immunology, 134, 108511. https://doi.org/10.1016/j.fsi.2022.108511
  • Zhang, L., Zhang, P., Xia, C., Cheng, Y., Guo, X., & Li, Y. (2020). Effects of malic acid and citric acid on growth performance, antioxidant capacity, haematology and immune response of Carassius auratus gibelio. Aquaculture Research, 51(7), 2766 2776. https://doi.org/10.1111/are.14616
  • Zhao, X., Wang, J., Gao, G., Bontempo, V., Chen, C., Schroyen, M., Li, X., & Jiang, X. (2021). The influence of dietary gallic acid on growth performance and plasma antioxidant status of high and low weaning weight piglets. Animals, 11(11), 3323. https://doi.org/10.3390/ani11113323
  • Zhao, X., Zhang, L., Wu, N., Liu, Y., Xie, J., Su, L., Zhu, Q., Unger, B.H., Altaf, F., Hu, Y., Ye, W., Qiao, Z., Cheng, Y., Zhang, W., Wang, Y., & Xia, X.Q. (2024). Gallic acid acts as an anti-inflammatory agent via PPARγ-mediated immunomodulation and antioxidation in fish gut-liver axis. Aquaculture, 578, 740142. https://doi.org/10.1016/j.aquaculture.2023.740142
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Balık Yetiştiriciliği
Bölüm Makaleler
Yazarlar

Boran Karataş 0000-0003-4353-1293

Yayımlanma Tarihi 8 Mart 2025
Gönderilme Tarihi 19 Aralık 2024
Kabul Tarihi 14 Ocak 2025
Yayımlandığı Sayı Yıl 2025Cilt: 42 Sayı: 1

Kaynak Göster

APA Karataş, B. (2025). Impact of dietary gallic acid on growth indices and the expression of antioxidant, stress, and immunity-related genes in rainbow trout (Oncorhynchus mykiss). Ege Journal of Fisheries and Aquatic Sciences, 42(1), 15-20. https://doi.org/10.12714/egejfas.42.1.02