Araştırma Makalesi
BibTex RIS Kaynak Göster

Nasturtium officinale R.Br. ve Mentha aquatica L. taksonlarının farklı kurşun elementi konsantrasyonlarındaki tepkilerinin araştırılması

Yıl 2021, , 283 - 292, 15.09.2021
https://doi.org/10.12714/egejfas.38.3.04

Öz



Bu çalışmada tarımsal faaliyetlerin ve kurşun kirliliğinin Umurbey Çayı’nda (Çanakkale) yaşayan Nasturtium officinale ve Mentha aquatica makrofitleri üzerindeki morfolojik ve fizyolojik etkinin belirlenmesi ile bitkiler arası rekabet araştırılmıştır. Araştırma materyali olan makrofitler Çanakkale ili, Umurbey ilçesi, Umurbey Çayı'nın her iki tarafında meyve bahçeleri ile kaplı olan Gökköy Geçemeği’nin alt kısmından Mayıs-Haziran 2016 tarihlerinde toplanmıştır. Makrofitler 3 gün süreyle besin çözeltisi içerisinde adaptasyon sürecine bırakılmıştır. İlk aşamada kurşun kirliliğinin makrofit türlerinin morfolojisi ve fizyolojisi üzerine etkisi 1, 5 ve 10 ppm Pb konsantrasyonlarında tekli kültürde incelenmiştir. Sonra karışık kültürde ara doz olan 5 ppm Pb konsantrasyonunda iki makrofit türünün rekabet kabiliyeti incelenmiştir. Ayrıca klorofil a ve b, karotenoit, serbest prolin, protein, toplam fenolik bileşik miktarı, adsorblanan kurşun miktarı ile toplam potasyum, fosfor, demir ve magnezyum miktarlarına bakılmıştır. Su teresinin morfolojik olarak en fazla etkilendiği 5 ppm Pb dozunda, P, Fe, Mg, K, Pb ve protein içeriği de en fazla seviyeye ulaşmıştır. Aynı zamanda bu dozda su teresi fotosentetik pigment ve serbest prolin seviyesini en aza indirmiştir. Su nanesinin morfolojik olarak en çok etkilendiği doz 10 ppm Pb dozudur. Bahsi geçen dozda su nanesinin P, Fe, Mg ve K miktarı en yüksek değerine ulaşmıştır. Bu çalışmada kurşun stresinin olmadığı, sucul bitkilerin bir arada yetiştirildiği ikili kontrol gruplarında, su nanesinin morfolojik ve fizyolojik olarak daha dirençli olduğu kanıtlamıştır. Kurşunun stres olarak uygulandığı durumda ise, su teresinin daha fazla mücadeleci olduğu morfolojik ve fizyolojik olarak gösterilmiştir. Bu çalışma ile su teresinin, su nanesine göre absorpladığı kurşun miktarının iki katından daha fazla kurşun adsorplayarak iyi bir kurşun akümülatörü olduğu belirlenmiştir.




Destekleyen Kurum

ÇOMÜ BAP

Proje Numarası

953.2018

Teşekkür

Bu çalışma Çanakkale Onsekiz Mart Üniversitesi, Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir.

Kaynakça

  • Abernethy, V.J., Sabbatini, M.R. & Murphy, K.J. (1996). Response of Elodea canadensis Michx, and Myriophyllum spicatum L. to shade cutting and competition in experimental culture. Hydrobiologia, 340, 219-224. DOI:10.1007/BF00012758
  • Agami, M. & Waisel, Y. (2002). Competitive relationships between two water plant species: Najas marina L. and Myriophyllum spicatum L.. Hydrobiologia, 482, 197-200. DOI:10.1023/A:1021216532161
  • Aslan, M., Ünlü, M.Y., Türkmen, N. & Yılmaz, Y.Z. (2003). Sorption of cadmium and effects on growth, protein content, and photosynthetic pigment composition of Nasturtium officinale R.Br. and Mentha aquatica L.. Bulletin of Environmental Contamination and Toxicology, 71, 323-329. DOI:10.1007/s00128-003-0167-1
  • Aziz, A., Martin-Tanguy, J. & Larher, F. (1998). Stress-Induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiologia Plantarum, 104, 195-202. DOI:10.1034/j.1399-3054.1998.1040207.x
  • Bahramikia, S. & Yazdanparast, R. (2010). Antioxidant efficacy of Nasturtium officinale extracts using various in vitro assay systems. Journal of Acupuncture & Meridian Studies, 3(4), 283-290. DOI:10.1016/S2005-2901(10)60049-0
  • Banerjee, G. & Sarker, S. (1997). The role of Salvinia rotundifolia in scavenging aquatic Pb(II) pollution: a case study. Bioprocess and Biosystems Engineering, 17(5), 295-300. DOI:10.1007/PL00008966
  • Bates, L.S., Waldren, R.P. & Teare, D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-297. DOI:10.1007/BF00018060
  • Benabdallah, A., Rahmoune, C., Boumendjel, M., Aissi, O. & Messaoud, C. (2016). Total phenolic content and antioxidant activity of six wild Mentha species (Lamiaceae) from Northeast of algeria. Asian Pacific Journal of Tropical Biomedicine, 6(9), 760-766. DOI:10.1016/j.apjtb.2016.06.016
  • Cardwell, A.J., Hawker, D.W. & Greenway, M. (2002). Metal accumulation in aquatic Macrophytes from Southeast Queensland, Australia. Chemosphere, 48(7), 653-663. DOI:10.1016/S0045-6535(02)00164-9
  • Demirezen, D. & Aksoy, A. (2004). Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56, 685-696. DOI:10.1016/j.chemosphere.2004.04.011
  • Doğan, M., Saygıdeğer, S.D. & Çolak, U. (2009). Effect of lead toxicity on aquatic Macrophyte Elodea canadensis Michx. Bulletin of Environmental Contamination and Toxicology, 83, 249-254. DOI:10.1007/s00128-009-9733-5
  • Duman, F. & Öztürk, F. (2010). Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R.Br.). Journal of Environmental Sciences, 22(4), 526-532. DOI:10.1016/S1001-0742(09)60137-6
  • El-Sikaily, A., Khaled, A. & El-Nemr, A. (2004). Heavy metals monitoring using bivalves from Mediterranean Sea and Red Sea. Environmental Monitoring and Assessment, 98, 41-58. DOI:10.1023/B:EMAS.0000038178.98985.5d
  • Favas, P.J.C., Pratas, J. & Prasad, M.N.V. (2012). Accumulation of arsenic by aquatic plants in large-scale field conditions: Opportunities for phytoremediation and bioindication. Science of the Total Environment, 433, 390-397. DOI:10.1016/j.scitotenv.2012.06.091
  • Giallourou, N., Oruno-Concha, M.J. & Harbourne, N. (2016). Effects of domestic processing methods on the phytochemical content of watercress (Nasturtium officinale). Food Chemistry, 212, 411-419. DOI:10.1016/j.foodchem.2016.05.190
  • Gupta, P. & Chandra, P. (1996). Response of cadmium to Ceratophyllum demersum L., a rootless submerged plant. Waste Management, 16, 335– 337. DOI:10.1016/S0956-053X(96)00053-0
  • James, C.S., Eaton, J.W. & Hardwick, K. (1999). Competition between three submerged Macrophytes, Elodea canadensis Michx, Elodea nuttallii (Planch.) St John and Lagarosiphon major (Ridl.) Moss, Hydrobiologia, 415, 35-40. DOI:10.1007/978-94-017-0922-4_6
  • Hare, P.D. & Cress, W.A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21, 79-102. DOI:10.1023/A:1005703923347
  • Hoagland, D.R. & Arnon, D.I. (1950). The water culture methods for growing plants without soil. California Agricultural Experiment Station Circular, 347-39p.
  • Horuz, A., Korkmaz, A., Akınoğlu, G. & Boz, E. (2016). Bitkilerde demir klorozunun nedenleri ve giderilme yöntemleri, Toprak Bilimi ve Bitki Besleme Dergisi, 4 (1), 32 - 42.
  • Kacar, B. & Katkat, V. (2007). Bitki Besleme, Nobel Kitabevi, Ankara
  • Kara, Y. (2005). Bioaccumulation of Cu, Zn and Ni from the wastewater by treated Nasturtium officinale. International Journal of Environmental Science and Technology, 2(1), 63-67. DOI:10.1007/BF03325859
  • Karabulut, Ö. & Bellitürk, K. (2013). Farklı magnezyum kaynaklarının asit topraklarda yetiştirilen mısır bitkisinin potasyum- kalsiyum- magnezyum içeriğine etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 10(2), 83.
  • Lee, C.K., Low, K.S. & Hew, N.S. (1991). Accumulation of arsenic by aquatic plants. Science of The Total Environment, 103, 215-227. DOI:10.1016/0048-9697(91)90147-7
  • Lee, J.S. & Newman, M.E. (1997). Aquaculture an introduction. Agriscience and technology series. Interstate Publishers, Inc. Illionsis, 445-446.
  • Lichtenthaler, H.K. & Wellburn, A.R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 603, 591-592. DOI:10.1042/bst0110591
  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with folin phenol reagent. Journal of Biological Chemistry, 193, 265-275.
  • Martin, G.D. & Coetzee, J.A. (2014). Competition between two aquatic Macrophytes, Lagarosiphon major (Ridley) Moss (Hydrocharitaceae) and Myriophyllum spicatum Linnaeus (Haloragaceae) as influenced by substrate sediment and nutrients. Aquatic Botany, 114, 1-11. DOI:10.1016/j.aquabot.2013.11.001
  • Namdjoyan, S. & Kermanian, H. (2013). Exogenous nitric oxide (as sodium nitroprusside) ameliorates arsenic-induced oxidative stress in Watercress (Nasturtium officinale R.Br.) plants, Scientia Horticulturae, 161, 350-356. DOI:10.1016/j.scienta.2013.07.035
  • Nazari, M., Zarinkamar, F. & Soltani, B.M. (2017). Physiological, biochemical and molecular responses of Mentha aquatica L. to manganese. Plant Physiology and Biochemistry, 120, 202-212. DOI:10.1016/j.plaphy.2017.08.003
  • Nazari, M., Zarinkamar, F. & Shafaghat, Z. (2018). Manganese modulates the physiological and biochemical responses of Mentha aquatica L. to ultraviolet radiation. Journal of Trace Elements in Medicine and Biology, 45, 1-10. DOI:10.1016/j.jtemb.2017.08.015
  • Okcu, M., Tozlu, E., Kumlay, A.M. & Pehluvan, M. (2009). Ağır metallarin bitkiler üzerine etkileri. Alınteri Zirai Bilimler Dergisi, 17(2), 14-26.
  • Özdamar, K. (2004). Paket Programlar ile İstatistiksel Veri Analizi, Kaan Kitabevi.
  • Özden, M., Demirel, U. & Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of Grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae-Amsterdam, 119, 163-168. DOI:10.1016/j.scienta.2008.07.031
  • Özen, T. (2009). Investigation of antioxidant properties of Nasturtium officinale (Watercress) leaf extracts. Acta Poloniae Pharmaceutica-Drug Research, 66 (2), 187-193.
  • Öztürk, F., Duman, F., Leblebici, Z. & Temizgül, R. (2010). Arsenic accumulation and biological responses of Watercress (Nasturtium officinale R.Br.) exposed to arsenite. Environmental and Experimental Botany, 69, 167-174. DOI:10.1016/j.envexpbot.2010.03.006
  • Ratkevicius, N., Correa, J.A. & Moenne, A. (2003). Copper accumulation, synthesis of ascorbate and activation of ascorbate peroxidase in Enteromorpha compressa (L.) Grev. (Chlorophyta) from heavy metal-enriched environments in Northern Chile. Plant Cell and Environment, 26, 159-1608. DOI:10.1046/j.1365-3040.2003.01073.x
  • Riahi, L., Elferchichi, M., Ghazghazi, H., Jebali, J., Ziadi, S., Aouadhi, C., Chograni, H., Zaouali, Y., Zoghlami, N. & Mliki, A. (2013). Phytochemistry, antioxidant and antimicrobial activities of the essential oils of Mentha rotundifolia L. in Tunisia. Industrial Crops and Products, 49, 883-889. DOI:10.1016/j.indcrop.2013.06.032
  • Saygıdeğer, S., Doğan, M. & Keser, G. (2004). Effect of lead and pH on lead uptake, Chlorophyll and nitrogen content of Typha latifolia L. and Ceratophyllum demersum L. International Journal of Agriculture and Biology, 6(1), 168-172.
  • Saygıdeğer, S. & Doğan, M. (2005). Influence of pH on lead uptake, Chlorophyll and nitrogen content of Nasturtium officinale R.Br. and Mentha aquatica L.. Journal of Environmental Biology, 26(4), 753-759.
  • Seçmen, Ö. & Leblebici, E. (2008). Türkiye sulak alan bitkileri ve bitki örtüsü. Ege Üniversitesi.
  • Sharmila, P. & Pardha Saradhi, P. (2002). Proline accumulation in heavy metal stressed plants: an adaptive strategy. Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants, 179-199. DOI:10.1007/978-94-017-2660-3_7
  • Shields, E.C. & Moore, K.A. (2016). Effects of sediment and salinity on the growth and competitive abilities of three submersed Macrophytes. Aquatic Botany, 132, 24-29. DOI:10.1016/j.aquabot.2016.03.005
  • Singh, R., Tripathi, R.D., Dwivedi, S., Kumar, A., Trivedi, P.K. & Chakrabarty, D. (2010). Lead bioaccumulation potential of an aquatic Macrophyte Najas indica are related to antioxidant system. Bioresource Technology, 101(9), 3025-3032. DOI:10.1016/j.biortech.2009.12.031
  • Spencer, D.V. & Rejmánek, M. (2010). Competition between two submersed aquatic Macrophytes, Potamogeton pectinatus and Potamogeton gramineus, across a light gradient, Aquatic Botany, 92, 239-244. DOI:10.1016/j.aquabot.2010.01.001
  • Srivastava, S., Sounderajan, S., Udas, A. & Suprasanna, P. (2014). Effect of combinations of aquatic plants (Hydrilla, Ceratophyllum, Eichhornia, Lemna and Wolffia) on arsenic removal in field conditions. Ecological Engineering, 73, 297-301. DOI:10.1016/j.ecoleng.2014.09.029
  • Stiers, I., Njambuya, J. & Triest, L. (2011). Competitive abilities of invasive Lagarosiphon major and native Ceratophyllum demersum in monocultures and mixed cultures in relation to experimental sediment dredging. Aquatic Botany, 95, 161-166. DOI:10.1016/j.aquabot.2011.05.011
  • Száková, J., Tlustoš, P., Goessler, W., Pokorny, T., Findenig, S. & Balik, J. (2011). The effect of soil contamination level and plant origin on contents of arsenic, cadmium, zinc and arsenic compounds in Mentha aquatica L.. Archives of Environmental Protection, 37 (2), 109-121.
  • Türker, O.C., Türe, C., Böcük, H. & Yakar, A. (2016). Phyto-management of boron mine effluent using native Macrophytes in mono-culture and poly-culture constructed wetlands. Ecological Engineering, 94, 65-74. DOI:10.1016/j.ecoleng.2016.05.043
  • Wang, M., Zheng, Q., Shen, Q. & Guo, S. (2013). The critical role of potassium in plant stress response, International Journal of Molecular Sciences, 14, 7370-7390. DOI:10.3390/ijms14047370
  • Yıldız, M. & Terzi, H. (2007). Bitkilerin yüksek sıcaklık stresine toleransının hücre canlılığı ve fotosentetik pigmentasyon testleri ile belirlenmesi, Erciyes Üniversitesi Fen Bilimleri Dergisi, 23 (1-2), 47-60.
  • Zeb, A. (2015). Phenolic profile and antioxidant potential of wild Watercress (Nasturtium officinale L.). Springer Plus, 4, 714. DOI:10.1186/s40064-015-1514-5
  • Zheng, Y., Wang, X., Dzakpasu, M., Zhao, Y., Ngo, H.H., Guo, W., Ge, Y. & Xiong, J. (2016). Effects of interspecific competition on the growth of Macrophytes and nutrient removal in constructed wetlands: A comparative assessment of free water surface and horizontal subsurface flow systems. Bioresource Tecnology, 207, 134-141. DOI:10.1016/j.biortech.2016.02.008
  • Zurayk, R., Sukkariyah, B. & Baalbaki, R. (2001). Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water Air Soil Pollution, 127, 373-388. DOI:10.1023/A:1005209823111

Investigation of Nasturtium officinale R.Br. and Mentha aquatica L. taxa reaction in different lead element concentrations

Yıl 2021, , 283 - 292, 15.09.2021
https://doi.org/10.12714/egejfas.38.3.04

Öz



In this study, it was aimed to determine the morphological and physiological effects of agricultural activities and lead pollution on Nasturtium officinale and Mentha aquatica macrophytes living in Umurbey Stream (Çanakkale), and also the competition between plants in this region was investigated. Macrophytes were collected between May-June 2016 from the lower part of Gökköy Passage, which is covered with orchards on both sides of Çanakkale province, Umurbey district, Umurbey Stream. The macrophytes were left in the nutrient solution for 3 days for the adaptation process. In the first stage, the effect of lead contamination on the morphology and physiology of macrophyte species was investigated in a single culture at 1, 5 and 10 ppm Pb concentrations. Then, the competitiveness of two macrophyte species at an intermediate dose of 5 ppm Pb in a mixed culture was examined. In addition to the amount of, chlorophyll a and b, carotenoid, free proline, protein, total phenolic compound amount, adsorbed lead amount and total potassium, phosphorus, iron and magnesium amounts were examined. P, Fe, Mg, K, Pb and protein content reached the highest level at the dose of 5 ppm Pb where N. officinale was affected the most morphologically. At the same time, N officinale minimized the photosynthetic pigment and free proline levels at this dose. The dose at which M. aquatica was most affected morphologically was 10 ppm Pb dose. P, Fe, Mg and K contents of M. aquatica at that dose reached the highest value. This study proved that M. aquatica was morphologically and physiologically more resistant in two control groups where there was no lead stress and aquatic plants were grown together. Morphologically and physiologically, it has been shown that N. officinale was more combative when lead was applied as stress. With this study, it was determined that watercress is a good lead accumulator by adsorbing more than twice the lead amount absorbed by water mint.


Proje Numarası

953.2018

Kaynakça

  • Abernethy, V.J., Sabbatini, M.R. & Murphy, K.J. (1996). Response of Elodea canadensis Michx, and Myriophyllum spicatum L. to shade cutting and competition in experimental culture. Hydrobiologia, 340, 219-224. DOI:10.1007/BF00012758
  • Agami, M. & Waisel, Y. (2002). Competitive relationships between two water plant species: Najas marina L. and Myriophyllum spicatum L.. Hydrobiologia, 482, 197-200. DOI:10.1023/A:1021216532161
  • Aslan, M., Ünlü, M.Y., Türkmen, N. & Yılmaz, Y.Z. (2003). Sorption of cadmium and effects on growth, protein content, and photosynthetic pigment composition of Nasturtium officinale R.Br. and Mentha aquatica L.. Bulletin of Environmental Contamination and Toxicology, 71, 323-329. DOI:10.1007/s00128-003-0167-1
  • Aziz, A., Martin-Tanguy, J. & Larher, F. (1998). Stress-Induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiologia Plantarum, 104, 195-202. DOI:10.1034/j.1399-3054.1998.1040207.x
  • Bahramikia, S. & Yazdanparast, R. (2010). Antioxidant efficacy of Nasturtium officinale extracts using various in vitro assay systems. Journal of Acupuncture & Meridian Studies, 3(4), 283-290. DOI:10.1016/S2005-2901(10)60049-0
  • Banerjee, G. & Sarker, S. (1997). The role of Salvinia rotundifolia in scavenging aquatic Pb(II) pollution: a case study. Bioprocess and Biosystems Engineering, 17(5), 295-300. DOI:10.1007/PL00008966
  • Bates, L.S., Waldren, R.P. & Teare, D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-297. DOI:10.1007/BF00018060
  • Benabdallah, A., Rahmoune, C., Boumendjel, M., Aissi, O. & Messaoud, C. (2016). Total phenolic content and antioxidant activity of six wild Mentha species (Lamiaceae) from Northeast of algeria. Asian Pacific Journal of Tropical Biomedicine, 6(9), 760-766. DOI:10.1016/j.apjtb.2016.06.016
  • Cardwell, A.J., Hawker, D.W. & Greenway, M. (2002). Metal accumulation in aquatic Macrophytes from Southeast Queensland, Australia. Chemosphere, 48(7), 653-663. DOI:10.1016/S0045-6535(02)00164-9
  • Demirezen, D. & Aksoy, A. (2004). Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56, 685-696. DOI:10.1016/j.chemosphere.2004.04.011
  • Doğan, M., Saygıdeğer, S.D. & Çolak, U. (2009). Effect of lead toxicity on aquatic Macrophyte Elodea canadensis Michx. Bulletin of Environmental Contamination and Toxicology, 83, 249-254. DOI:10.1007/s00128-009-9733-5
  • Duman, F. & Öztürk, F. (2010). Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R.Br.). Journal of Environmental Sciences, 22(4), 526-532. DOI:10.1016/S1001-0742(09)60137-6
  • El-Sikaily, A., Khaled, A. & El-Nemr, A. (2004). Heavy metals monitoring using bivalves from Mediterranean Sea and Red Sea. Environmental Monitoring and Assessment, 98, 41-58. DOI:10.1023/B:EMAS.0000038178.98985.5d
  • Favas, P.J.C., Pratas, J. & Prasad, M.N.V. (2012). Accumulation of arsenic by aquatic plants in large-scale field conditions: Opportunities for phytoremediation and bioindication. Science of the Total Environment, 433, 390-397. DOI:10.1016/j.scitotenv.2012.06.091
  • Giallourou, N., Oruno-Concha, M.J. & Harbourne, N. (2016). Effects of domestic processing methods on the phytochemical content of watercress (Nasturtium officinale). Food Chemistry, 212, 411-419. DOI:10.1016/j.foodchem.2016.05.190
  • Gupta, P. & Chandra, P. (1996). Response of cadmium to Ceratophyllum demersum L., a rootless submerged plant. Waste Management, 16, 335– 337. DOI:10.1016/S0956-053X(96)00053-0
  • James, C.S., Eaton, J.W. & Hardwick, K. (1999). Competition between three submerged Macrophytes, Elodea canadensis Michx, Elodea nuttallii (Planch.) St John and Lagarosiphon major (Ridl.) Moss, Hydrobiologia, 415, 35-40. DOI:10.1007/978-94-017-0922-4_6
  • Hare, P.D. & Cress, W.A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21, 79-102. DOI:10.1023/A:1005703923347
  • Hoagland, D.R. & Arnon, D.I. (1950). The water culture methods for growing plants without soil. California Agricultural Experiment Station Circular, 347-39p.
  • Horuz, A., Korkmaz, A., Akınoğlu, G. & Boz, E. (2016). Bitkilerde demir klorozunun nedenleri ve giderilme yöntemleri, Toprak Bilimi ve Bitki Besleme Dergisi, 4 (1), 32 - 42.
  • Kacar, B. & Katkat, V. (2007). Bitki Besleme, Nobel Kitabevi, Ankara
  • Kara, Y. (2005). Bioaccumulation of Cu, Zn and Ni from the wastewater by treated Nasturtium officinale. International Journal of Environmental Science and Technology, 2(1), 63-67. DOI:10.1007/BF03325859
  • Karabulut, Ö. & Bellitürk, K. (2013). Farklı magnezyum kaynaklarının asit topraklarda yetiştirilen mısır bitkisinin potasyum- kalsiyum- magnezyum içeriğine etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 10(2), 83.
  • Lee, C.K., Low, K.S. & Hew, N.S. (1991). Accumulation of arsenic by aquatic plants. Science of The Total Environment, 103, 215-227. DOI:10.1016/0048-9697(91)90147-7
  • Lee, J.S. & Newman, M.E. (1997). Aquaculture an introduction. Agriscience and technology series. Interstate Publishers, Inc. Illionsis, 445-446.
  • Lichtenthaler, H.K. & Wellburn, A.R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 603, 591-592. DOI:10.1042/bst0110591
  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with folin phenol reagent. Journal of Biological Chemistry, 193, 265-275.
  • Martin, G.D. & Coetzee, J.A. (2014). Competition between two aquatic Macrophytes, Lagarosiphon major (Ridley) Moss (Hydrocharitaceae) and Myriophyllum spicatum Linnaeus (Haloragaceae) as influenced by substrate sediment and nutrients. Aquatic Botany, 114, 1-11. DOI:10.1016/j.aquabot.2013.11.001
  • Namdjoyan, S. & Kermanian, H. (2013). Exogenous nitric oxide (as sodium nitroprusside) ameliorates arsenic-induced oxidative stress in Watercress (Nasturtium officinale R.Br.) plants, Scientia Horticulturae, 161, 350-356. DOI:10.1016/j.scienta.2013.07.035
  • Nazari, M., Zarinkamar, F. & Soltani, B.M. (2017). Physiological, biochemical and molecular responses of Mentha aquatica L. to manganese. Plant Physiology and Biochemistry, 120, 202-212. DOI:10.1016/j.plaphy.2017.08.003
  • Nazari, M., Zarinkamar, F. & Shafaghat, Z. (2018). Manganese modulates the physiological and biochemical responses of Mentha aquatica L. to ultraviolet radiation. Journal of Trace Elements in Medicine and Biology, 45, 1-10. DOI:10.1016/j.jtemb.2017.08.015
  • Okcu, M., Tozlu, E., Kumlay, A.M. & Pehluvan, M. (2009). Ağır metallarin bitkiler üzerine etkileri. Alınteri Zirai Bilimler Dergisi, 17(2), 14-26.
  • Özdamar, K. (2004). Paket Programlar ile İstatistiksel Veri Analizi, Kaan Kitabevi.
  • Özden, M., Demirel, U. & Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of Grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae-Amsterdam, 119, 163-168. DOI:10.1016/j.scienta.2008.07.031
  • Özen, T. (2009). Investigation of antioxidant properties of Nasturtium officinale (Watercress) leaf extracts. Acta Poloniae Pharmaceutica-Drug Research, 66 (2), 187-193.
  • Öztürk, F., Duman, F., Leblebici, Z. & Temizgül, R. (2010). Arsenic accumulation and biological responses of Watercress (Nasturtium officinale R.Br.) exposed to arsenite. Environmental and Experimental Botany, 69, 167-174. DOI:10.1016/j.envexpbot.2010.03.006
  • Ratkevicius, N., Correa, J.A. & Moenne, A. (2003). Copper accumulation, synthesis of ascorbate and activation of ascorbate peroxidase in Enteromorpha compressa (L.) Grev. (Chlorophyta) from heavy metal-enriched environments in Northern Chile. Plant Cell and Environment, 26, 159-1608. DOI:10.1046/j.1365-3040.2003.01073.x
  • Riahi, L., Elferchichi, M., Ghazghazi, H., Jebali, J., Ziadi, S., Aouadhi, C., Chograni, H., Zaouali, Y., Zoghlami, N. & Mliki, A. (2013). Phytochemistry, antioxidant and antimicrobial activities of the essential oils of Mentha rotundifolia L. in Tunisia. Industrial Crops and Products, 49, 883-889. DOI:10.1016/j.indcrop.2013.06.032
  • Saygıdeğer, S., Doğan, M. & Keser, G. (2004). Effect of lead and pH on lead uptake, Chlorophyll and nitrogen content of Typha latifolia L. and Ceratophyllum demersum L. International Journal of Agriculture and Biology, 6(1), 168-172.
  • Saygıdeğer, S. & Doğan, M. (2005). Influence of pH on lead uptake, Chlorophyll and nitrogen content of Nasturtium officinale R.Br. and Mentha aquatica L.. Journal of Environmental Biology, 26(4), 753-759.
  • Seçmen, Ö. & Leblebici, E. (2008). Türkiye sulak alan bitkileri ve bitki örtüsü. Ege Üniversitesi.
  • Sharmila, P. & Pardha Saradhi, P. (2002). Proline accumulation in heavy metal stressed plants: an adaptive strategy. Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants, 179-199. DOI:10.1007/978-94-017-2660-3_7
  • Shields, E.C. & Moore, K.A. (2016). Effects of sediment and salinity on the growth and competitive abilities of three submersed Macrophytes. Aquatic Botany, 132, 24-29. DOI:10.1016/j.aquabot.2016.03.005
  • Singh, R., Tripathi, R.D., Dwivedi, S., Kumar, A., Trivedi, P.K. & Chakrabarty, D. (2010). Lead bioaccumulation potential of an aquatic Macrophyte Najas indica are related to antioxidant system. Bioresource Technology, 101(9), 3025-3032. DOI:10.1016/j.biortech.2009.12.031
  • Spencer, D.V. & Rejmánek, M. (2010). Competition between two submersed aquatic Macrophytes, Potamogeton pectinatus and Potamogeton gramineus, across a light gradient, Aquatic Botany, 92, 239-244. DOI:10.1016/j.aquabot.2010.01.001
  • Srivastava, S., Sounderajan, S., Udas, A. & Suprasanna, P. (2014). Effect of combinations of aquatic plants (Hydrilla, Ceratophyllum, Eichhornia, Lemna and Wolffia) on arsenic removal in field conditions. Ecological Engineering, 73, 297-301. DOI:10.1016/j.ecoleng.2014.09.029
  • Stiers, I., Njambuya, J. & Triest, L. (2011). Competitive abilities of invasive Lagarosiphon major and native Ceratophyllum demersum in monocultures and mixed cultures in relation to experimental sediment dredging. Aquatic Botany, 95, 161-166. DOI:10.1016/j.aquabot.2011.05.011
  • Száková, J., Tlustoš, P., Goessler, W., Pokorny, T., Findenig, S. & Balik, J. (2011). The effect of soil contamination level and plant origin on contents of arsenic, cadmium, zinc and arsenic compounds in Mentha aquatica L.. Archives of Environmental Protection, 37 (2), 109-121.
  • Türker, O.C., Türe, C., Böcük, H. & Yakar, A. (2016). Phyto-management of boron mine effluent using native Macrophytes in mono-culture and poly-culture constructed wetlands. Ecological Engineering, 94, 65-74. DOI:10.1016/j.ecoleng.2016.05.043
  • Wang, M., Zheng, Q., Shen, Q. & Guo, S. (2013). The critical role of potassium in plant stress response, International Journal of Molecular Sciences, 14, 7370-7390. DOI:10.3390/ijms14047370
  • Yıldız, M. & Terzi, H. (2007). Bitkilerin yüksek sıcaklık stresine toleransının hücre canlılığı ve fotosentetik pigmentasyon testleri ile belirlenmesi, Erciyes Üniversitesi Fen Bilimleri Dergisi, 23 (1-2), 47-60.
  • Zeb, A. (2015). Phenolic profile and antioxidant potential of wild Watercress (Nasturtium officinale L.). Springer Plus, 4, 714. DOI:10.1186/s40064-015-1514-5
  • Zheng, Y., Wang, X., Dzakpasu, M., Zhao, Y., Ngo, H.H., Guo, W., Ge, Y. & Xiong, J. (2016). Effects of interspecific competition on the growth of Macrophytes and nutrient removal in constructed wetlands: A comparative assessment of free water surface and horizontal subsurface flow systems. Bioresource Tecnology, 207, 134-141. DOI:10.1016/j.biortech.2016.02.008
  • Zurayk, R., Sukkariyah, B. & Baalbaki, R. (2001). Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water Air Soil Pollution, 127, 373-388. DOI:10.1023/A:1005209823111
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Koruma ve Biyolojik Çeşitlilik
Bölüm Makaleler
Yazarlar

Gizem İlgün Boyalan 0000-0003-3525-1056

Hüseyin Erduğan 0000-0002-7047-6640

Proje Numarası 953.2018
Yayımlanma Tarihi 15 Eylül 2021
Gönderilme Tarihi 15 Ekim 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Boyalan, G. İ., & Erduğan, H. (2021). Nasturtium officinale R.Br. ve Mentha aquatica L. taksonlarının farklı kurşun elementi konsantrasyonlarındaki tepkilerinin araştırılması. Ege Journal of Fisheries and Aquatic Sciences, 38(3), 283-292. https://doi.org/10.12714/egejfas.38.3.04