Research Article
BibTex RIS Cite

Murat Nehri, Türkiye'den Barbus lacerta'nın yağ asitlerinin belirlenmesi ve besin kalitesinin değerlendirilmesi

Year 2025, Volume: 42 Issue: 2, 173 - 182, 15.06.2025

Abstract

Murat Nehri'nde avlanan balıkçılardan satın alınan dişi B. lacerta balıklarının karaciğer, kas ve gonadlarındaki mevsimsel yağ asidi bileşimlerindeki farklılıkları araştırmak ve ayrıca besin kalitesi indeksi yağ asitleri ile yenilebilir kas dokusundaki besin kalitesinin ortaya konulması amaçlanmıştır. B. lacerta'nın yağ asiyi bileşimi üç doku/organ arasında farklılık göstermiştir ve en önemli fark kas ve karaciğer arasında görülmüştür. B. lacerta, kas ve karaciğerlerinde gonadlarından daha yüksek oranlarda 14:0, 16:0, EPA ve DHA bulmuştur. Buna karşılık, ARA'nın yumurtlama süreçlerindeki (kış sonu-ilkbahar başı) önemli rolü nedeniyle gonadlar daha yüksek ARA oranlarına sahipti. Buna paralel olarak, yenilebilir kas dokusundaki besin kalitesini belirlemede yağ asitlerine dayalı olarak kullanılan besin kalitesi indekslerinde (AI, TI, h/H, DFA, OFA, ω6/ωω3, DHA+EPA, HPI, PUFA/SFA) değişiklikler olmuştur. En yüksek değişim AI (Aterojenite indeksi) da olmakla birlikte önemli mevsimsel farklılıklar yoktu. Besin kalite indeksi olarak en düşük AI değerleri ilkbaharda (0,42) ve kışın (0,41) belirlendi. Her mevsimde öne çıkan gıda kalite indeksi farklıydı. Bu nedenle, B. lacerta'nın yüksek kaliteli ve sağlıklı bir gıda olarak tüketimi kısmen yaz hariç önerilebilir.

Project Number

BAP-FEF.2018.00.004

References

  • Ahmed, I., Jan, K., Fatma, S., & Dawood, M.A. (2022). Muscle proximate composition of various food fish species and their nutritional significance: A review. Journal of Animal Physiology and Animal Nutrition, 106(3), 690-719. https://doi.org/10.1111/jpn.13711
  • Anido, R. V., Zaniboni-Filho, E., Garcia, A.S., Baggio, S.R., & Fracalossi, D.M. (2015). Characterization of the ovary fatty acids composition of Rhamdia quelen (Quoy and Gaimard) (Teleostei: Siluriformes), throughout their reproductive cycle. Neotropical Ichthyology, 13(2), 453-460. https://doi.org/10.1590/1982-0224-20140139
  • Batkowska, J., Drabik, K., Brodacki, A., Czech, A., & Adamczuk, A. (2021). Fatty acids profile, cholesterol level and quality of table eggs from hens fed with the addition of linseed and soybean oil. Food Chemistry, 334, 127612. https://doi.org/10.1016/j.foodchem.2020.127612
  • Bayır, A., Sirkecioğlu, A.N., Aksakal, E., Bayır, M., Haliloğlu, H.Y., Güneş, M., & Aras, N.M. (2011). Changes in the fatty acids of neutral and polar lipids of Silurus glanis and Barbus capito capito during an annual cycle. Italian Journal of Food Science, 23(2), 173-179.
  • Breslow, J.L. (2006). n−3 Fatty acids and cardiovascular disease. The American Journal of Clinical Nutrition, 83(6), 1477S-1482S. https://doi.org/10.1093/ajcn/83.6.1477S
  • Chen, J., & Liu, H. (2020). Nutritional indices for assessing fatty acids: A mini-review. International Journal of Molecular Sciences, 21(16), 5695. https://doi.org/10.3390/ijms21165695
  • Costa, R.G., Mesquita, Í.V.U., Queiroga, R.D.C.R.D.E., Medeiros, A.N.D., Carvalho, F.F.R.D., & Beltrão Filho, E. M. (2008). Características químicas e sensoriais do leite de cabras Moxotó alimentadas com silagem de maniçoba. Revista Brasileira de Zootecnia, 37, 694-702. https://doi.org/10.1590/S1516-35982008000400016
  • Dal Bosco, A.D., Mugnai, C., Roscini, V., & Castellini, C. (2013). Fillet fatty acid composition, estimated indexes of lipid metabolism and oxidative status of wild and farmed brown trout (Salmo trutta L.). Italian Journal of Food Science/Rivista Italiana di Scienza degli Alimenti, 25(1), 83-89.
  • David, F., Sandra, P., & Vickers, A. K. (2005). Column selection for the analysis of fatty acid methyl esters. Food Analysis Application. Palo Alto, CA: Agilent Technologies, 19, 19.
  • Dopeikar, H., Keivany, Y., & Shadkhast, M. (2015). Reproductive biology and gonad histology of the kura barbel, Barbus lacerta (Cyprinidae), in Bibi-Sayyedan River, Tigris basin, Iran. North-Western Journal of Zoology, 11, 163-170.
  • Dietschy, J.M. (1998). Dietary fatty acids and the regulation of plasma low density lipoprotein cholesterol concentrations. The Journal of Nutrition, 128(2), 444S-448S. https://doi.org/10.1093/jn/128.2.444S
  • FAO. (2014). The state of world fisheries and aquaculture. Opportunities and challenges. Food and agriculture Organization of the United Nations. Rome, Italy, 243 p.
  • FAO, WHO. (2010). Fats and Fatty Acids in Human Nutrition: Report of an Expert Consultation; FAO food and nutrition paper #91; FAO: Rome, Italy; WHO: Geneva, Switzerland, 21812367.
  • Fernandes, C.E., da Silva Vasconcelos, M.A., de Almeida Ribeiro, M., Sarubbo, L.A., Andrade, S.A.C., & de Melo Filho, A.B. (2014). Nutritional and lipid profiles in marine fish species from Brazil. Food Chemistry, 160, 67-71. http://dx.doi.org/10.1016/j.foodchem.2014.03.055
  • Galloway, A.W., & Winder, M. (2015). Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids. PLoS One, 10(6), e0130053. https://doi.org/10.1371/journal.pone.0130053
  • Garaffo, M.A., Vassallo-Agius, R., Nengas, Y., Lembo, E., Rando, R., Maisano, R., Dugo, G., & Giuffrida, D. (2011). Fatty acids profile, atherogenic (IA) and thrombogenic (IT) health lipid indices, of raw roe of blue fin tuna (Thunnus thynnus L.) and their salted product “Bottarga”. Food and Nutrition Sciences, 2(7), 736-743. https://doi.org/10.4236/fns.2011.27101
  • Geldiay, R., Balık, S. (2007). Freshwater fishes of Türkiye. Ege University Faculty of Fisheries Publications, No: 46. Ege University Press. Bornova İzmir; p.532. (in Turkish)
  • Gladyshev, M.I., Sushchik, N.N., & Makhutova, O.N. (2013). Production of EPA and DHA in aquatic ecosystems and their transfer to the land. Prostaglandins & Other Lipid Mediators, 107, 117-126. https://doi.org/10.1016/j.prostaglandins.2013.03.002
  • Gokce, M.A., Tasbozan, O., Surhan, S.T., Celik, M., Ozcan, F., & Basusta, A. (2011). Proximate composition and fatty acid profile of shabbout (Barbus grypus Heckel) caught from the Atatürk Dam Lake, Turkey. Journal of Food, Agriculture & Environment, 9(2), 148-151.
  • Hansen, H.J., & Abraham, S. (1983) Influence of temperature, environ-mental salinity and fasting on the patterns of fatty acids synthesized by gills and liver of the European eel (Anguilla Anguilla). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 75(4), 581-587. https://doi.org/10.1016/0305-0491(83)90100-1
  • Hara, A., & Radin N.S. (1978) Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90(1), 420 426. https://doi.org/10.1016/0003-2697(78)90046-5
  • Hong, H., Zhou, Y., Wu ,H., Luo, Y., & Shen, H. (2014). Lipid content and fatty acid profile of muscle, brain and eyes of seven freshwater fish: A comparative study. Journal of the American Oil Chemists’ Society, 91, 795-804. https://doi.org/10.1007/s11746-014-2414-5
  • Jardine, T.D., Galloway, A.W.E., & Kainz, M.J. (2020). Unlocking the power of fatty acids as dietary tracers and metabolic signals in fishes and aquatic invertebrates. Philosophical Transactions of the Royal Society B-Biological Sciences, 375, 11. https://doi.org/10.1098/rstb.2019.0639
  • Jaya-Ram, A., Kuah, M.K., Lim, P.S., Kolkovski, S., & Shu-Chien, A.C. (2008). Influence of dietary HUFA levels on reproductive performance, tissue fatty acid profile and desaturase and elongase mRNAs expression in female zebrafish Danio rerio. Aquaculture, 277(3-4), 275-281. http://dx.doi.org/10.1093/cdn/nzaa034
  • Kromhout, D., Giltay, E.J., & Geleijnse, J.M. (2010). n–3 Fatty acids and cardiovascular events after myocardial infarction. New England Journal of Medicine, 363(21), 2015 2026. http://dx.doi.org/10.1056/NEJMoa1003603
  • Liu, W., Lyu, J., Wu, D., Cao, Y., Ma, Q., Lu, Y., & Zhang, X. (2022). Cutting techniques in the fish industry: A critical review. Foods, 11(20), 3206. https://doi.org/10.3390/foods11203206
  • Łuczyńska, J., & Paszczyk, B. (2019). Health risk assessment of heavy metals and lipid quality indexes in freshwater fish from lakes of Warmia and Mazury region, Poland. International Journal of Environmental Research and Public Health, 16(19), 3780. https://doi.org/10.3390/ijerph16193780
  • Łuczyńska, J., Paszczyk, B., Nowosad, J., & Łuczyński, M.J. (2017). Mercury, fatty acids content and lipid quality indexes in muscles of freshwater and marine fish on the polish market. Risk assessment of fish consumption. International Journal of Environmental Research and Public Health, 14(10), 1120. https://doi.org/10.3390/ijerph14101120
  • Majdoubi, F.Z., Benhima, R., Ouizgane, A., Farid, S., Droussi, M., Guerriero, G., & Hasnaoui, M. (2020). Ova Fatty Acids Composition and Spawning Performances of Silver Carp, Hypophthalmichthys molitrix (Morocco). Turkish Journal of Aquatic Sciences, 20(12), 879-888. https://doi.org/10.4194/1303-2712-v20_12_04
  • Mancini, I., Defant, A., Mesarič, T., Potočnik, F., Batista, U., Guella, G., ... & Sepčić, K. (2011). Fatty acid composition of common barbel (Barbus barbus) roe and evaluation of its haemolytic and cytotoxic activities. Toxicon, 57(7 8), 1017 1022. https://doi.org/10.1016/j.toxicon.2011.04.004
  • Masclaux, H., Bec, A., Kainz, M.J., Perriere, F., Desvilettes, C., & Bourdier, G. (2012). Accumulation of polyunsaturated fatty acids by cladocerans: effects of taxonomy, temperature and food. Freshwater Biology, 57, 696-703. https://doi.org/10.1111/j.1365-2427.2012.02735.x
  • Matos, Â. P., Matos, A. C., & Moecke, E. H. S. (2019). Polyunsaturated fatty acids and nutritional quality of five freshwater fish species cultivated in the western region of Santa Catarina, Brazil. Brazilian Journal of Food Technology, 22, e2018193. https://doi.org/10.1590/1981-6723.19318
  • Mititelu, M., Lupuliasa, D., Neacșu, S. M., Olteanu, G., Busnatu, Ș. S., Mihai, A., ... & Scafa-Udriște, A. (2024). Polyunsaturated fatty acids and human health: A key to modern nutritional balance in association with polyphenolic compounds from food sources. Foods, 14(1), 46. https://doi.org/10.3390/foods14010046
  • Olgunoğlu, I. A., Olgunoğlu, M. P., & Artar, E. (2011). Seasonally changes in biochemical composition and meat yield of shabut (Barbus grypus, Heckel 1843. Iranian Journal of Fisheries Sciences, 10(1), 181–187.
  • Parzanini, C., Arts, M. T., Rohtla, M., Koprivnikar, J., Power, M., Skiftesvik, A. B., Browman, H. İ., Milotic, D., & Durif, C. M. F. (2021). Feeding habitat and silvering stage affect lipid content and fatty acid composition of European eel Anguilla anguilla tissues. Journal of Fish Biology, 99, 1110–1124. https://doi.org/10.1111/jfb.14815
  • Pierron, F., Baudrimont, M., Dufour, S., Elie, P., Bossy, A., Lucia, M., & Massabuau, J.C. (2009). Ovarian gene transcription and effect of cadmium pre-exposure during artificial sexual maturation of the European eel (Anguilla anguilla). Biometals, 22, 985-994. http://dx.doi.org/10.1007/s10534-009-9250-3
  • Rhee, J.J., Kim, E., Buring, J.E., & Kurth, T. (2017). Fish consumption, omega-3 fatty acids, and risk of cardiovascular disease. American Journal of Preventive Medicine, 52(1), 10 19. http://dx.doi.org/10.1016/j.amepre.2016.07.020
  • Rincón-Cervera, M.Á., González-Barriga, V., Romero, J., Rojas, R., & López-Arana, S. (2020). Quantification and distribution of omega-3 fatty acids in South Pacific fish and shellfish species. Foods, 9(2), 233. https://doi.org/10.3390/foods9020233
  • Santos-Silva, J., Bessa, R.J.B., & Santos-Silva, F.J.L.P.S. (2002). Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livestock Production Science, 77(2-3), 187-194. https://doi.org/10.1016/S03016226(02)00059-3
  • Sargent, J. R., Tocher, D.R., & d Bell, J.G., 2002. The lipids. In: Halver, J. E. & Hardy, R. W. (Eds.),. Fish nutrition (pp: 181- 257). 3rd San Diego, Academic Press.
  • Silva, A.T., Ruvieri, E.S.P., Mateus O., Magalhaes, M.O., Neto, N.L., & Houngyu, K. (2019). An ́alise Fatorial Explorat ́oria: aplica ̧c ̃ao em dados de crimescontra as mulheres em 141 munic ́ıpios do estado de MatoGrosso no ano de 2016. Alfenas, 8(2), 427-436 (in Spanish).
  • Suloma, A., & Ogata, H.Y. (2011). Arachidonic acid is a major component in gonadal fatty acids of tropical coral reef fish in the Philippines and Japan. Journal Aquatic Research Development, 2, 111. https://doi.org/10.4172/2155-9546.1000111
  • Subhadra, B., Lochmann, R., Rawles, S., & Chen, R. (2006). Effect of dietary lipid source on the growth, tissue composition and hematological parameters of largemouth bass (Micropterus salmoides). Aquaculture, 255(1-4), 210-222. https://doi.org/10.1016/j.aquaculture.2005.11.043
  • Şen Özdemir, N.Ş., Koyun, M., Caf, F., & Kırıcı, M. (2023). Factors affecting nutritional quality in terms of the fatty acid composition of Cyprinion macrostomus. Grasas y Aceites, 74(2), e508-e508. https://doi.org/10.3989/gya.0444221
  • Tibaoui, S., Smeti, S., Essid, I., Bertolín, J.R., Joy, M., & Atti, N. (2020). Physicochemical characteristics, fatty acid profile, alpha-tocopherol content, and lipid oxidation of meat from ewes fed different levels of distilled myrtle residues. Molecules, 25(21), 4975. https://doi.org/10.3390/molecules25214975
  • Tocher, D.R. (2003). Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science, 11(2), 107–184. https://doi.org/10.1080/713610925
  • Tocher, D.R. (2010). Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research, 41, 717-732. https://doi.org/10.1111/j.1365-2109.2008.02150.x
  • Tonial, I.B., Oliveira, D.D., Coelho, A.R., Matsushita, M., Coró, F.A.G., Souza, N.D., & Visentainer, J.V., 2014. Quantification of essential fatty acids and assessment of the nutritional quality indexes of lipids in tilapia alevins and juvenile tilapia fish (Oreochromis niloticus). Journal of Food Research, 3(3), 105-114. https://doi.org/10.5539/jfr.v3n3p105
  • Ugoala, C., Ndukwe, G.I. & Audu, T.O. (2009). Fatty acids composition and nutritional quality of some freshwater fishes. Nature Precedings, https://doi.org/10.1038/npre.2009.3239.1
  • Ulbricht, T.L.V., & Southgate, D.A.T. (1991). Coronary heart disease: seven dietary factors. The Lancet, 338(8773), 985-992. https://doi.org/10.1016/0140-6736(91)91846-M
  • Xu WeiNa, X.W., Qian Yu, Q.Y., Li XiangFei, L.X., Li JunYi, L.J., Li PengFei, L.P., Cai DongSen, C.D., & Liu WenBin, L.W. (2017). Effects of dietary biotin on growth performance and fatty acids metabolism in blunt snout bream, Megalobrama amblycephala fed with different lipid levels diets. Aquaculture, 479, 790 797. https://doi.org/10.1016/j.aquaculture.2017.07.018

Determination of fatty acids and evaluation of nutritional quality of Barbus lacerta from Murat River, Türkiye

Year 2025, Volume: 42 Issue: 2, 173 - 182, 15.06.2025

Abstract

The ultimate goal, to investigate for differences in seasonally fatty acid composition of liver, muscle and gonad from Barbus lacerta females’ fish, bought from fishermen who hunt from the Murat River, but also to reveal the food quality in edible muscle tissue with nutritional quality index fatty acids. Fatty acid composition of B. lacerta varied different among the three tissues/organs and the most important difference was seen between muscle and liver. B. lacerta had found higher proportions in 14:0, 16:0, EPA and DHA in muscle and liver than the gonads. In contrast, the gonads had higher proportions of ARA because of the important role of ARA in the ovulation processes (late winter-early spring). In parallel, there were changes in the food quality indexes (AI, TI, h/H, DFA, OFA, ω6/ω3, DHA+EPA, HPI, PUFA/SFA) used based on fatty acids in determining the food quality in edible muscle tissue. The highest change was in AI (Atherogenicity index), although there were no significant seasonal differences. The lowest AI values as good quality index was determined in spring (0.42) and. winter (0.41). The food quality index that stood out in each season was different. Therefore, it can be suggested that B. lacerta can be consumed as a high quality and healthy food, partially except for summer.

Supporting Institution

Bingöl University

Project Number

BAP-FEF.2018.00.004

References

  • Ahmed, I., Jan, K., Fatma, S., & Dawood, M.A. (2022). Muscle proximate composition of various food fish species and their nutritional significance: A review. Journal of Animal Physiology and Animal Nutrition, 106(3), 690-719. https://doi.org/10.1111/jpn.13711
  • Anido, R. V., Zaniboni-Filho, E., Garcia, A.S., Baggio, S.R., & Fracalossi, D.M. (2015). Characterization of the ovary fatty acids composition of Rhamdia quelen (Quoy and Gaimard) (Teleostei: Siluriformes), throughout their reproductive cycle. Neotropical Ichthyology, 13(2), 453-460. https://doi.org/10.1590/1982-0224-20140139
  • Batkowska, J., Drabik, K., Brodacki, A., Czech, A., & Adamczuk, A. (2021). Fatty acids profile, cholesterol level and quality of table eggs from hens fed with the addition of linseed and soybean oil. Food Chemistry, 334, 127612. https://doi.org/10.1016/j.foodchem.2020.127612
  • Bayır, A., Sirkecioğlu, A.N., Aksakal, E., Bayır, M., Haliloğlu, H.Y., Güneş, M., & Aras, N.M. (2011). Changes in the fatty acids of neutral and polar lipids of Silurus glanis and Barbus capito capito during an annual cycle. Italian Journal of Food Science, 23(2), 173-179.
  • Breslow, J.L. (2006). n−3 Fatty acids and cardiovascular disease. The American Journal of Clinical Nutrition, 83(6), 1477S-1482S. https://doi.org/10.1093/ajcn/83.6.1477S
  • Chen, J., & Liu, H. (2020). Nutritional indices for assessing fatty acids: A mini-review. International Journal of Molecular Sciences, 21(16), 5695. https://doi.org/10.3390/ijms21165695
  • Costa, R.G., Mesquita, Í.V.U., Queiroga, R.D.C.R.D.E., Medeiros, A.N.D., Carvalho, F.F.R.D., & Beltrão Filho, E. M. (2008). Características químicas e sensoriais do leite de cabras Moxotó alimentadas com silagem de maniçoba. Revista Brasileira de Zootecnia, 37, 694-702. https://doi.org/10.1590/S1516-35982008000400016
  • Dal Bosco, A.D., Mugnai, C., Roscini, V., & Castellini, C. (2013). Fillet fatty acid composition, estimated indexes of lipid metabolism and oxidative status of wild and farmed brown trout (Salmo trutta L.). Italian Journal of Food Science/Rivista Italiana di Scienza degli Alimenti, 25(1), 83-89.
  • David, F., Sandra, P., & Vickers, A. K. (2005). Column selection for the analysis of fatty acid methyl esters. Food Analysis Application. Palo Alto, CA: Agilent Technologies, 19, 19.
  • Dopeikar, H., Keivany, Y., & Shadkhast, M. (2015). Reproductive biology and gonad histology of the kura barbel, Barbus lacerta (Cyprinidae), in Bibi-Sayyedan River, Tigris basin, Iran. North-Western Journal of Zoology, 11, 163-170.
  • Dietschy, J.M. (1998). Dietary fatty acids and the regulation of plasma low density lipoprotein cholesterol concentrations. The Journal of Nutrition, 128(2), 444S-448S. https://doi.org/10.1093/jn/128.2.444S
  • FAO. (2014). The state of world fisheries and aquaculture. Opportunities and challenges. Food and agriculture Organization of the United Nations. Rome, Italy, 243 p.
  • FAO, WHO. (2010). Fats and Fatty Acids in Human Nutrition: Report of an Expert Consultation; FAO food and nutrition paper #91; FAO: Rome, Italy; WHO: Geneva, Switzerland, 21812367.
  • Fernandes, C.E., da Silva Vasconcelos, M.A., de Almeida Ribeiro, M., Sarubbo, L.A., Andrade, S.A.C., & de Melo Filho, A.B. (2014). Nutritional and lipid profiles in marine fish species from Brazil. Food Chemistry, 160, 67-71. http://dx.doi.org/10.1016/j.foodchem.2014.03.055
  • Galloway, A.W., & Winder, M. (2015). Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids. PLoS One, 10(6), e0130053. https://doi.org/10.1371/journal.pone.0130053
  • Garaffo, M.A., Vassallo-Agius, R., Nengas, Y., Lembo, E., Rando, R., Maisano, R., Dugo, G., & Giuffrida, D. (2011). Fatty acids profile, atherogenic (IA) and thrombogenic (IT) health lipid indices, of raw roe of blue fin tuna (Thunnus thynnus L.) and their salted product “Bottarga”. Food and Nutrition Sciences, 2(7), 736-743. https://doi.org/10.4236/fns.2011.27101
  • Geldiay, R., Balık, S. (2007). Freshwater fishes of Türkiye. Ege University Faculty of Fisheries Publications, No: 46. Ege University Press. Bornova İzmir; p.532. (in Turkish)
  • Gladyshev, M.I., Sushchik, N.N., & Makhutova, O.N. (2013). Production of EPA and DHA in aquatic ecosystems and their transfer to the land. Prostaglandins & Other Lipid Mediators, 107, 117-126. https://doi.org/10.1016/j.prostaglandins.2013.03.002
  • Gokce, M.A., Tasbozan, O., Surhan, S.T., Celik, M., Ozcan, F., & Basusta, A. (2011). Proximate composition and fatty acid profile of shabbout (Barbus grypus Heckel) caught from the Atatürk Dam Lake, Turkey. Journal of Food, Agriculture & Environment, 9(2), 148-151.
  • Hansen, H.J., & Abraham, S. (1983) Influence of temperature, environ-mental salinity and fasting on the patterns of fatty acids synthesized by gills and liver of the European eel (Anguilla Anguilla). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 75(4), 581-587. https://doi.org/10.1016/0305-0491(83)90100-1
  • Hara, A., & Radin N.S. (1978) Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90(1), 420 426. https://doi.org/10.1016/0003-2697(78)90046-5
  • Hong, H., Zhou, Y., Wu ,H., Luo, Y., & Shen, H. (2014). Lipid content and fatty acid profile of muscle, brain and eyes of seven freshwater fish: A comparative study. Journal of the American Oil Chemists’ Society, 91, 795-804. https://doi.org/10.1007/s11746-014-2414-5
  • Jardine, T.D., Galloway, A.W.E., & Kainz, M.J. (2020). Unlocking the power of fatty acids as dietary tracers and metabolic signals in fishes and aquatic invertebrates. Philosophical Transactions of the Royal Society B-Biological Sciences, 375, 11. https://doi.org/10.1098/rstb.2019.0639
  • Jaya-Ram, A., Kuah, M.K., Lim, P.S., Kolkovski, S., & Shu-Chien, A.C. (2008). Influence of dietary HUFA levels on reproductive performance, tissue fatty acid profile and desaturase and elongase mRNAs expression in female zebrafish Danio rerio. Aquaculture, 277(3-4), 275-281. http://dx.doi.org/10.1093/cdn/nzaa034
  • Kromhout, D., Giltay, E.J., & Geleijnse, J.M. (2010). n–3 Fatty acids and cardiovascular events after myocardial infarction. New England Journal of Medicine, 363(21), 2015 2026. http://dx.doi.org/10.1056/NEJMoa1003603
  • Liu, W., Lyu, J., Wu, D., Cao, Y., Ma, Q., Lu, Y., & Zhang, X. (2022). Cutting techniques in the fish industry: A critical review. Foods, 11(20), 3206. https://doi.org/10.3390/foods11203206
  • Łuczyńska, J., & Paszczyk, B. (2019). Health risk assessment of heavy metals and lipid quality indexes in freshwater fish from lakes of Warmia and Mazury region, Poland. International Journal of Environmental Research and Public Health, 16(19), 3780. https://doi.org/10.3390/ijerph16193780
  • Łuczyńska, J., Paszczyk, B., Nowosad, J., & Łuczyński, M.J. (2017). Mercury, fatty acids content and lipid quality indexes in muscles of freshwater and marine fish on the polish market. Risk assessment of fish consumption. International Journal of Environmental Research and Public Health, 14(10), 1120. https://doi.org/10.3390/ijerph14101120
  • Majdoubi, F.Z., Benhima, R., Ouizgane, A., Farid, S., Droussi, M., Guerriero, G., & Hasnaoui, M. (2020). Ova Fatty Acids Composition and Spawning Performances of Silver Carp, Hypophthalmichthys molitrix (Morocco). Turkish Journal of Aquatic Sciences, 20(12), 879-888. https://doi.org/10.4194/1303-2712-v20_12_04
  • Mancini, I., Defant, A., Mesarič, T., Potočnik, F., Batista, U., Guella, G., ... & Sepčić, K. (2011). Fatty acid composition of common barbel (Barbus barbus) roe and evaluation of its haemolytic and cytotoxic activities. Toxicon, 57(7 8), 1017 1022. https://doi.org/10.1016/j.toxicon.2011.04.004
  • Masclaux, H., Bec, A., Kainz, M.J., Perriere, F., Desvilettes, C., & Bourdier, G. (2012). Accumulation of polyunsaturated fatty acids by cladocerans: effects of taxonomy, temperature and food. Freshwater Biology, 57, 696-703. https://doi.org/10.1111/j.1365-2427.2012.02735.x
  • Matos, Â. P., Matos, A. C., & Moecke, E. H. S. (2019). Polyunsaturated fatty acids and nutritional quality of five freshwater fish species cultivated in the western region of Santa Catarina, Brazil. Brazilian Journal of Food Technology, 22, e2018193. https://doi.org/10.1590/1981-6723.19318
  • Mititelu, M., Lupuliasa, D., Neacșu, S. M., Olteanu, G., Busnatu, Ș. S., Mihai, A., ... & Scafa-Udriște, A. (2024). Polyunsaturated fatty acids and human health: A key to modern nutritional balance in association with polyphenolic compounds from food sources. Foods, 14(1), 46. https://doi.org/10.3390/foods14010046
  • Olgunoğlu, I. A., Olgunoğlu, M. P., & Artar, E. (2011). Seasonally changes in biochemical composition and meat yield of shabut (Barbus grypus, Heckel 1843. Iranian Journal of Fisheries Sciences, 10(1), 181–187.
  • Parzanini, C., Arts, M. T., Rohtla, M., Koprivnikar, J., Power, M., Skiftesvik, A. B., Browman, H. İ., Milotic, D., & Durif, C. M. F. (2021). Feeding habitat and silvering stage affect lipid content and fatty acid composition of European eel Anguilla anguilla tissues. Journal of Fish Biology, 99, 1110–1124. https://doi.org/10.1111/jfb.14815
  • Pierron, F., Baudrimont, M., Dufour, S., Elie, P., Bossy, A., Lucia, M., & Massabuau, J.C. (2009). Ovarian gene transcription and effect of cadmium pre-exposure during artificial sexual maturation of the European eel (Anguilla anguilla). Biometals, 22, 985-994. http://dx.doi.org/10.1007/s10534-009-9250-3
  • Rhee, J.J., Kim, E., Buring, J.E., & Kurth, T. (2017). Fish consumption, omega-3 fatty acids, and risk of cardiovascular disease. American Journal of Preventive Medicine, 52(1), 10 19. http://dx.doi.org/10.1016/j.amepre.2016.07.020
  • Rincón-Cervera, M.Á., González-Barriga, V., Romero, J., Rojas, R., & López-Arana, S. (2020). Quantification and distribution of omega-3 fatty acids in South Pacific fish and shellfish species. Foods, 9(2), 233. https://doi.org/10.3390/foods9020233
  • Santos-Silva, J., Bessa, R.J.B., & Santos-Silva, F.J.L.P.S. (2002). Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livestock Production Science, 77(2-3), 187-194. https://doi.org/10.1016/S03016226(02)00059-3
  • Sargent, J. R., Tocher, D.R., & d Bell, J.G., 2002. The lipids. In: Halver, J. E. & Hardy, R. W. (Eds.),. Fish nutrition (pp: 181- 257). 3rd San Diego, Academic Press.
  • Silva, A.T., Ruvieri, E.S.P., Mateus O., Magalhaes, M.O., Neto, N.L., & Houngyu, K. (2019). An ́alise Fatorial Explorat ́oria: aplica ̧c ̃ao em dados de crimescontra as mulheres em 141 munic ́ıpios do estado de MatoGrosso no ano de 2016. Alfenas, 8(2), 427-436 (in Spanish).
  • Suloma, A., & Ogata, H.Y. (2011). Arachidonic acid is a major component in gonadal fatty acids of tropical coral reef fish in the Philippines and Japan. Journal Aquatic Research Development, 2, 111. https://doi.org/10.4172/2155-9546.1000111
  • Subhadra, B., Lochmann, R., Rawles, S., & Chen, R. (2006). Effect of dietary lipid source on the growth, tissue composition and hematological parameters of largemouth bass (Micropterus salmoides). Aquaculture, 255(1-4), 210-222. https://doi.org/10.1016/j.aquaculture.2005.11.043
  • Şen Özdemir, N.Ş., Koyun, M., Caf, F., & Kırıcı, M. (2023). Factors affecting nutritional quality in terms of the fatty acid composition of Cyprinion macrostomus. Grasas y Aceites, 74(2), e508-e508. https://doi.org/10.3989/gya.0444221
  • Tibaoui, S., Smeti, S., Essid, I., Bertolín, J.R., Joy, M., & Atti, N. (2020). Physicochemical characteristics, fatty acid profile, alpha-tocopherol content, and lipid oxidation of meat from ewes fed different levels of distilled myrtle residues. Molecules, 25(21), 4975. https://doi.org/10.3390/molecules25214975
  • Tocher, D.R. (2003). Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science, 11(2), 107–184. https://doi.org/10.1080/713610925
  • Tocher, D.R. (2010). Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research, 41, 717-732. https://doi.org/10.1111/j.1365-2109.2008.02150.x
  • Tonial, I.B., Oliveira, D.D., Coelho, A.R., Matsushita, M., Coró, F.A.G., Souza, N.D., & Visentainer, J.V., 2014. Quantification of essential fatty acids and assessment of the nutritional quality indexes of lipids in tilapia alevins and juvenile tilapia fish (Oreochromis niloticus). Journal of Food Research, 3(3), 105-114. https://doi.org/10.5539/jfr.v3n3p105
  • Ugoala, C., Ndukwe, G.I. & Audu, T.O. (2009). Fatty acids composition and nutritional quality of some freshwater fishes. Nature Precedings, https://doi.org/10.1038/npre.2009.3239.1
  • Ulbricht, T.L.V., & Southgate, D.A.T. (1991). Coronary heart disease: seven dietary factors. The Lancet, 338(8773), 985-992. https://doi.org/10.1016/0140-6736(91)91846-M
  • Xu WeiNa, X.W., Qian Yu, Q.Y., Li XiangFei, L.X., Li JunYi, L.J., Li PengFei, L.P., Cai DongSen, C.D., & Liu WenBin, L.W. (2017). Effects of dietary biotin on growth performance and fatty acids metabolism in blunt snout bream, Megalobrama amblycephala fed with different lipid levels diets. Aquaculture, 479, 790 797. https://doi.org/10.1016/j.aquaculture.2017.07.018
There are 51 citations in total.

Details

Primary Language English
Subjects Aquaculture and Fisheries (Other)
Journal Section Articles
Authors

Nurgül Şen Özdemir 0000-0001-6656-822X

Mustafa Koyun 0000-0002-9047-0430

Project Number BAP-FEF.2018.00.004
Early Pub Date June 14, 2025
Publication Date June 15, 2025
Submission Date April 8, 2025
Acceptance Date June 13, 2025
Published in Issue Year 2025Volume: 42 Issue: 2

Cite

APA Şen Özdemir, N., & Koyun, M. (2025). Determination of fatty acids and evaluation of nutritional quality of Barbus lacerta from Murat River, Türkiye. Ege Journal of Fisheries and Aquatic Sciences, 42(2), 173-182.