Research Article
BibTex RIS Cite

Karadeniz'deki önemli balık stoklarının durumunun anlaşılması: Sürdürülebilir yönetim için grafiksel bir yaklaşım

Year 2025, Volume: 42 Issue: 2, 105 - 121, 15.06.2025

Abstract

Balık stokları, su ekosistemlerinin temel bileşenleridir; insanlık için çok önemli bir gıda kaynağı sağlarken, besin zincirinin karmaşık dengesine de katkıda bulunurlar. Bu balık stokların etkin bir şekilde yönetimi, gıda taleplerini karşılamak ve denizlerdeki biyolojik çeşitliliği korumak açısından kritik öneme sahiptir. Bu çalışmada, Türkiye'nin Karadeniz kıyısındaki altı ana balık stoğu – istavrit (Trachurus mediterraneus), hamsi (Engraulis encrasicolus), çaça (Sprattus sprattus), mezgit (Merlangius merlangus euxinus), lüfer (Pomatomus saltatrix) ve palamut (Sarda sarda) – düşük/yüksek/aşırı avlanma seviyelerine göre incelenmiştir ve bu stokların korunmasına dair önemli bulgular sunulmuştur. Sadece av istatistikleri kullanılarak dinamiksel bir inceleme ve denge analiziyle, balık stoklarının mevcut dinamiklerini grafiksel temsiller kullanarak analiz ettik. Bu grafikler, balık stoklarının büyüme eğrileri ve balıkçılık kaynaklı avlama (ölüm) eğrilerine dayanarak oluşturulmuştur. Araştırmamız, bazı stoklarda son 15 yılda artış eğilimi gözlense de hala yüksek düzeyde avlanma oranına maruz kaldıklarını ortaya koymaktadır. Bu sorunu ele almak için çalışmamız, her bir balık stoğunun mevcut durumuna bağlı olarak Maksimum Sürdürülebilir Verim (MSV) değerlerini belirlemekte ve bu stokların uzun vadede sürdürülebilir kalabileceği denge noktalarını tespit etmektedir. Bu yöntem, avlanma verileri dışında herhangi bir veri bulunmadığında balık stoklarını analiz etme fırsatı da sunmaktadır.

References

  • Akkuş, G., & Gücü, A.C. (2022). A comparative assessment of the Black Sea anchovy stock using holistic production and analytical age structure models. Acta Biologica Turcica, 35(3), A5, 1-12.
  • Aslan, I.H., Demir, M., Wise, M.M., & Lenhart, S. (2022). Modeling COVID-19: Forecasting and analyzing the dynamics of the outbreak in Hubei and Turkey. Mathematical Methods in the Applied Sciences, 45(10), 6481 – 6494. https://doi.org/10.1002/mma.8181
  • Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2013). Impacts of climate change on the future of biodiversity. Ecology Letters, 16(4), 487–95. https://doi.org/10.1111/j.14610248.2011.01736.x
  • Botsford, L.W., Castilla, J.C., & Peterson, C.H. (1997). The management of fisheries and marine ecosystems. Science, 277(5325), 509-15. https://doi.org/10.1126/science.277.5325.509
  • Bouch, P., Minto, C., & Reid, D.G. (2021). Comparative performance of data-poor CMSY and data-moderate SPiCT stock assessment methods when applied to data-rich, real-world stocks. ICES Journal of Marine Science, 78, 264–276. https://doi.org/10.1093/icesjms/fsaa220
  • Beverton, R.J.H., & Holt, S.J. (1957). On the dynamics of exploited fish populations. Fisheries Investigations, 19, 1-533.
  • Cheikh, B.B., Mohamed Ahmed, J., Jilali, B., Fambye N., Ad, C., & Jo, G. (2024). Overexploitation of round sardinella may lead to the collapse of flat sardinella: What lessons can be drawn for shared stocks. Fisheries Research, 269,106873. https://doi.org/10.1016/j.fishres.2023.106873
  • Damir, N., Coatu, V., Danilov, D., Lazar, L., & Oros, A. (2024). From Waters to Fish: A Multi-Faceted Analysis of Contaminants’ Pollution Sources, Distribution Patterns, and Ecological and Human Health Consequences. Fishes, 9(7), 274. https://doi.org/10.3390/fishes9070274
  • Daskalov, G.M. (2002). Overfishing drives a trophic cascade in the Black Sea. Marine Ecology Progress Series, 225, 53 63. https://doi.org/10.3354/meps225053
  • Daskalov, G.M., Demirel, N., Ulman, A., Georgieva, Y., & Zengin, M. (2020). Stock dynamics and predator-prey effects of Atlantic bonito and bluefish as top predators in the Black Sea. ICES Journal of Marine Science, 77(7-8), 2995-3005. http://doi.org/10.1093/icesjms/fsaa182
  • Demirel, N., Zengin, M., & Ulman, A. (2020). First large-scale eastern Mediterranean and Black Sea stock assessment reveals a dramatic decline. Frontiers in Marine Science, 7(103). https://doi.org/10.3389/fmars.2020.00103
  • Demir, M., (2019). Optimal Control Strategies in Ecosystem-Based Fishery Models, Ph.D dissertation, University of Tennessee in Knoxville. Available from: https://trace.tennessee.edu/utk_graddiss/5421
  • Demir, M., & Lenhart S. (2020). Optimal sustainable fishery management of the Black Sea anchovy with food chain modeling framework. Natural Resource Modeling,33, e12253. https://doi.org/10.1111/nrm.12253
  • Demir, M., & Lenhart, S. (2021). A spatial food chain model for the Black Sea anchovy, and its optimal fishery. Discrete and Continuous Dynamical Systems Series B, 26(1), 155 171. https://doi.org/10.3934/dcdsb.2020373
  • Demir, M. (2023). Importance of stability analysis for sustainable fisheries in the absence of important data. Acta Aquatica Turcica, 19(1), 071-087. https://doi.org/10.22392/actaquatr.1179986
  • Demir, M. (2024). Predator effect of Atlantic bonito on the Black Sea anchovy and their sustainable and optimal fishery. Turkish Journal of Fisheries and Aquatic Sciences, 24(3), TRJFAS23861. https://doi.org/10.4194/TRJFAS23861
  • Dick, E.J., & MacCall, Alec D. (2011). Depletion-based stock reduction analysis: A catch-based method for determining sustainable yields for data-poor fish stocks, Fisheries Research, 110(2), 331-341, ISSN0165-7836. https://doi.org/10.1016/j.fishres.2011.05.007
  • FishBase, Estimation of Life history key facts. Accessed February 7, 2025. https://www.fishbase.se/manual/key%20facts.htm?utm_source=chatgpt.com
  • Fox, W.W. (1970). An exponential surplus-yield model for optimizing exploited fish populations? Transactions of American Fisheries Society, 99 (1), 80–88.
  • Froese, R., Demirel, N., Gianpaolo, C., Kleisner, K.M., & Winker, H. (2017). Estimating fisheries reference points from catch and resilience. Fish and Fisheries, 18(3), 506–526. https://doi.org/10.1111/faf.12190
  • Froese, R., Winker, H., Coro, G., Palomares, M.L., Tsikliras, A.C., Dimarchopoulou, D., Touloumis, K., Demirel, N., Vianna, G.M.S., Scarcella, G., Schijns, R., Liang, C., & Pauly, D. (2023). New developments in the analysis of catch time series as the basis for fish stock assessments: The CMSY++ method. Acta Ichthyologica et Piscatoria, 53, 173-189. https://doi.org/10.3897/aiep.53.105910
  • Gücü, A.C., Gen, Y., Dagtekin, M., Saknan, S., Ak, O., & Ok, M. (2017). On Black Sea anchovy and its fishery. Reviews in Fisheries Science and Aquaculture, 25, 149 162. https://doi.org/10.1080/23308249.2016.1276152
  • Hilborn, R. (2012). Overfishing: What everyone needs to know. New York: Oxford University Press USA, OSO. http://dx.doi.org/10.1080/03632415.2014.903839
  • Jenkins, D.G., & Quintana-Ascencio, P.F. (2020). A solution to minimum sample size for regressions. PLoS ONE, 15(2), e0229345. https://doi.org/10.1371/journal.pone.0229345
  • John, Fox (2015). Applied Regression Analysis and Generalized Linear Models. SAGE Publications (Book). ISBN: 1483321312, 9781483321318
  • Kasapoğlu, N. (2018). Age, growth, and mortality of exploited stocks: anchovy, sprat, Mediterranean horse mackerel, whiting, and red mullet in the southeastern Black Sea. Aquatic Sciences and Engineering, 33(2), 39-49. https://doi.org/10.18864/ase201807
  • Kot, M. (2001). Elements of mathematical ecology. Cambridge University Press.
  • Llope, M., Daskalov, G.M., Rouyer, T.A., Mihneva, V., Chan, K.S., Grishin, A. N., et al. (2011). Overfishing of top predators eroded the resilience of the Black Sea system regardless of the climate and anthropogenic conditions. Global Change Biology, 17, 1251 1265. https://doi.org/10.1111%2Fj.1365-2486.2010.02331.x
  • Mainali, K.P., Warren, D.L., Dhileepan, K, McConnachie, A., Strathie, L., Hassan, G., et al. (2015). Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling. Global Change Biology, 21(12), 4293–4684. https://doi.org/10.1111/gcb.13038
  • Marino, S., Hogue, I.B., Ray, C.J., & Kirschner, D.E. (2008). A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology, 254(1), 178-196. https://doi.org/10.1016%2Fj.jtbi.2008.04 .011
  • Nastase, A., & Paraschiv, G. (2024). Recent findings on the pollution levels in the Romanian Black Sea. Sustainability, 16(22), 9785. https://doi.org/10.3390/su16229785
  • Neubert, M. G. (2003). Marine reserves and optimal harvesting. Ecology Letters, 6(9), 843–849
  • Nogrady, B. (2023). Controlling pollution and overfishing can help protect coral reefs but it’s not enough. Nature, 620(7974), 479-479. https://doi.org/10.1038/d41586-023-02512-w
  • Özsandikçı, U. (2020). Estimation of exploitable sprat (Sprattus sprattus, Linnaeus, 1758) biomass along Black Sea coasts of Turkey (Samsun Region). Journal of New Results in Science, 9(3), 1-8. https://dergipark.org.tr/en/download/article-file/1306269
  • Patrick, W.S., & Cope, J. (2014). Examining the 10-Year rebuilding dilemma for U.S. fish stocks. PLoS ONE, 9(11), e112232. https://doi.org/10.1371/journal.pone.0112232
  • Raykov, V.S., & Duzgunes, E. (2017). Fisheries management in the Black Sea—pros and cons. Frontiers in Marine Science, 4: 227. https://doi.org/10.3389/fmars.2017.00227
  • Salihoglu, B., Arkin, S.S., Akoglu, E., & Fach, B.A. (2017). Evolution of future Black Sea fish stocks under changing environmental and climatic conditions (report). Frontiers in Marine Science, 4: 339. https://doi.org/10.3389/fmars.2017.00339
  • Schaefer, M.B. (1954). Some aspects of the dynamics of populations important to the management of the commercial marine fisheries? Inter-American Tropical Tuna Commission, 1, 26–56.
  • STECF (2017). Scientific, Technical and Economic Committee for Fisheries (STECF) Black Sea Assessments. Publications Office of the European Union, Luxembourg, EUR 27517 EN, JRC, page 284 pp.
  • Sumaila, U.R., & Tai, T.C. (2020). End overfishing and increase the resilience of the ocean to climate change. Frontiers in Marine Science, 7, 523. https://doi.org/10.3389/fmars.2020.00523
  • TUIK (2023). Turkish Statistical Institute (TUIK). Quantity of harvested marine products and price of harvested marine products. https://biruni.tuik.gov.tr/medas/?kn=97&locale=tr
  • Winker, H., Carvalho, F., & Kapur, M. (2018). JABBA: just another Bayesian biomass assessment. Fisheries Research, 204, 275–288. https://doi.org/10.1016/j.fishres.2018.03.010
  • Zengin, M., & Dincer, A. C. (2006). Distribution and seasonal movement of Atlantic bonito (Sarda sarda) populations in the southern Black Sea coasts. Turkish Journal of Fisheries and Aquatic Sciences, 6, 57-62. https://www.trjfas.org/uploads/pdf_267.pdf
  • Zhou, S., Punt, A.E., Smith, A.D.M., Ye, Y., Haddon, M., Dichmont, C.M., & Smith, D.C. (2017). An optimized catch-only assessment method for data poor fisheries. ICES Journal of Marine Science, 75, 964–976. https://doi.org/10.1093/icesjms/fsx226

Understanding the status of key fish stocks in the Turkish Black Sea: A graphical approach to sustainable management

Year 2025, Volume: 42 Issue: 2, 105 - 121, 15.06.2025

Abstract

Fish stocks are critical components of aquatic ecosystems, providing essential food sources for humanity and supporting the complex balance of marine food webs. Effective management of these resources is crucial for meeting global food demands and preserving aquatic biodiversity. In this study, we assess fishing pressures—categorized as low, high, and extreme—on six key fish stocks in the Turkish waters of the Black Sea: horse mackerel (Trachurus mediterraneus), the Black Sea anchovy (Engraulis encrasicolus), sprat (Sprattus sprattus), whiting (Merlangius merlangus euxinus), bluefish (Pomatomus saltatrix), and the Atlantic bonito (Sarda sarda) and provide important findings to protect fish stocks. By applying dynamic modeling and stability analysis solely to landing data, we create graphical representations that illustrate the current trends of these stocks, through growth and fishing mortality curves. Our findings reveal that although certain stocks have shown an upward trend over the past 15 years, they remain exposed to high levels of fishing mortality. To support sustainable management, this study establishes the Maximum Sustainable Yields (MSYs) for each stock based on their present conditions and identifies stable equilibrium points where stocks can be sustained over the long term. This method also provides an opportunity to analyze state of fish stocks when only landing data is available.

Ethical Statement

No ethical approval is required for this study.

References

  • Akkuş, G., & Gücü, A.C. (2022). A comparative assessment of the Black Sea anchovy stock using holistic production and analytical age structure models. Acta Biologica Turcica, 35(3), A5, 1-12.
  • Aslan, I.H., Demir, M., Wise, M.M., & Lenhart, S. (2022). Modeling COVID-19: Forecasting and analyzing the dynamics of the outbreak in Hubei and Turkey. Mathematical Methods in the Applied Sciences, 45(10), 6481 – 6494. https://doi.org/10.1002/mma.8181
  • Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2013). Impacts of climate change on the future of biodiversity. Ecology Letters, 16(4), 487–95. https://doi.org/10.1111/j.14610248.2011.01736.x
  • Botsford, L.W., Castilla, J.C., & Peterson, C.H. (1997). The management of fisheries and marine ecosystems. Science, 277(5325), 509-15. https://doi.org/10.1126/science.277.5325.509
  • Bouch, P., Minto, C., & Reid, D.G. (2021). Comparative performance of data-poor CMSY and data-moderate SPiCT stock assessment methods when applied to data-rich, real-world stocks. ICES Journal of Marine Science, 78, 264–276. https://doi.org/10.1093/icesjms/fsaa220
  • Beverton, R.J.H., & Holt, S.J. (1957). On the dynamics of exploited fish populations. Fisheries Investigations, 19, 1-533.
  • Cheikh, B.B., Mohamed Ahmed, J., Jilali, B., Fambye N., Ad, C., & Jo, G. (2024). Overexploitation of round sardinella may lead to the collapse of flat sardinella: What lessons can be drawn for shared stocks. Fisheries Research, 269,106873. https://doi.org/10.1016/j.fishres.2023.106873
  • Damir, N., Coatu, V., Danilov, D., Lazar, L., & Oros, A. (2024). From Waters to Fish: A Multi-Faceted Analysis of Contaminants’ Pollution Sources, Distribution Patterns, and Ecological and Human Health Consequences. Fishes, 9(7), 274. https://doi.org/10.3390/fishes9070274
  • Daskalov, G.M. (2002). Overfishing drives a trophic cascade in the Black Sea. Marine Ecology Progress Series, 225, 53 63. https://doi.org/10.3354/meps225053
  • Daskalov, G.M., Demirel, N., Ulman, A., Georgieva, Y., & Zengin, M. (2020). Stock dynamics and predator-prey effects of Atlantic bonito and bluefish as top predators in the Black Sea. ICES Journal of Marine Science, 77(7-8), 2995-3005. http://doi.org/10.1093/icesjms/fsaa182
  • Demirel, N., Zengin, M., & Ulman, A. (2020). First large-scale eastern Mediterranean and Black Sea stock assessment reveals a dramatic decline. Frontiers in Marine Science, 7(103). https://doi.org/10.3389/fmars.2020.00103
  • Demir, M., (2019). Optimal Control Strategies in Ecosystem-Based Fishery Models, Ph.D dissertation, University of Tennessee in Knoxville. Available from: https://trace.tennessee.edu/utk_graddiss/5421
  • Demir, M., & Lenhart S. (2020). Optimal sustainable fishery management of the Black Sea anchovy with food chain modeling framework. Natural Resource Modeling,33, e12253. https://doi.org/10.1111/nrm.12253
  • Demir, M., & Lenhart, S. (2021). A spatial food chain model for the Black Sea anchovy, and its optimal fishery. Discrete and Continuous Dynamical Systems Series B, 26(1), 155 171. https://doi.org/10.3934/dcdsb.2020373
  • Demir, M. (2023). Importance of stability analysis for sustainable fisheries in the absence of important data. Acta Aquatica Turcica, 19(1), 071-087. https://doi.org/10.22392/actaquatr.1179986
  • Demir, M. (2024). Predator effect of Atlantic bonito on the Black Sea anchovy and their sustainable and optimal fishery. Turkish Journal of Fisheries and Aquatic Sciences, 24(3), TRJFAS23861. https://doi.org/10.4194/TRJFAS23861
  • Dick, E.J., & MacCall, Alec D. (2011). Depletion-based stock reduction analysis: A catch-based method for determining sustainable yields for data-poor fish stocks, Fisheries Research, 110(2), 331-341, ISSN0165-7836. https://doi.org/10.1016/j.fishres.2011.05.007
  • FishBase, Estimation of Life history key facts. Accessed February 7, 2025. https://www.fishbase.se/manual/key%20facts.htm?utm_source=chatgpt.com
  • Fox, W.W. (1970). An exponential surplus-yield model for optimizing exploited fish populations? Transactions of American Fisheries Society, 99 (1), 80–88.
  • Froese, R., Demirel, N., Gianpaolo, C., Kleisner, K.M., & Winker, H. (2017). Estimating fisheries reference points from catch and resilience. Fish and Fisheries, 18(3), 506–526. https://doi.org/10.1111/faf.12190
  • Froese, R., Winker, H., Coro, G., Palomares, M.L., Tsikliras, A.C., Dimarchopoulou, D., Touloumis, K., Demirel, N., Vianna, G.M.S., Scarcella, G., Schijns, R., Liang, C., & Pauly, D. (2023). New developments in the analysis of catch time series as the basis for fish stock assessments: The CMSY++ method. Acta Ichthyologica et Piscatoria, 53, 173-189. https://doi.org/10.3897/aiep.53.105910
  • Gücü, A.C., Gen, Y., Dagtekin, M., Saknan, S., Ak, O., & Ok, M. (2017). On Black Sea anchovy and its fishery. Reviews in Fisheries Science and Aquaculture, 25, 149 162. https://doi.org/10.1080/23308249.2016.1276152
  • Hilborn, R. (2012). Overfishing: What everyone needs to know. New York: Oxford University Press USA, OSO. http://dx.doi.org/10.1080/03632415.2014.903839
  • Jenkins, D.G., & Quintana-Ascencio, P.F. (2020). A solution to minimum sample size for regressions. PLoS ONE, 15(2), e0229345. https://doi.org/10.1371/journal.pone.0229345
  • John, Fox (2015). Applied Regression Analysis and Generalized Linear Models. SAGE Publications (Book). ISBN: 1483321312, 9781483321318
  • Kasapoğlu, N. (2018). Age, growth, and mortality of exploited stocks: anchovy, sprat, Mediterranean horse mackerel, whiting, and red mullet in the southeastern Black Sea. Aquatic Sciences and Engineering, 33(2), 39-49. https://doi.org/10.18864/ase201807
  • Kot, M. (2001). Elements of mathematical ecology. Cambridge University Press.
  • Llope, M., Daskalov, G.M., Rouyer, T.A., Mihneva, V., Chan, K.S., Grishin, A. N., et al. (2011). Overfishing of top predators eroded the resilience of the Black Sea system regardless of the climate and anthropogenic conditions. Global Change Biology, 17, 1251 1265. https://doi.org/10.1111%2Fj.1365-2486.2010.02331.x
  • Mainali, K.P., Warren, D.L., Dhileepan, K, McConnachie, A., Strathie, L., Hassan, G., et al. (2015). Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling. Global Change Biology, 21(12), 4293–4684. https://doi.org/10.1111/gcb.13038
  • Marino, S., Hogue, I.B., Ray, C.J., & Kirschner, D.E. (2008). A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology, 254(1), 178-196. https://doi.org/10.1016%2Fj.jtbi.2008.04 .011
  • Nastase, A., & Paraschiv, G. (2024). Recent findings on the pollution levels in the Romanian Black Sea. Sustainability, 16(22), 9785. https://doi.org/10.3390/su16229785
  • Neubert, M. G. (2003). Marine reserves and optimal harvesting. Ecology Letters, 6(9), 843–849
  • Nogrady, B. (2023). Controlling pollution and overfishing can help protect coral reefs but it’s not enough. Nature, 620(7974), 479-479. https://doi.org/10.1038/d41586-023-02512-w
  • Özsandikçı, U. (2020). Estimation of exploitable sprat (Sprattus sprattus, Linnaeus, 1758) biomass along Black Sea coasts of Turkey (Samsun Region). Journal of New Results in Science, 9(3), 1-8. https://dergipark.org.tr/en/download/article-file/1306269
  • Patrick, W.S., & Cope, J. (2014). Examining the 10-Year rebuilding dilemma for U.S. fish stocks. PLoS ONE, 9(11), e112232. https://doi.org/10.1371/journal.pone.0112232
  • Raykov, V.S., & Duzgunes, E. (2017). Fisheries management in the Black Sea—pros and cons. Frontiers in Marine Science, 4: 227. https://doi.org/10.3389/fmars.2017.00227
  • Salihoglu, B., Arkin, S.S., Akoglu, E., & Fach, B.A. (2017). Evolution of future Black Sea fish stocks under changing environmental and climatic conditions (report). Frontiers in Marine Science, 4: 339. https://doi.org/10.3389/fmars.2017.00339
  • Schaefer, M.B. (1954). Some aspects of the dynamics of populations important to the management of the commercial marine fisheries? Inter-American Tropical Tuna Commission, 1, 26–56.
  • STECF (2017). Scientific, Technical and Economic Committee for Fisheries (STECF) Black Sea Assessments. Publications Office of the European Union, Luxembourg, EUR 27517 EN, JRC, page 284 pp.
  • Sumaila, U.R., & Tai, T.C. (2020). End overfishing and increase the resilience of the ocean to climate change. Frontiers in Marine Science, 7, 523. https://doi.org/10.3389/fmars.2020.00523
  • TUIK (2023). Turkish Statistical Institute (TUIK). Quantity of harvested marine products and price of harvested marine products. https://biruni.tuik.gov.tr/medas/?kn=97&locale=tr
  • Winker, H., Carvalho, F., & Kapur, M. (2018). JABBA: just another Bayesian biomass assessment. Fisheries Research, 204, 275–288. https://doi.org/10.1016/j.fishres.2018.03.010
  • Zengin, M., & Dincer, A. C. (2006). Distribution and seasonal movement of Atlantic bonito (Sarda sarda) populations in the southern Black Sea coasts. Turkish Journal of Fisheries and Aquatic Sciences, 6, 57-62. https://www.trjfas.org/uploads/pdf_267.pdf
  • Zhou, S., Punt, A.E., Smith, A.D.M., Ye, Y., Haddon, M., Dichmont, C.M., & Smith, D.C. (2017). An optimized catch-only assessment method for data poor fisheries. ICES Journal of Marine Science, 75, 964–976. https://doi.org/10.1093/icesjms/fsx226
There are 44 citations in total.

Details

Primary Language English
Subjects Fisheries Management
Journal Section Articles
Authors

Mahir Demir 0000-0002-9670-5210

Early Pub Date June 14, 2025
Publication Date June 15, 2025
Submission Date December 17, 2024
Acceptance Date March 12, 2025
Published in Issue Year 2025Volume: 42 Issue: 2

Cite

APA Demir, M. (2025). Understanding the status of key fish stocks in the Turkish Black Sea: A graphical approach to sustainable management. Ege Journal of Fisheries and Aquatic Sciences, 42(2), 105-121.