Review
PDF EndNote BibTex RIS Cite

Marine derived tyrosinase inhibitors

Year 2020, Volume 37, Issue 4, 427 - 436, 15.12.2020
https://doi.org/10.12714/egejfas.37.4.15

Abstract



The cosmetics industry has gained strong momentum all over the world in recent years and has become a growing and promising sector. As it is known, as in the pharmaceutical industry, the cosmetic industry has also turned into becoming marine resources by seeking new materials for its continuation to be more productive for the field. To serve this purpose, marine-derived substances are highly claimed to be an interesting as well as a fruitful source for the benefits of the cosmetics industry. In this respect, as known globally, anti-tyrosinase inhibitors used in skin whitening are obtained from a considerable number of marine organisms. In this regard, the main objective of this article is to summarize a highly significant number of natural products derived from marine sources such as algae, fungi, seaweeds and bacteria which are known to have shown anti-tyrosinase activity.


References

  • Abd El Hady, F., Abelaziz, M., Abdou, A.M., Shaker, K., Ibrahim, L.S. & El-Shahid, Z.A. (2014). In-vitro anti-diabetic and cytotoxic effect of the coral derived fungus (Emericella unguis 8429) on human colon, liver, breast and cervical carcinoma cell lines. International Journal of Pharmaceutical Sciences Review and Research, 27, 296-301.
  • Abd El Hady, F., Abelaziz, M., Shaker, K. & El-Shahid, Z.A. (2014). Tyrosinase, acetylcholinesterase inhibitory potential, antioxidant and antimicrobial activities of Sponge derived fungi with correlation to their GC/MS analysis. International Journal of Pharmaceutical Sciences Review and Research, 26, 338-345.
  • Alğın Yapar, E. (2016). Cilt Beyazlatıcılara Genel Bakış. Marmara Pharmaceutical Journal, 21(24530), 48-53. DOI:10.12991/marupj.259880
  • Almeida, C., Part, N., Bouhired, S., Kehraus, S. & Konig, G. M. (2011). Stachylines A-D from the sponge-derived fungus Stachylidium sp. Journal of Natural Products, 74(1), 21-25. DOI:10.1021/np1005345
  • Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H., & Prinsep, M.R. (2015). Marine natural products. Natural Product Reports, 31(2), 160-258. DOI:10.1039/c3np70117d
  • Boonme, P., Junyaprasert, V., Suksawad, N. & Songkro, S. (2009). Microemulsions and Nanoemulsions: Novel Vehicles for Whitening Cosmeceuticals. Journal of biomedical nanotechnology, 5, 373-383. DOI:10.1166/jbn.2009.1046
  • Brunt, E.G. & Burgess, J.G. (2018). The promise of marine molecules as cosmetic active ingredients. International Journal of Cosmetic Science, 40(1), 1-15. DOI:10.1111/ics.12435
  • Cha, S.-H., Ko, S.-C., Kim, D. & Jeon, Y.-J. (2011). Screening of marine algae for potential tyrosinase inhibitor: Those inhibitors reduced tyrosinase activity and melanin synthesis in zebrafish. The Journal of dermatology, 38, 354-363. DOI:10.1111/j.1346-8138.2010.00983.x
  • Chang, T.-S. (2012). Natural Melanogenesis Inhibitors Acting Through the Down-Regulation of Tyrosinase Activity. Materials, 5(9), 1661-1685. DOI:10.3390/ma5091661
  • Cheung, F. W., Guo, J., Ling, Y. H., Che, C. T. & Liu, W. K. (2012). Anti-melanogenic property of geoditin A in murine B16 melanoma cells. Marine Drugs, 10(2), 465-476. DOI:10.3390/md10020465
  • Christophersen, C., Crescente, O., Frisvad, J. C., Gram, L., Nielsen, J., Nielsen, P. H., & Rahbaek, L. (1998). Antibacterial activity of marine-derived fungi. Mycopathologia, 143(3), 135-138. DOI:10.1023/a:1006961500325
  • Cooksey, C. J., Garratt, P., Land, E. J., Ramsden, C. A., Riley, P., & Smit, N. (1997). Evidence of the Indirect Formation of the Catecholic Intermediate Substrate Responsible for the Autoactivation Kinetics of Tyrosinase. The Journal of biological chemistry, 272, 26226-26235. DOI:10.1074/jbc.272.42.26226
  • Corinaldesi, C., Barone, G., Marcellini, F., Dell'Anno, A., & Danovaro, R. (2017). Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products. Marine Drugs, 15(4). DOI:10.3390/md15040118
  • Cuomo, V. P., I. ; Perretti, A. ; Guerriero, A. ; D’Ambrosio, M.; Pietra, F. (1995). Journal of Marine Biotechnology, 2, 199-204. Çomoglu, T. (2012). Kozmetikler. Marmara Pharmaceutcal Journal, 1(16), 1-8. DOI:10.12991/201216414
  • D'Orazio, N., Gammone, M. A., Gemello, E., De Girolamo, M., Cusenza, S., & Riccioni, G. (2012). Marine bioactives: pharmacological properties and potential applications against inflammatory diseases. Marine Drugs, 10(4), 812-833. DOI:10.3390/md10040812
  • Deering, R. W., Chen, J., Sun, J., Ma, H., Dubert, J., Barja, J. L.,Seeram, N.P.,Wang, H.,Rowley,D. C. (2016). N-Acyl Dehydrotyrosines, Tyrosinase Inhibitors from the Marine Bacterium Thalassotalea sp. PP2-459. Journal of Natural Products, 79(2), 447-450. DOI:10.1021/acs.jnatprod.5b00972
  • Dolorosa, M., Nurjanah, N., Purwaningsih, S., Anwar, E., & Hidayat, T. (2019). Tyrosinase inhibitory activity of Sargassum plagyophyllum and Eucheuma cottonii methanol extracts. IOP Conference Series: Earth and Environmental Science, 278, 012020. DOI:10.1088/1755-1315/278/1/012020
  • Fiorucci, S., Distrutti, E., Bifulco, G., D'Auria, M. V., & Zampella, A. (2012). Marine sponge steroids as nuclear receptor ligands. Trends in Pharmacological Sciences, 33(11), 591-601. DOI:10.1016/j.tips.2012.08.004
  • Guillerme, J.-B., Couteau, C., & Coiffard, L. (2017). Applications for Marine Resources in Cosmetics. Cosmetics, 4(3), 35. DOI:10.3390/cosmetics4030035
  • Handayani, D., Sandrawati, N., Akbar, S., Syafni, N., & Putra, D. (2019). Tyrosinase Inhibitory Activity of Ethyl Acetate Extracts from Marine Sponge-Derived Fungi Haliclona fascigera. Bioscience Research, 16, 2369-2373.
  • Hasan, S., Ansari, M. I., Ahmad, A., & Mishra, M. (2015). Major bioactive metabolites from marine fungi: A Review. Bioinformation, 11(4), 176-181. DOI:10.6026/97320630011176
  • Kang, H. S., Kim, H. R., Byun, D. S., Son, B. W., Nam, T. J., & Choi, J. S. (2004). Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Archives of Pharmacal Research, 27(12), 1226-1232. DOI:10.1007/bf02975886
  • Kang, H. Y., Yoon, T., & Lee, G. (2011). Whitening Effects of Marine Pseudomonas Extract. Annals of Dermatology, 23(2), 144-149. DOI:10.5021/ad.2011.23.2.144
  • Kim, K., Leutou, A. S., Jeong, H., Kim, D., Seong, C. N., Nam, S. J., & Lim, K. M. (2017). Anti-Pigmentary Effect of (-)-4-Hydroxysattabacin from the Marine-Derived Bacterium Bacillus sp. Marine Drugs, 15(5). DOI:10.3390/md15050138
  • Kjer, J., Debbab, A., Aly, A. H., & Proksch, P. (2010). Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nature Protocols, 5(3), 479-490. DOI:10.1038/nprot.2009.233
  • Kubo, I., Kinst-Hori, I., Chaudhuri, S. K., Kubo, Y., Sanchez, Y., & Ogura, T. (2000). Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorganic & Medicinal Chemistry, 8(7), 1749-1755. DOI:10.1016/s0968-0896(00)00102-4
  • Lampis, G., Deidda, D., Maullu, C., Madeddu, M. A., Pompei, R., Delle Monachie, F., & Satta, G. (1995). Sattabacins and sattazolins: new biologically active compounds with antiviral properties extracted from a Bacillus sp. The Journal of Antibiotics, 48(9), 967-972. DOI:10.7164/antibiotics.48.967
  • Lee, H. Y., Jang, E. J., Bae, S. Y., Jeon, J. E., Park, H. J., Shin, J., & Lee, S. K. (2016). Anti-Melanogenic Activity of Gagunin D, a Highly Oxygenated Diterpenoid from the Marine Sponge Phorbas sp., via Modulating Tyrosinase Expression and Degradation. Marine Drugs, 14(11). DOI:10.3390/md14110212
  • Lee, Y.-M., Dang, H. T., Li, J., Zhang, P., Hong, J.-K., Lee, C.-O., & Jung, J.-H. (2011). A Cytotoxic Fellutamide Analogue from the Sponge-Derived Fungus Aspergillus versicolor. Bulletin of the Korean Chemical Society, 32(10), 3817-3820. DOI:10.5012/bkcs.2011.32.10.3817
  • Li, X., Kim, M. K., Lee, U., Kim, S. K., Kang, J. S., Choi, H. D., & Son, B. W. (2005). Myrothenones A and B, cyclopentenone derivatives with tyrosinase inhibitory activity from the marine-derived fungus Myrothecium sp. Chemical and Pharmaceutical Bulletin (Tokyo), 53(4), 453-455. DOI:10.1248/cpb.53.453
  • Liu, Q., Xu, H., Zhang, T., Fan, X., & Han, L. (2006). A new compound as PTP1B inhibitor from the red alga Polysiphonia urceolata. Chemistry Bulletin / Huaxue Tongbao, 69, 708-710.
  • Lo, Y. H., Lin, R. D., Lin, Y. P., Liu, Y. L., & Lee, M. H. (2009). Active constituents from Sophora japonica exhibiting cellular tyrosinase inhibition in human epidermal melanocytes. Journal of Ethnopharmacology, 124(3), 625-629. DOI:10.1016/j.jep.2009.04.053
  • Luo, X., Zhou, X., Lin, X., Qin, X., Zhang, T., Wang, J.,Tu, Z.,Yang, B.,Liao, S.,Tian, Y.,Pang, X., Kaliyaperumal, K., Li, J. L., Tao, H., Liu, Y. (2017). Antituberculosis compounds from a deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01. Natural Product Research, 31(16), 1958-1962. DOI:10.1080/14786419.2016.1266353
  • Mancha, S. R., Regnery, C. M., Dahlke, J. R., Miller, K. A., & Blake, D. J. (2013). Antiviral activity of (+)-sattabacin against Varicella zoster. Bioorganic & Medicinal Chemistry Letters, 23(2), 562-564. DOI:10.1016/j.bmcl.2012.11.017
  • Martins, A., Vieira, H., Gaspar, H., & Santos, S. (2014). Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Marine Drugs, 12(2), 1066-1101. DOI:10.3390/md12021066
  • Matsukawa, R., Dubinsky, Z., Masaki, K., Takeuchi, T., & Karube, I. (1997). Enzymatic screening of microalgae as a potential source of natural antioxidants. Applied Biochemistry and Biotechnology, 66(3), 239-247. DOI:10.1007/bf02785590
  • Moghadamtousi, S. Z., Nikzad, S., Kadir, H. A., Abubakar, S., & Zandi, K. (2015). Potential Antiviral Agents from Marine Fungi: An Overview. Marine Drugs, 13(7), 4520-4538. DOI:10.3390/md13074520
  • Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G., & Worm, B. (2011). How many species are there on Earth and in the ocean? PLOS Journals, 9(8), e1001127. DOI:10.1371/journal.pbio.1001127
  • Mostafa, E. R., Wael, E. H., Nathalie, M. L., Carol, C., Marcel, J., & Rainer, E. (2010). Dibenzofurans from the marine sponge-derived ascomycete Super1F1-09. Botanica Marina, 53(6), 499-506. DOI:10.1515/bot.2010.064
  • Mr, I., Mikami, D., Kurihara, H. (2017). Tyrosinase Inhibitory and Antioxidant Activity by Bromophenols from the Alga Odonthalia corymbifera. Natural Products: An Indian Journal, 13(2), 110.
  • Muda, H., Aziz, A., Taher, Z., & Aziz, R. (2017). Cosmeceuticals and Natural Cosmetics. In R. Hasham (Ed.), Recent Trends in Research into Malaysian Medicinal Plants (First ed., pp. 126-175): penerbit UTM Press.
  • Nastrucci, C., Cesario, A., & Russo, P. (2012). Anticancer Drug Discovery from the Marine Environment. Recent patents on anti-cancer drug discovery, 7, 218-232. DOI:10.2174/157489212799972963
  • No, J. K., Soung, D. Y., Kim, Y. J., Shim, K. H., Jun, Y. S., Rhee, S. H.,Yokozawa, T., Chung, H. Y. (1999). Inhibition of tyrosinase by green tea components. Life Sciences, 65(21), Pl241-246. DOI:10.1016/s0024-3205(99)00492-0
  • Parvez, S., Kang, M., Chung, H. S., & Bae, H. (2007). Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytotherapy Research, 21(9), 805-816. DOI:10.1002/ptr.2184
  • Paudel, P., Wagle, A., Seong, S. H., Park, H. J., Jung, H. A., & Choi, J. S. (2019). A New Tyrosinase Inhibitor from the Red Alga Symphyocladia latiuscula (Harvey) Yamada (Rhodomelaceae). Marine Drugs, 17(5). DOI:10.3390/md17050295
  • Pereira, L. (2015). Seaweed Flora of the European North Atlantic and Mediterranean. In (pp. 65-178).
  • Pereira, L. (2018). Seaweeds as Source of Bioactive Substances and Skin Care Therapy—Cosmeceuticals, Algotheraphy, and Thalassotherapy. Cosmetics, 5(4), 68. DOI:10.3390/cosmetics5040068
  • Pillaiyar, T., Manickam, M., & Namasivayam, V. (2017). Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 403-425. DOI:10.1080/14756366.2016.1256882
  • Pontius, A., Krick, A., Kehraus, S., Brun, R., & Konig, G. M. (2008). Antiprotozoal activities of heterocyclic-substituted xanthones from the marine-derived fungus Chaetomium sp. Journal of Natural Products, 71(9), 1579-1584. DOI:10.1021/np800294q
  • Ramos, A. A., Prata-Sena, M., Castro-Carvalho, B., Dethoup, T., Buttachon, S., Kijjoa, A., & Rocha, E. (2015). Potential of four marine-derived fungi extracts as anti-proliferative and cell death-inducing agents in seven human cancer cell lines. Asian Pacific Journal of Tropical Medicine, 8(10), 798-806. DOI:10.1016/j.apjtm.2015.09.005
  • Rodriguez-López J. , N., Tudela, J., Varón, R., & Garcia-Cánovas, F. (1991). Kinetic study on the effect of pH on the melanin biosynthesis pathway. Biochimica et biophysica acta, 1076(3), 379-386. Retrieved from http://www.biomedsearch.com/nih/Kinetic-study-effect-pH-melanin/1900435.html
  • Shen, C., Chen, P., Wu, J., Lee, T., Hsu, S., Chang, C., Chiu-Chung, Y., Shieh, C. (2011). Purification of algal anti-tyrosinase zeaxanthin from Nannochloropsis oculata using supercritical anti-solvent precipitation. The Journal of Supercritical Fluids, 55(3), 955-962. DOI:10.1016/j.supflu.2010.10.003
  • Shimizu, K., Kondo, R., & Sakai, K. (2000). Inhibition of tyrosinase by flavonoids, stilbenes and related 4-substituted resorcinols: structure-activity investigations. Planta medica, 66(1), 11-15. DOI:10.1055/s-2000-11113
  • Sugumaran, M. (1991). Molecular mechanisms for mammalian melanogenesis: Comparison with insect cuticular sclerotization1. FEBS Letters, 295(1), 233-239. DOI:10.1016/0014-5793(91)81431-7
  • Sumathy, B., & Kim, E.-K. (2011). Effect of Marine Cosmeceuticals on the Pigmentation of Skin. In S-K. Kim (Ed.), Marine Cosmeceuticals Trends and Prospects (pp. 63-66) Boca Raton: Crs Press.
  • Thirunavukkarasu, N., Suryanarayanan, T., Girivasan, K.P., Ambayeram, V., Greetha, V., Ravishankar, J. & Doble, M. (2012). Fungal symbionts of marine sponges from Rameswaram, southern India: Species composition and bioactive metabolites. Fungal diversity, 2. DOI:10.1007/s13225-011-0137-6
  • Trianto, A., Widyaningsih, S., Radjasa, O. K., & Pribadi, R. (2017). Symbiotic Fungus of Marine Sponge Axinella sp. Producing Antibacterial Agent. IOP Conference Series: Earth and Environmental Science, 55, 012005. DOI:10.1088/1755-1315/55/1/012005
  • Tsuchiya, T., Yamada, K., Minoura, K., Miyamoto, K., Usami, Y., Kobayashi, T., Hamada-Sato, N., Imada, C., Tsujibo, H. (2008). Purification and determination of the chemical structure of the tyrosinase inhibitor produced by Trichoderma viride strain H1-7 from a marine environment. Biological and Pharmaceutical Bulletin, 31(8), 1618-1620. DOI:10.1248/bpb.31.1618
  • Uppala, L. (2015). A Review on Active Ingredients from Marine Sources used in Cosmetics. SOJ Pharmacy and Pharmaceutical Sciences, 2(3), 1-3.
  • Vamos-Vigyazo, L. (1981). Polyphenol oxidase and peroxidase in fruits and vegetables. Critical Reviews in Food Science and Nutrition, 15(1), 49-127. DOI:10.1080/10408398109527312
  • Wachi, Y. B., J. G.; Takahashi, J.; Nakamura, N.; Matsunaga, T. (1995). Tyrosinase inhibition by the water-soluble fraction of marine microalgae. J. Mar. Biotechnol., 2, 210-213. Retrieved from https://ci.nii.ac.jp/naid/10014710487/en/
  • Whitaker, J. R. (1994). Prenciples of enzymology for the food sciences (Second ed.). Marcel Dekker,Inc.
  • Wijesinghe, W. A. J. P., & Jeon, Y.-J. (2011). Biological activities and potential cosmeceutical applications of bioactive components from brown seaweeds: A review. Phytochemistry Reviews, 10, 431-443. DOI:10.1007/s11101-011-9214-4
  • Wu, B., & Naranmadura, H. (2014). Tyrosinase Inhibitors from Terrestrial and Marine Resources. Current topics in medicinal chemistry, 14. DOI:10.2174/1568026614666140523115357
  • Wu, B., Wu, X., Sun, M., & Li, M. (2013). Two novel tyrosinase inhibitory sesquiterpenes induced by CuCl2 from a marine-derived fungus Pestalotiopsis sp. Z233. Marine Drugs, 11(8), 2713-2721. DOI:10.3390/md11082713
  • Zhang, D., Li, X., Kang, J., Choi, H., & Son, B. (2007). A New α-Pyrone Derivative, 6-[(E)-Hept-1-enyl]-α-pyrone, with Tyrosinase Inhibitor Activity from a Marine Isolate of the Fungus Botrytis. Cheminform, 38. DOI:10.1002/chin.200740195
  • Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 279-309. DOI:10.1080/14756366.2018.1545767

Deniz kaynaklı tirozinaz inhibitörleri

Year 2020, Volume 37, Issue 4, 427 - 436, 15.12.2020
https://doi.org/10.12714/egejfas.37.4.15

Abstract



Kozmetik sektörü son yıllarda çok güçlü bir ivme kazanmış ve tüm dünyada gelecek vaad eden bir sektör haline gelmiştir. İlaç endüstrisinde olduğu gibi, kozmetik endüstrisinde de yeni maddeler arama çabasıyla denizel kaynaklara yönelinmiştir. Bu nedenle, deniz kaynaklı kimyasalların kozmetik endüstrisinin yararı için ilginç ve verimli bir kaynak olduğu düşünülmektedir. Bilindiği gibi, cilt beyazlatma amacıyla kullanılan anti-tirozinaz inhibitörleri, önemli sayıda deniz organizmasından elde edilmektedir. Bu bağlamda, bu makalenin ana amacı, anti-tirozinaz aktivitesi gösterdiği bilinen alg, mantar, deniz yosunu ve bakteri gibi deniz kaynaklarından elde edilen çok sayıda doğal ürün hakkında bilgi vermektedir.


References

  • Abd El Hady, F., Abelaziz, M., Abdou, A.M., Shaker, K., Ibrahim, L.S. & El-Shahid, Z.A. (2014). In-vitro anti-diabetic and cytotoxic effect of the coral derived fungus (Emericella unguis 8429) on human colon, liver, breast and cervical carcinoma cell lines. International Journal of Pharmaceutical Sciences Review and Research, 27, 296-301.
  • Abd El Hady, F., Abelaziz, M., Shaker, K. & El-Shahid, Z.A. (2014). Tyrosinase, acetylcholinesterase inhibitory potential, antioxidant and antimicrobial activities of Sponge derived fungi with correlation to their GC/MS analysis. International Journal of Pharmaceutical Sciences Review and Research, 26, 338-345.
  • Alğın Yapar, E. (2016). Cilt Beyazlatıcılara Genel Bakış. Marmara Pharmaceutical Journal, 21(24530), 48-53. DOI:10.12991/marupj.259880
  • Almeida, C., Part, N., Bouhired, S., Kehraus, S. & Konig, G. M. (2011). Stachylines A-D from the sponge-derived fungus Stachylidium sp. Journal of Natural Products, 74(1), 21-25. DOI:10.1021/np1005345
  • Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H., & Prinsep, M.R. (2015). Marine natural products. Natural Product Reports, 31(2), 160-258. DOI:10.1039/c3np70117d
  • Boonme, P., Junyaprasert, V., Suksawad, N. & Songkro, S. (2009). Microemulsions and Nanoemulsions: Novel Vehicles for Whitening Cosmeceuticals. Journal of biomedical nanotechnology, 5, 373-383. DOI:10.1166/jbn.2009.1046
  • Brunt, E.G. & Burgess, J.G. (2018). The promise of marine molecules as cosmetic active ingredients. International Journal of Cosmetic Science, 40(1), 1-15. DOI:10.1111/ics.12435
  • Cha, S.-H., Ko, S.-C., Kim, D. & Jeon, Y.-J. (2011). Screening of marine algae for potential tyrosinase inhibitor: Those inhibitors reduced tyrosinase activity and melanin synthesis in zebrafish. The Journal of dermatology, 38, 354-363. DOI:10.1111/j.1346-8138.2010.00983.x
  • Chang, T.-S. (2012). Natural Melanogenesis Inhibitors Acting Through the Down-Regulation of Tyrosinase Activity. Materials, 5(9), 1661-1685. DOI:10.3390/ma5091661
  • Cheung, F. W., Guo, J., Ling, Y. H., Che, C. T. & Liu, W. K. (2012). Anti-melanogenic property of geoditin A in murine B16 melanoma cells. Marine Drugs, 10(2), 465-476. DOI:10.3390/md10020465
  • Christophersen, C., Crescente, O., Frisvad, J. C., Gram, L., Nielsen, J., Nielsen, P. H., & Rahbaek, L. (1998). Antibacterial activity of marine-derived fungi. Mycopathologia, 143(3), 135-138. DOI:10.1023/a:1006961500325
  • Cooksey, C. J., Garratt, P., Land, E. J., Ramsden, C. A., Riley, P., & Smit, N. (1997). Evidence of the Indirect Formation of the Catecholic Intermediate Substrate Responsible for the Autoactivation Kinetics of Tyrosinase. The Journal of biological chemistry, 272, 26226-26235. DOI:10.1074/jbc.272.42.26226
  • Corinaldesi, C., Barone, G., Marcellini, F., Dell'Anno, A., & Danovaro, R. (2017). Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products. Marine Drugs, 15(4). DOI:10.3390/md15040118
  • Cuomo, V. P., I. ; Perretti, A. ; Guerriero, A. ; D’Ambrosio, M.; Pietra, F. (1995). Journal of Marine Biotechnology, 2, 199-204. Çomoglu, T. (2012). Kozmetikler. Marmara Pharmaceutcal Journal, 1(16), 1-8. DOI:10.12991/201216414
  • D'Orazio, N., Gammone, M. A., Gemello, E., De Girolamo, M., Cusenza, S., & Riccioni, G. (2012). Marine bioactives: pharmacological properties and potential applications against inflammatory diseases. Marine Drugs, 10(4), 812-833. DOI:10.3390/md10040812
  • Deering, R. W., Chen, J., Sun, J., Ma, H., Dubert, J., Barja, J. L.,Seeram, N.P.,Wang, H.,Rowley,D. C. (2016). N-Acyl Dehydrotyrosines, Tyrosinase Inhibitors from the Marine Bacterium Thalassotalea sp. PP2-459. Journal of Natural Products, 79(2), 447-450. DOI:10.1021/acs.jnatprod.5b00972
  • Dolorosa, M., Nurjanah, N., Purwaningsih, S., Anwar, E., & Hidayat, T. (2019). Tyrosinase inhibitory activity of Sargassum plagyophyllum and Eucheuma cottonii methanol extracts. IOP Conference Series: Earth and Environmental Science, 278, 012020. DOI:10.1088/1755-1315/278/1/012020
  • Fiorucci, S., Distrutti, E., Bifulco, G., D'Auria, M. V., & Zampella, A. (2012). Marine sponge steroids as nuclear receptor ligands. Trends in Pharmacological Sciences, 33(11), 591-601. DOI:10.1016/j.tips.2012.08.004
  • Guillerme, J.-B., Couteau, C., & Coiffard, L. (2017). Applications for Marine Resources in Cosmetics. Cosmetics, 4(3), 35. DOI:10.3390/cosmetics4030035
  • Handayani, D., Sandrawati, N., Akbar, S., Syafni, N., & Putra, D. (2019). Tyrosinase Inhibitory Activity of Ethyl Acetate Extracts from Marine Sponge-Derived Fungi Haliclona fascigera. Bioscience Research, 16, 2369-2373.
  • Hasan, S., Ansari, M. I., Ahmad, A., & Mishra, M. (2015). Major bioactive metabolites from marine fungi: A Review. Bioinformation, 11(4), 176-181. DOI:10.6026/97320630011176
  • Kang, H. S., Kim, H. R., Byun, D. S., Son, B. W., Nam, T. J., & Choi, J. S. (2004). Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Archives of Pharmacal Research, 27(12), 1226-1232. DOI:10.1007/bf02975886
  • Kang, H. Y., Yoon, T., & Lee, G. (2011). Whitening Effects of Marine Pseudomonas Extract. Annals of Dermatology, 23(2), 144-149. DOI:10.5021/ad.2011.23.2.144
  • Kim, K., Leutou, A. S., Jeong, H., Kim, D., Seong, C. N., Nam, S. J., & Lim, K. M. (2017). Anti-Pigmentary Effect of (-)-4-Hydroxysattabacin from the Marine-Derived Bacterium Bacillus sp. Marine Drugs, 15(5). DOI:10.3390/md15050138
  • Kjer, J., Debbab, A., Aly, A. H., & Proksch, P. (2010). Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nature Protocols, 5(3), 479-490. DOI:10.1038/nprot.2009.233
  • Kubo, I., Kinst-Hori, I., Chaudhuri, S. K., Kubo, Y., Sanchez, Y., & Ogura, T. (2000). Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorganic & Medicinal Chemistry, 8(7), 1749-1755. DOI:10.1016/s0968-0896(00)00102-4
  • Lampis, G., Deidda, D., Maullu, C., Madeddu, M. A., Pompei, R., Delle Monachie, F., & Satta, G. (1995). Sattabacins and sattazolins: new biologically active compounds with antiviral properties extracted from a Bacillus sp. The Journal of Antibiotics, 48(9), 967-972. DOI:10.7164/antibiotics.48.967
  • Lee, H. Y., Jang, E. J., Bae, S. Y., Jeon, J. E., Park, H. J., Shin, J., & Lee, S. K. (2016). Anti-Melanogenic Activity of Gagunin D, a Highly Oxygenated Diterpenoid from the Marine Sponge Phorbas sp., via Modulating Tyrosinase Expression and Degradation. Marine Drugs, 14(11). DOI:10.3390/md14110212
  • Lee, Y.-M., Dang, H. T., Li, J., Zhang, P., Hong, J.-K., Lee, C.-O., & Jung, J.-H. (2011). A Cytotoxic Fellutamide Analogue from the Sponge-Derived Fungus Aspergillus versicolor. Bulletin of the Korean Chemical Society, 32(10), 3817-3820. DOI:10.5012/bkcs.2011.32.10.3817
  • Li, X., Kim, M. K., Lee, U., Kim, S. K., Kang, J. S., Choi, H. D., & Son, B. W. (2005). Myrothenones A and B, cyclopentenone derivatives with tyrosinase inhibitory activity from the marine-derived fungus Myrothecium sp. Chemical and Pharmaceutical Bulletin (Tokyo), 53(4), 453-455. DOI:10.1248/cpb.53.453
  • Liu, Q., Xu, H., Zhang, T., Fan, X., & Han, L. (2006). A new compound as PTP1B inhibitor from the red alga Polysiphonia urceolata. Chemistry Bulletin / Huaxue Tongbao, 69, 708-710.
  • Lo, Y. H., Lin, R. D., Lin, Y. P., Liu, Y. L., & Lee, M. H. (2009). Active constituents from Sophora japonica exhibiting cellular tyrosinase inhibition in human epidermal melanocytes. Journal of Ethnopharmacology, 124(3), 625-629. DOI:10.1016/j.jep.2009.04.053
  • Luo, X., Zhou, X., Lin, X., Qin, X., Zhang, T., Wang, J.,Tu, Z.,Yang, B.,Liao, S.,Tian, Y.,Pang, X., Kaliyaperumal, K., Li, J. L., Tao, H., Liu, Y. (2017). Antituberculosis compounds from a deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01. Natural Product Research, 31(16), 1958-1962. DOI:10.1080/14786419.2016.1266353
  • Mancha, S. R., Regnery, C. M., Dahlke, J. R., Miller, K. A., & Blake, D. J. (2013). Antiviral activity of (+)-sattabacin against Varicella zoster. Bioorganic & Medicinal Chemistry Letters, 23(2), 562-564. DOI:10.1016/j.bmcl.2012.11.017
  • Martins, A., Vieira, H., Gaspar, H., & Santos, S. (2014). Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Marine Drugs, 12(2), 1066-1101. DOI:10.3390/md12021066
  • Matsukawa, R., Dubinsky, Z., Masaki, K., Takeuchi, T., & Karube, I. (1997). Enzymatic screening of microalgae as a potential source of natural antioxidants. Applied Biochemistry and Biotechnology, 66(3), 239-247. DOI:10.1007/bf02785590
  • Moghadamtousi, S. Z., Nikzad, S., Kadir, H. A., Abubakar, S., & Zandi, K. (2015). Potential Antiviral Agents from Marine Fungi: An Overview. Marine Drugs, 13(7), 4520-4538. DOI:10.3390/md13074520
  • Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G., & Worm, B. (2011). How many species are there on Earth and in the ocean? PLOS Journals, 9(8), e1001127. DOI:10.1371/journal.pbio.1001127
  • Mostafa, E. R., Wael, E. H., Nathalie, M. L., Carol, C., Marcel, J., & Rainer, E. (2010). Dibenzofurans from the marine sponge-derived ascomycete Super1F1-09. Botanica Marina, 53(6), 499-506. DOI:10.1515/bot.2010.064
  • Mr, I., Mikami, D., Kurihara, H. (2017). Tyrosinase Inhibitory and Antioxidant Activity by Bromophenols from the Alga Odonthalia corymbifera. Natural Products: An Indian Journal, 13(2), 110.
  • Muda, H., Aziz, A., Taher, Z., & Aziz, R. (2017). Cosmeceuticals and Natural Cosmetics. In R. Hasham (Ed.), Recent Trends in Research into Malaysian Medicinal Plants (First ed., pp. 126-175): penerbit UTM Press.
  • Nastrucci, C., Cesario, A., & Russo, P. (2012). Anticancer Drug Discovery from the Marine Environment. Recent patents on anti-cancer drug discovery, 7, 218-232. DOI:10.2174/157489212799972963
  • No, J. K., Soung, D. Y., Kim, Y. J., Shim, K. H., Jun, Y. S., Rhee, S. H.,Yokozawa, T., Chung, H. Y. (1999). Inhibition of tyrosinase by green tea components. Life Sciences, 65(21), Pl241-246. DOI:10.1016/s0024-3205(99)00492-0
  • Parvez, S., Kang, M., Chung, H. S., & Bae, H. (2007). Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytotherapy Research, 21(9), 805-816. DOI:10.1002/ptr.2184
  • Paudel, P., Wagle, A., Seong, S. H., Park, H. J., Jung, H. A., & Choi, J. S. (2019). A New Tyrosinase Inhibitor from the Red Alga Symphyocladia latiuscula (Harvey) Yamada (Rhodomelaceae). Marine Drugs, 17(5). DOI:10.3390/md17050295
  • Pereira, L. (2015). Seaweed Flora of the European North Atlantic and Mediterranean. In (pp. 65-178).
  • Pereira, L. (2018). Seaweeds as Source of Bioactive Substances and Skin Care Therapy—Cosmeceuticals, Algotheraphy, and Thalassotherapy. Cosmetics, 5(4), 68. DOI:10.3390/cosmetics5040068
  • Pillaiyar, T., Manickam, M., & Namasivayam, V. (2017). Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 403-425. DOI:10.1080/14756366.2016.1256882
  • Pontius, A., Krick, A., Kehraus, S., Brun, R., & Konig, G. M. (2008). Antiprotozoal activities of heterocyclic-substituted xanthones from the marine-derived fungus Chaetomium sp. Journal of Natural Products, 71(9), 1579-1584. DOI:10.1021/np800294q
  • Ramos, A. A., Prata-Sena, M., Castro-Carvalho, B., Dethoup, T., Buttachon, S., Kijjoa, A., & Rocha, E. (2015). Potential of four marine-derived fungi extracts as anti-proliferative and cell death-inducing agents in seven human cancer cell lines. Asian Pacific Journal of Tropical Medicine, 8(10), 798-806. DOI:10.1016/j.apjtm.2015.09.005
  • Rodriguez-López J. , N., Tudela, J., Varón, R., & Garcia-Cánovas, F. (1991). Kinetic study on the effect of pH on the melanin biosynthesis pathway. Biochimica et biophysica acta, 1076(3), 379-386. Retrieved from http://www.biomedsearch.com/nih/Kinetic-study-effect-pH-melanin/1900435.html
  • Shen, C., Chen, P., Wu, J., Lee, T., Hsu, S., Chang, C., Chiu-Chung, Y., Shieh, C. (2011). Purification of algal anti-tyrosinase zeaxanthin from Nannochloropsis oculata using supercritical anti-solvent precipitation. The Journal of Supercritical Fluids, 55(3), 955-962. DOI:10.1016/j.supflu.2010.10.003
  • Shimizu, K., Kondo, R., & Sakai, K. (2000). Inhibition of tyrosinase by flavonoids, stilbenes and related 4-substituted resorcinols: structure-activity investigations. Planta medica, 66(1), 11-15. DOI:10.1055/s-2000-11113
  • Sugumaran, M. (1991). Molecular mechanisms for mammalian melanogenesis: Comparison with insect cuticular sclerotization1. FEBS Letters, 295(1), 233-239. DOI:10.1016/0014-5793(91)81431-7
  • Sumathy, B., & Kim, E.-K. (2011). Effect of Marine Cosmeceuticals on the Pigmentation of Skin. In S-K. Kim (Ed.), Marine Cosmeceuticals Trends and Prospects (pp. 63-66) Boca Raton: Crs Press.
  • Thirunavukkarasu, N., Suryanarayanan, T., Girivasan, K.P., Ambayeram, V., Greetha, V., Ravishankar, J. & Doble, M. (2012). Fungal symbionts of marine sponges from Rameswaram, southern India: Species composition and bioactive metabolites. Fungal diversity, 2. DOI:10.1007/s13225-011-0137-6
  • Trianto, A., Widyaningsih, S., Radjasa, O. K., & Pribadi, R. (2017). Symbiotic Fungus of Marine Sponge Axinella sp. Producing Antibacterial Agent. IOP Conference Series: Earth and Environmental Science, 55, 012005. DOI:10.1088/1755-1315/55/1/012005
  • Tsuchiya, T., Yamada, K., Minoura, K., Miyamoto, K., Usami, Y., Kobayashi, T., Hamada-Sato, N., Imada, C., Tsujibo, H. (2008). Purification and determination of the chemical structure of the tyrosinase inhibitor produced by Trichoderma viride strain H1-7 from a marine environment. Biological and Pharmaceutical Bulletin, 31(8), 1618-1620. DOI:10.1248/bpb.31.1618
  • Uppala, L. (2015). A Review on Active Ingredients from Marine Sources used in Cosmetics. SOJ Pharmacy and Pharmaceutical Sciences, 2(3), 1-3.
  • Vamos-Vigyazo, L. (1981). Polyphenol oxidase and peroxidase in fruits and vegetables. Critical Reviews in Food Science and Nutrition, 15(1), 49-127. DOI:10.1080/10408398109527312
  • Wachi, Y. B., J. G.; Takahashi, J.; Nakamura, N.; Matsunaga, T. (1995). Tyrosinase inhibition by the water-soluble fraction of marine microalgae. J. Mar. Biotechnol., 2, 210-213. Retrieved from https://ci.nii.ac.jp/naid/10014710487/en/
  • Whitaker, J. R. (1994). Prenciples of enzymology for the food sciences (Second ed.). Marcel Dekker,Inc.
  • Wijesinghe, W. A. J. P., & Jeon, Y.-J. (2011). Biological activities and potential cosmeceutical applications of bioactive components from brown seaweeds: A review. Phytochemistry Reviews, 10, 431-443. DOI:10.1007/s11101-011-9214-4
  • Wu, B., & Naranmadura, H. (2014). Tyrosinase Inhibitors from Terrestrial and Marine Resources. Current topics in medicinal chemistry, 14. DOI:10.2174/1568026614666140523115357
  • Wu, B., Wu, X., Sun, M., & Li, M. (2013). Two novel tyrosinase inhibitory sesquiterpenes induced by CuCl2 from a marine-derived fungus Pestalotiopsis sp. Z233. Marine Drugs, 11(8), 2713-2721. DOI:10.3390/md11082713
  • Zhang, D., Li, X., Kang, J., Choi, H., & Son, B. (2007). A New α-Pyrone Derivative, 6-[(E)-Hept-1-enyl]-α-pyrone, with Tyrosinase Inhibitor Activity from a Marine Isolate of the Fungus Botrytis. Cheminform, 38. DOI:10.1002/chin.200740195
  • Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 279-309. DOI:10.1080/14756366.2018.1545767

Details

Primary Language English
Subjects Biology
Journal Section Reviews
Authors

Amine Dilara PİLEVNELİ> (Primary Author)
ANKARA UNIVERSITY, FACULTY OF PHARMACY
0000-0001-8573-2718
Türkiye


Belma KONUKLUGİL>
ANKARA UNIVERSITY, FACULTY OF PHARMACY
0000-0002-4753-0450
Türkiye

Publication Date December 15, 2020
Application Date January 20, 2020
Acceptance Date May 6, 2020
Published in Issue Year 2020, Volume 37, Issue 4

Cite

APA Pilevneli, A. D. & Konuklugil, B. (2020). Marine derived tyrosinase inhibitors . Ege Journal of Fisheries and Aquatic Sciences , 37 (4) , 427-436 . DOI: 10.12714/egejfas.37.4.15