PDF EndNote BibTex RIS Cite

ve yağ asidi kompozisyonuna etkisi.

Year 2006, Volume 23, Issue 3, 257 - 261, 01.09.2006

Abstract

References

  • Babadzhanov, S.A., Abdusamatova, N., Yusupova, M.F., Faizullaeva, N., Mezhlum, G.L., Malikova, K.M. 2004.Chemical composition of Spirulina platensis cultivated in Uzbekistan. Chemistry of Natural Compounds. 40 No 3.
  • Ben-Amotz, A., A. Katz, M. Avron, 1982. Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). J. Phycol. 18 529- 37.
  • Becker, E.W. 1993. Development of Spirulina research in a developing country India. Bulletin de I, Institut Oceanographique (Monaco). (Spec. Issue 12) 65-75.
  • Borowitzka, M.A. 1988. Vitamins and fine chemicals from micro-algae. In:Borowitzka (Eds.), Micro-Algal Biotechnology, Cambridge University Pres, Cambridge, UK. pp 153-196.
  • Cohen, Z. 1999. Chemicals from microalgae (Eds.), Taylor&Francis Ltd. UK. 418 p.
  • Cohen, Z., M. Reungjitchachawali, W. Siangdung, M. Tanticharoen, 1993 Production and partial purification of γ-Linolenic acid and some pigments from Spirulina platensis. J. Appl. Phycol. 5 109-115.
  • Cohen, Z., A. Vonshak, A. Richmond, 1987. Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry. 26 (8) 2255-2258.
  • Colla, M.L., E.T. Bertolin, V.A.J. Costa, 2003. Fatty Acids Profile of Spirulina platensis Grown Under Different Temperatures and Nitrogen Concentrations. Z. Naturforsch. 59c 55-59.
  • Firestone, D., W. Horwitz, 1979. IUPAC gas chromatographic method for determination of fatty acid composition: collaborative study. J. Assoc Off Anal Chem. 62(4) 709-21.
  • Guillard, R.R.L. 1973. Culture Methods and Growth Measurements, Division Rates in Handbook of Phycological methods J.R. Stein (Ed.), Chambridge University Pres, Chambridge. pp. 289-311.
  • Manz, U., Vuilleumier, J.P. 1988. Determination of added canthaxanthin in complete feeds and premixes with HPLC. Analytical Methods for Vitamins and Carotenoids in Feed. H.E. Keller (Ed.), F Hoffmann-La Roche Ltd., Basel, Switzerland pp 68-71.
  • Murata, N., I. Nishida, 1987. Lipids of blue-green algae (cyanobacteria). In: The Biochemistry of Plants P.K. Stumpf (Ed.), Academic Press, San Diego, USA pp. 315-347.
  • Murata, N., P. Deshnium, Y.Tasaka, 1996. Biosynthesis of γ-linolenic acid in the cyanobacterium Spirulina platensis. In: γ-linolenic Acid-Metabolism and its Role in Nutrition and Medicine, Y.S. Huang, D.E. Mills (Eds), AOCS Press, Champaign, Illinois, USA pp. 22-32.
  • Murata, N., T.A. Ono, N.Sato, 1979. Lipid phase of membrane and chilling injury in the blue-green alga , Anacystis nidulans. In: Low Temperature Stress in Crop Plants: The Role of the Membrane, J.M. Lyons, D. Graham, J.K. Radison (Eds). Academic Press, New York pp. 337-345.
  • Mühling, M., A. Belay, A.B. Whitton, 2005. Variation in fatty acid composition of Arthrospira (Spirulina) strains. J. Applied Phycology. 17 137-146.
  • Official methods of analysis, AOAC, Association of Official Analytical Chemists (1995) 15th edn. Washington, DC.
  • Olguin, E., S. Galicia, O. Angulo-Guerrero, E. Hernndez, 2001. The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. Biores. Technol. 77 19-24.
  • Oliveira, M.A.C. L., Monteiro, M.P.C., Robbs, P.G., Leite, S.G.F. 1999. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquaculture international 7 261-275.
  • Ouoc, K.P., J.P. Dubacq, 1997. Effect of growth temperature on the biosynthesis of eukaryotic lipid molecular species by the cyanobacterium Spirulina platensis. Biochimica et Biophysica Acta. 1346 237-246. Elsevier.
  • Parsons, T.R., J.D.H. Strickland, 1963. Discussion of spectrophotometric determination of marine plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. J. Marine Research. 21No: 3, p.115-163.
  • Reynolds, C.S. 1984. The ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.
  • Richmond, A. 1992. Mass culture of cyanobacterium. In: Photosynthetic Prokaryotes, N.H. Mann, N.G. Carr (Eds.), Plenum Press, New York pp 181-209.
  • Richmond, A., E. Lichtenberg, B. Stahl, A. Vonshak, 1990. Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J. Applied Phycology. 2 195-206.
  • Romano, I., R. Bellitti, M. Nicolaus, B. Lama, L. Manca, C. M. Pagnotta, E. Gambacorta, 2000. A Lipid profile: a useful chemotaxonomic marker for classification of a new cyanobacterium in Spirulina genus. Phytochemistry. 54 289-294.
  • Somerville, C., J. Browse, Plant Lipids: Metabolism, Mutants, and Membranes, Science, 252 (1991) pp. 80-70.
  • Soeder, C.J., J.F. Talling, I. Baak, 1969. Chemical components, Dry weight and ash content. A manual on methods for Measuring Primary Production in Aquatic Environments, A.R. Vollenweider (Ed.), Blackwell Scientific Publications, Edinburgh Melbourne.
  • SPSS Computer program, MS. For Windows, version 10,01 (1999) SPSS Inc., USA.
  • Tomaselli, L., L. Giovannetti, A. Sacchi, F.Bocci, 1988. Effects of temperature on growth and biochemical composition in Spirulina platensis strain M2. In: Algal Biotechnology, T. Stadler, J. Mellion, M.C. Verdus, Y. Karamanos, H. Morvan, D. Christiaen (Eds.), Elsevier Applied Science, London. pp 303-314.
  • Vonshak, A. 1992. Microalgal biotechnology: is it an economical success?. In Biotechnology:Economic and Social Aspects, E.J. Da Silva, C. Ratledge, A, Sasson (Eds.), Cambridge University. pp 70-80.
  • Wada, H., Z. Gombos, N. Murata, 1994. Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc. Natl. Acad. Sci. USA 91 4273-4277.

Çevre faktörlerinin Spirulina platensis'in C (askorbik asit) ve E (Alfa-tokoferol) vitaminleri, β-karoten içeriği

Year 2006, Volume 23, Issue 3, 257 - 261, 01.09.2006

Abstract

Çevre faktörlerinin Spirulina platensis’in C (askorbik asit) ve E (Alfa-tokoferol) vitaminleri, β-karoten içeriği ve yağ asidi kompozisyonuna etkisi. Bu çalışma, subtropik bir bölgede mevsime bağlı iklim değişikliğinin havuzlarda kültüre alınan Spirulina platensis’in C (askorbik asit) ve E (alfa-tokoferol) vitaminleri, β- karoten içeriği ve yağ asiti kompozisyonuna etkilerini incelemek amacıyla yürütülmüştür. Işık yoğunluğu, pH ve tuzluluk günlük olarak ölçülürken, sıcaklık ve çözünmüş Oksijen ölçümleri gece ve gündüz yapılmıştır. Yaz mevsiminde ortalama gündüz sıcaklığı 33.9±0.4 ºC olarak belirlenirken kış mevsimi için 18.6±0.5 ºC değeri belirlenmiştir. Yaz ve kış için gece ortalama sıcaklık değerleri ise sırasıyla 29.9±0.2 ºC ve 14.4±0.2 ºC olarak saptanmıştır. Ortalama ışık yoğunluğu yaz mevsiminde 848.3 µmol/m2/s iken kışın 506.26±48 µmol/m2/s olmuştur. Kış büyüme döneminde S. platensis’e ait C vitamini içeriği 39.31±3.63 mg/100 g ile yaz dönemine gore daha yüksek bulunmuştur. Alfa-tokoferol içeriği, 6.57±1.18 mg/100 g ile yazın daha yüksek saptanmıştır. Β-karoten miktarı ise yaz ve kış mevsimleri için benzer bulunmuştur. Yağ asitleri kompozisyonu çevre koşullarından önemli ölçüde etkilenmiştir. En yüksek γ-linolenik asit miktarı (22.221±0.388 %) yaz koşullarında saptanmıştır

References

  • Babadzhanov, S.A., Abdusamatova, N., Yusupova, M.F., Faizullaeva, N., Mezhlum, G.L., Malikova, K.M. 2004.Chemical composition of Spirulina platensis cultivated in Uzbekistan. Chemistry of Natural Compounds. 40 No 3.
  • Ben-Amotz, A., A. Katz, M. Avron, 1982. Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). J. Phycol. 18 529- 37.
  • Becker, E.W. 1993. Development of Spirulina research in a developing country India. Bulletin de I, Institut Oceanographique (Monaco). (Spec. Issue 12) 65-75.
  • Borowitzka, M.A. 1988. Vitamins and fine chemicals from micro-algae. In:Borowitzka (Eds.), Micro-Algal Biotechnology, Cambridge University Pres, Cambridge, UK. pp 153-196.
  • Cohen, Z. 1999. Chemicals from microalgae (Eds.), Taylor&Francis Ltd. UK. 418 p.
  • Cohen, Z., M. Reungjitchachawali, W. Siangdung, M. Tanticharoen, 1993 Production and partial purification of γ-Linolenic acid and some pigments from Spirulina platensis. J. Appl. Phycol. 5 109-115.
  • Cohen, Z., A. Vonshak, A. Richmond, 1987. Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry. 26 (8) 2255-2258.
  • Colla, M.L., E.T. Bertolin, V.A.J. Costa, 2003. Fatty Acids Profile of Spirulina platensis Grown Under Different Temperatures and Nitrogen Concentrations. Z. Naturforsch. 59c 55-59.
  • Firestone, D., W. Horwitz, 1979. IUPAC gas chromatographic method for determination of fatty acid composition: collaborative study. J. Assoc Off Anal Chem. 62(4) 709-21.
  • Guillard, R.R.L. 1973. Culture Methods and Growth Measurements, Division Rates in Handbook of Phycological methods J.R. Stein (Ed.), Chambridge University Pres, Chambridge. pp. 289-311.
  • Manz, U., Vuilleumier, J.P. 1988. Determination of added canthaxanthin in complete feeds and premixes with HPLC. Analytical Methods for Vitamins and Carotenoids in Feed. H.E. Keller (Ed.), F Hoffmann-La Roche Ltd., Basel, Switzerland pp 68-71.
  • Murata, N., I. Nishida, 1987. Lipids of blue-green algae (cyanobacteria). In: The Biochemistry of Plants P.K. Stumpf (Ed.), Academic Press, San Diego, USA pp. 315-347.
  • Murata, N., P. Deshnium, Y.Tasaka, 1996. Biosynthesis of γ-linolenic acid in the cyanobacterium Spirulina platensis. In: γ-linolenic Acid-Metabolism and its Role in Nutrition and Medicine, Y.S. Huang, D.E. Mills (Eds), AOCS Press, Champaign, Illinois, USA pp. 22-32.
  • Murata, N., T.A. Ono, N.Sato, 1979. Lipid phase of membrane and chilling injury in the blue-green alga , Anacystis nidulans. In: Low Temperature Stress in Crop Plants: The Role of the Membrane, J.M. Lyons, D. Graham, J.K. Radison (Eds). Academic Press, New York pp. 337-345.
  • Mühling, M., A. Belay, A.B. Whitton, 2005. Variation in fatty acid composition of Arthrospira (Spirulina) strains. J. Applied Phycology. 17 137-146.
  • Official methods of analysis, AOAC, Association of Official Analytical Chemists (1995) 15th edn. Washington, DC.
  • Olguin, E., S. Galicia, O. Angulo-Guerrero, E. Hernndez, 2001. The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. Biores. Technol. 77 19-24.
  • Oliveira, M.A.C. L., Monteiro, M.P.C., Robbs, P.G., Leite, S.G.F. 1999. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquaculture international 7 261-275.
  • Ouoc, K.P., J.P. Dubacq, 1997. Effect of growth temperature on the biosynthesis of eukaryotic lipid molecular species by the cyanobacterium Spirulina platensis. Biochimica et Biophysica Acta. 1346 237-246. Elsevier.
  • Parsons, T.R., J.D.H. Strickland, 1963. Discussion of spectrophotometric determination of marine plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. J. Marine Research. 21No: 3, p.115-163.
  • Reynolds, C.S. 1984. The ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.
  • Richmond, A. 1992. Mass culture of cyanobacterium. In: Photosynthetic Prokaryotes, N.H. Mann, N.G. Carr (Eds.), Plenum Press, New York pp 181-209.
  • Richmond, A., E. Lichtenberg, B. Stahl, A. Vonshak, 1990. Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J. Applied Phycology. 2 195-206.
  • Romano, I., R. Bellitti, M. Nicolaus, B. Lama, L. Manca, C. M. Pagnotta, E. Gambacorta, 2000. A Lipid profile: a useful chemotaxonomic marker for classification of a new cyanobacterium in Spirulina genus. Phytochemistry. 54 289-294.
  • Somerville, C., J. Browse, Plant Lipids: Metabolism, Mutants, and Membranes, Science, 252 (1991) pp. 80-70.
  • Soeder, C.J., J.F. Talling, I. Baak, 1969. Chemical components, Dry weight and ash content. A manual on methods for Measuring Primary Production in Aquatic Environments, A.R. Vollenweider (Ed.), Blackwell Scientific Publications, Edinburgh Melbourne.
  • SPSS Computer program, MS. For Windows, version 10,01 (1999) SPSS Inc., USA.
  • Tomaselli, L., L. Giovannetti, A. Sacchi, F.Bocci, 1988. Effects of temperature on growth and biochemical composition in Spirulina platensis strain M2. In: Algal Biotechnology, T. Stadler, J. Mellion, M.C. Verdus, Y. Karamanos, H. Morvan, D. Christiaen (Eds.), Elsevier Applied Science, London. pp 303-314.
  • Vonshak, A. 1992. Microalgal biotechnology: is it an economical success?. In Biotechnology:Economic and Social Aspects, E.J. Da Silva, C. Ratledge, A, Sasson (Eds.), Cambridge University. pp 70-80.
  • Wada, H., Z. Gombos, N. Murata, 1994. Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc. Natl. Acad. Sci. USA 91 4273-4277.

Details

Primary Language Turkish
Journal Section Articles
Authors

Oya IŞIK This is me


Leyla HIZARCI This is me


Selin SAYIN This is me


Şevket GÖKPINAR This is me


Yaşar DURMAZ This is me


Tolga GÖKSAN This is me

Publication Date September 1, 2006
Application Date December 7, 2015
Acceptance Date
Published in Issue Year 2006, Volume 23, Issue 3

Cite

APA Işık, O. , Hızarcı, L. , Sayın, S. , Gökpınar, Ş. , Durmaz, Y. & Göksan, T. (2006). Çevre faktörlerinin Spirulina platensis'in C (askorbik asit) ve E (Alfa-tokoferol) vitaminleri, β-karoten içeriği . Ege Journal of Fisheries and Aquatic Sciences , 23 (3) , 257-261 . Retrieved from http://www.egejfas.org/en/pub/issue/5013/67891