Short Communication
BibTex RIS Cite

Midye (Mytilus galloprovincialis Lamarck, 1819) türünde çinko pritiyonun toplam hemosit sayıları üzerine etkileri

Year 2019, Volume: 36 Issue: 2, 185 - 189, 15.06.2019
https://doi.org/10.12714/egejfas.2019.36.2.11

Abstract



Bu çalışmada, 48 ve 96 saat süre ile 20 ve 40 µg/L subletal çinko pritiyona (ZnPT) maruz kalan denizel ortamdaki kontaminantları yüksek seviyede biriktiren Akdeniz midyelerinin  (Mytilus galloprovincialis) toplam hemosit sayıları üzerindeki etkisi belirlenmiştir. Toplam hemosit sayımı, çevresel kirleticilerin etkilerini incelemede iyi bir biyoindikatördür.    Çinko pritiyona maruz kalan midyelerde toplam hemosit sayılarının kontrol grubuna göre artış gösterdiği belirlenmiştir (p<0,05). Farklı kullanım alanları olan ve sucul ortama karışan bu maddenin düşük konsantrasyonlarının bile midyeleri olumsuz etkilediği saptanmıştır. 




Supporting Institution

Manisa Celal Bayar Üniversitesi

Project Number

2014-154

Thanks

Bu çalışma Manisa Celal Bayar Üniversitesi Bilimsel Araştırma Projesi Koordinasyon birimi (BAP) 2014-154 nolu proje tarafından desteklenmiştir.

References

  • Anderson R.S (1981). Effects of carcinogenic and non-carcinogenic environmental pollutants on immunological functions in marine invertebrates. In: Dawe ,C.J., Harshbarger, J.C., Kondo, S., Sagimura T &Takayama, S., (Eds.) Phylogenetic approach to cancer.Japan Sci Soc Press, Tokyo, 319–331
  • Baier-Anderson, C. & Anderson, R. S. (2000). The Effects of Chlorothalonil on Oyster Hemocyte Activation: Phagocytosis, Reduced Pyridine Nucleotides, and Reactive Oxygen Species Production. Environmental Research, 83(1), 72-78. DOI: 10.1006/enrs.1999.4033
  • Cheng, C. 1981)Bivalves, In Invertebrate Blood Cells 1(NA.Ratcliffe&A.F Rowley/ (Eds) Academic Press , London , 233-300.
  • Coles, J. A., Farley, S. R. & Pipe, R. K. (1994). Effects of fluoranthene on the immunocompetence of the common marine mussel, Mytilus edulis. Aquatic Toxicology, 30(4), 367–379. DOI: 10.1016/0166-445x(94)00051-4 
  • Chu, F.-L. E. & Hale, R. C. (1994). Relationship between pollution and susceptibility to infectious disease in the eastern oyster, Crassostrea virginica. Marine Environmental Research, 38(4), 243–255. DOI: 10.1016/0141-1136(94)90026-4 
  • Chima, F., Marin, M.G., Matozzo, V., Da Ros, L., Ballarin, L., 1999. Biomarkers for TBT immunotoxicity studies on the cultivated clam Tapes philippinarum (Adams andReeve, 1850). Mar. Pollut. Bull. 39, 112–115
  • Duydu,Y., (1993). Organokalay Bileşiklerinin Yarattıkları Önemli Çevre Sorunları. Ecotoxicological Problems of Organotin Compounds Ankara Eczacılık Fakültesi, Dergisi, 22: 1-2. DOI: 10.1501/eczfak_0000000145
  • Dahllof, I., Grunnet, K., Haller, R., Hjorth, M., Maraldo, K. & Petersen, D.G., (2005). Analysis, Fate and Toxicity of Zinc- and Copper Pyrithione in the Marine Environmenti. Nordem, 505: 1-33. DOI: 10.6027/TN2005-550
  • Fisher, W. S., Oliver, L. M., Winstead, J. T. & Long, E. R. (2000). A survey of oysters Crassostrea virginica from Tampa Bay, Florida: associations of internal defense measurements with contaminant burdens. Aquatic Toxicology, 51(1), 115–138. DOI: 10.1016/s0166-445x(00)00082-5 
  • Gopalakrishnan, S., Huang W. B., Wang Q. W., Wu M. L., Liu J. & Wang K. J. (2011). Effects of tributyltin and benzo[a]pyrene on the immune-associated activities of hemocytes and recovery responses in the gastropod abalone, Haliotis diversicolor. Comparative Biochemistry and Physiology, 120-128.
  • Günal, A.Ç., Erkmen, B., Katalay,S., Ayhan, M.M., Gül, G. & Erkoç, F. (2018). Determinations of the effects antifouling copper pyrithione on total hemocyte counts of mussel (Mytilus galloprovincialis). Ege Journal of Fisheries and Aquatic Sciences, 35(1): 15-17. DOI: 10.12714/egejfas.2018.35.1.03)
  • Harino, H. (2004). Occurence and degredation of representative TBT free antifouling biocides in aquatic environment. Coastal Marine Science, 29:28-39.
  • Hannam, M.L., Bamber, S., Galloway, T., Moody, A.J. & Jones, M., (2010). Effects of the model PAH phenanthrene on immune function and oxidative stress in haemolymph of the temperature scallop Pecten maximus. Chemosphere, 78: 779-784. DOI: 10.1016/j.chemosphere.2009.12.049
  • Ittoop, G., George, K. C., Ranimary, G., Sobhana, K. S., Sanil, N. K & Nisha, P. C. (2009). Effect of copper toxicity on the hemolymph factors of the Indian edible oyster, Crassostrea madrasensis (Preston) Indian Journal of Fisheries, 56: 301-306.
  • Marcheselli, M., Azzoni, P. & Mauri, M. (2011). Novel antifouling agent-zinc pyrithione: Stress induction and genotoxicity to the marine mussel Mytilus galloprovincialis. Aquatic Toxicology, 102(1-2), 39–47. DOI: 10.1016/j.aquatox.2010.12.015 
  • Marcheselli, M., Rustichelli, C. & Mauri, M. (2010) Novel anti-fouling agent zinc pyrithione: determination, acute toxicity and bioaccumulation in marine mussels (Mytilus galloprovincialis). Environmental Toxicology Chemistry, 29: 2583–2592. DOI: 10.1002/etc.316
  • Marchecelli, M., Conzo, F., Mauri, M. & Simonini, R. (2010). Novel antifouling agent-zinc pyrithione: short and long-term effect on survival and reproduction of the marine polychate Dinophilus gyrociliatus. Aquat. Toxicol. Chem. 29, 2583-2592.
  • Moore, M.N. (1988) Cytochemical responses of the lysosomal system and NADPH ferrihemoprotein reductase in molluscan digestive cells to environmental and experimental exposure to xenobiotics. Marine Ecology Progress Series, 46:81–89. DOI: 10.3354/meps046081
  • Okamura, H., Watanabe, T., Aoyama, I., Hasobe, M., (2002). Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere 46, 945–951.
  • Prakash, J., Nirmalakhandan, N., Sun, B. & Peace, J., 1996. Toxicity of binary mixtures of organic chemicals to microorganisms. Water Research 30, 1459–1463.
  • Pickwell, G. V & Steinert, S. A.,(1984). Serum biochemical and cellular responses to experimental cupric ion challenge in mussels. Marine Environmental Research, 14: 245-267. DOI: 10.1016/0141-1136(84)90081-3
  • Pipe, R.., Coles, J. ., Thomas, M. ., Fossato, V. . & Pulsford, A. . (1995). Evidence for environmentally derived immunomodulation in mussels from the Venice Lagoon. Aquatic Toxicology, 32(1), 59–73. DOI: 10.1016/0166-445x(94)00076-3 
  • Pipe, R., Coles, J., Carissan, F. M. & Ramanathan, K. (1999). Copper induced immunomodulation in the marine mussel, Mytilus edulis. Aquatic Toxicology, 46(1), 43–54. DOI: 10.1016/s0166-445x(98)00114-3 
  • Renwrantz, L.(1990). Internal defense system of Mytilus edulis.In: Stefano GB (ed) Studies in neuroscience, neurobiology of Mytilus edulis. Manchester University Press, Manchester, 256–275.

The effects of zinc pyrithione on total hemocyte counts of mussel (Mytilus galloprovincialis Lamarck, 1819)

Year 2019, Volume: 36 Issue: 2, 185 - 189, 15.06.2019
https://doi.org/10.12714/egejfas.2019.36.2.11

Abstract



In this study, the effect of Mediterranean mussels (Mytilus galloprovincialis) which accumulate contaminants in the marine environment exposed to 20 and 40 µg/Lsublethal zinc pyrithion (ZnPT) at high levels for 48 and 96 hours on total hemocyte counts was determined. Total hemocyte count is a good bioindicator to assess the effects of environmental pollutants . It was determined that total hemocyte counts were increased in mussels exposed to zinc pyrithione when compared to the control group (p<0.05). It has been found that this substance, which has different usage areas and contaminate aquatic environment, negatively effect the mussels even in low concentrations.




Project Number

2014-154

References

  • Anderson R.S (1981). Effects of carcinogenic and non-carcinogenic environmental pollutants on immunological functions in marine invertebrates. In: Dawe ,C.J., Harshbarger, J.C., Kondo, S., Sagimura T &Takayama, S., (Eds.) Phylogenetic approach to cancer.Japan Sci Soc Press, Tokyo, 319–331
  • Baier-Anderson, C. & Anderson, R. S. (2000). The Effects of Chlorothalonil on Oyster Hemocyte Activation: Phagocytosis, Reduced Pyridine Nucleotides, and Reactive Oxygen Species Production. Environmental Research, 83(1), 72-78. DOI: 10.1006/enrs.1999.4033
  • Cheng, C. 1981)Bivalves, In Invertebrate Blood Cells 1(NA.Ratcliffe&A.F Rowley/ (Eds) Academic Press , London , 233-300.
  • Coles, J. A., Farley, S. R. & Pipe, R. K. (1994). Effects of fluoranthene on the immunocompetence of the common marine mussel, Mytilus edulis. Aquatic Toxicology, 30(4), 367–379. DOI: 10.1016/0166-445x(94)00051-4 
  • Chu, F.-L. E. & Hale, R. C. (1994). Relationship between pollution and susceptibility to infectious disease in the eastern oyster, Crassostrea virginica. Marine Environmental Research, 38(4), 243–255. DOI: 10.1016/0141-1136(94)90026-4 
  • Chima, F., Marin, M.G., Matozzo, V., Da Ros, L., Ballarin, L., 1999. Biomarkers for TBT immunotoxicity studies on the cultivated clam Tapes philippinarum (Adams andReeve, 1850). Mar. Pollut. Bull. 39, 112–115
  • Duydu,Y., (1993). Organokalay Bileşiklerinin Yarattıkları Önemli Çevre Sorunları. Ecotoxicological Problems of Organotin Compounds Ankara Eczacılık Fakültesi, Dergisi, 22: 1-2. DOI: 10.1501/eczfak_0000000145
  • Dahllof, I., Grunnet, K., Haller, R., Hjorth, M., Maraldo, K. & Petersen, D.G., (2005). Analysis, Fate and Toxicity of Zinc- and Copper Pyrithione in the Marine Environmenti. Nordem, 505: 1-33. DOI: 10.6027/TN2005-550
  • Fisher, W. S., Oliver, L. M., Winstead, J. T. & Long, E. R. (2000). A survey of oysters Crassostrea virginica from Tampa Bay, Florida: associations of internal defense measurements with contaminant burdens. Aquatic Toxicology, 51(1), 115–138. DOI: 10.1016/s0166-445x(00)00082-5 
  • Gopalakrishnan, S., Huang W. B., Wang Q. W., Wu M. L., Liu J. & Wang K. J. (2011). Effects of tributyltin and benzo[a]pyrene on the immune-associated activities of hemocytes and recovery responses in the gastropod abalone, Haliotis diversicolor. Comparative Biochemistry and Physiology, 120-128.
  • Günal, A.Ç., Erkmen, B., Katalay,S., Ayhan, M.M., Gül, G. & Erkoç, F. (2018). Determinations of the effects antifouling copper pyrithione on total hemocyte counts of mussel (Mytilus galloprovincialis). Ege Journal of Fisheries and Aquatic Sciences, 35(1): 15-17. DOI: 10.12714/egejfas.2018.35.1.03)
  • Harino, H. (2004). Occurence and degredation of representative TBT free antifouling biocides in aquatic environment. Coastal Marine Science, 29:28-39.
  • Hannam, M.L., Bamber, S., Galloway, T., Moody, A.J. & Jones, M., (2010). Effects of the model PAH phenanthrene on immune function and oxidative stress in haemolymph of the temperature scallop Pecten maximus. Chemosphere, 78: 779-784. DOI: 10.1016/j.chemosphere.2009.12.049
  • Ittoop, G., George, K. C., Ranimary, G., Sobhana, K. S., Sanil, N. K & Nisha, P. C. (2009). Effect of copper toxicity on the hemolymph factors of the Indian edible oyster, Crassostrea madrasensis (Preston) Indian Journal of Fisheries, 56: 301-306.
  • Marcheselli, M., Azzoni, P. & Mauri, M. (2011). Novel antifouling agent-zinc pyrithione: Stress induction and genotoxicity to the marine mussel Mytilus galloprovincialis. Aquatic Toxicology, 102(1-2), 39–47. DOI: 10.1016/j.aquatox.2010.12.015 
  • Marcheselli, M., Rustichelli, C. & Mauri, M. (2010) Novel anti-fouling agent zinc pyrithione: determination, acute toxicity and bioaccumulation in marine mussels (Mytilus galloprovincialis). Environmental Toxicology Chemistry, 29: 2583–2592. DOI: 10.1002/etc.316
  • Marchecelli, M., Conzo, F., Mauri, M. & Simonini, R. (2010). Novel antifouling agent-zinc pyrithione: short and long-term effect on survival and reproduction of the marine polychate Dinophilus gyrociliatus. Aquat. Toxicol. Chem. 29, 2583-2592.
  • Moore, M.N. (1988) Cytochemical responses of the lysosomal system and NADPH ferrihemoprotein reductase in molluscan digestive cells to environmental and experimental exposure to xenobiotics. Marine Ecology Progress Series, 46:81–89. DOI: 10.3354/meps046081
  • Okamura, H., Watanabe, T., Aoyama, I., Hasobe, M., (2002). Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere 46, 945–951.
  • Prakash, J., Nirmalakhandan, N., Sun, B. & Peace, J., 1996. Toxicity of binary mixtures of organic chemicals to microorganisms. Water Research 30, 1459–1463.
  • Pickwell, G. V & Steinert, S. A.,(1984). Serum biochemical and cellular responses to experimental cupric ion challenge in mussels. Marine Environmental Research, 14: 245-267. DOI: 10.1016/0141-1136(84)90081-3
  • Pipe, R.., Coles, J. ., Thomas, M. ., Fossato, V. . & Pulsford, A. . (1995). Evidence for environmentally derived immunomodulation in mussels from the Venice Lagoon. Aquatic Toxicology, 32(1), 59–73. DOI: 10.1016/0166-445x(94)00076-3 
  • Pipe, R., Coles, J., Carissan, F. M. & Ramanathan, K. (1999). Copper induced immunomodulation in the marine mussel, Mytilus edulis. Aquatic Toxicology, 46(1), 43–54. DOI: 10.1016/s0166-445x(98)00114-3 
  • Renwrantz, L.(1990). Internal defense system of Mytilus edulis.In: Stefano GB (ed) Studies in neuroscience, neurobiology of Mytilus edulis. Manchester University Press, Manchester, 256–275.
There are 24 citations in total.

Details

Primary Language Turkish
Journal Section Short Communications
Authors

Selma Katalay 0000-0001-7024-5730

Melike Merve Ayhan 0000-0002-3696-486X

Aysel Çağlan Günal 0000-0002-9072-543X

Project Number 2014-154
Publication Date June 15, 2019
Submission Date January 10, 2019
Published in Issue Year 2019Volume: 36 Issue: 2

Cite

APA Katalay, S., Ayhan, M. M., & Günal, A. Ç. (2019). Midye (Mytilus galloprovincialis Lamarck, 1819) türünde çinko pritiyonun toplam hemosit sayıları üzerine etkileri. Ege Journal of Fisheries and Aquatic Sciences, 36(2), 185-189. https://doi.org/10.12714/egejfas.2019.36.2.11