Research Article
BibTex RIS Cite

The effects of calcium and zeolite on cadmium accumulation in tilapia (Oreochromis niloticus Linnaeus, 1758) fish tissues

Year 2016, Volume: 33 Issue: 1, 41 - 46, 23.03.2016
https://doi.org/10.12714/egejfas.2016.33.1.07

Abstract

Araştırmamızda kalsiyum ve zeolitin Oreochromis niloticus balık dokularında (böbrek, karaciğer, solungaç ve kas) kadmiyum birikimi üzerine etkileri incelenmiştir. Balıklar 5, 10 ve 15 gün sürelerle 1,0 mg/L Cd, 1,0 mg/L Cd+1,0 mg/L Ca (Cd+Ca), 1,0 mg/L Cd+0,1 g/L Zeolit (Cd+ZE) karışımının etkisine bırakılmış, dokulardaki kadmiyum birikimi ICP-MS Spektrometresi ile ölçülmüştür. Dokulardaki kadmiyum derişimi sürenin uzamasıyla artmıştır. En yüksek kadmiyum birikimi böbrek dokusunda bulunmuş olup, bunu karaciğer, solungaç ve kas dokusu izlemiştir. Etkide kalınan tüm sürelerde, O.niloticus’un dokularında kadmiyum birikimi kalsiyum ve zeolitin varlığında azalmıştır. Çalışma sonucunda, kadmiyum birikiminin zeolit ve kalsiyum tarafından azaltıldığı ve bu azalışta zeolitin etkisinin, kalsiyuma göre, daha fazla olduğu saptanmıştır.

References

  • Ali, B.A., Al-Ogaily, S.M., Al-Asgah, N.A. & Gropp, J. (2003). Effect of sublethal concentrations of copper on the growth performance of Oreochromis niloticus. Journal of Applied Ichthyology. 19: 183-188.
  • doi:10.1046/j.1439-0426.2003.00440.x
  • Allen, P. (1994). Mercury accumulation profiles and their modification by interaction with cadmium and lead in the soft tissues of the cichlid Oreochromis aureus during chronicexposure. Bulletin of Environmental Contamination and Toxicology. 53: 684–692. doi:10.1007/BF00196940
  • Almeida, J.A., Novelli, E.L.B, Dal Pai Silva, M. & Alves, J.R. (2001). Environmental cadmium exposure and metabolic responses of the Nile tilapia, Oreochromisniloticus. Environmental Pollution. 114-2: 169-175. doi:10.1016/S0269-7491(00)00221-9
  • Babel, S. & Kurniawan, T.A. (2003). A Research study on Cr (VI) removal from contaminated wastewater using natural zeolite. Ion Exchange. 14: 289-292.
  • Baden, S.P., Eriksson, S.P. & Gerhardt, L. (1999). Accumulation and elimination kinetics of manganese from different tissues of the Norway Lobester Nephrops norvegicus (L.). Aquatic Toxicology. 46: 127-137. doi:10.1016/S0166-445X(98)00123-4
  • Baldisserotto, B., Kamunde, C., Matsuo, A. & Wood, C.M. (2004). A protective effect of dietary calcium against acute waterborne cadmium uptake in rainbow trout. Aquatic Toxicology. 67: 57-73. doi:10.1016/j.aquatox.2003.12.004
  • Berntssen, M.H.G., Waagbo, R., Toften, H. & Lundebye, A.-K. (2003). Effects of dietary cadmium on calcium homeostasis, Ca mobilization and bone deformities in Atlantic Salmon (Salmo salar L.). Parr. Aquaculture Nutrition. 9: 175-183. doi:10.1046/j.1365-2095.2003.00245.x
  • Bjerregaard, P. & Vislie, T. (1985). Effects of cadmium on hemolymph composition in the shore crab Carcinus maenas. Marine Ecology Progress Series, 27: 135-142.
  • Brown, M.W., Thomas, D.G., Shurben, D., Solbe, J.F., Kay, J. & Creyer, D., (1986). A comparasion of the differential accumulation cadmium in the tissues of three species of freshwater fish, Salmogairdneri, Rutilus rutilus and Noemacheilus barbatus. Comparative Biochemistry and Physiology. 84C, 2: 213-217. doi:10.1016/0742-8413(86)90085-X
  • Burnison, B.K., Meinelt, T., Playle, R.C., Pietrock, M., Wienke., A. & Steinberg, C.E.W. (2006). Cadmium accumulation in zebrafish (Danio rerio) embryos is modulated by dissolved organic matter. Aquatic Toxicology, 79: 185–191. doi:10.1016/j.aquatox.2006.06.010
  • Cearley, J.E. & Coleman, R.L. (1974). Cadmium toxicity and bioconcentration in laregmouth bass and bluegill. Bulletin of Environmental Contamination and Toxicology, 11: 146-151. doi:10.1007/BF01684594
  • Cinier, C. De C., Petit-Ramel, M., Faure, R., Garin, D. & Bouvet, Y. (1999). Kinetics of cadmium accumulation and elimination in carp Cyprinus carpio tissues. Comparative Biochemistry and Physology, 122: 345-352. doi:10.1016/S0742-8413(98)10132-9
  • Çoğun, H.Y., Kargın, F. & Yuzereroglu T.A. (2003). Accumulation of copper and cadmium in small and large Nile tiapia Oreochromis niloticus. Bulletin of Environmental Contamination and Toxicology, 71: 8523-8528. doi:10.1007/s00128-003-8523-8
  • Çoğun, H.Y. & Kargın, F. (2004). Effects of pH on the mortality and accumulation of copper in tissues of Oreochromis niloticus. Chemosphere, 55: 277–282. doi:10.1016/j.chemosphere.2003.10.007
  • Çoğun H.Y. & Şahin, M. (2012). The effect of zeolite on reduction of lead toxicity in Nil tilapia (Oreochromis niloticus Linnaeus, 1758). Kafkas Universitesi Veteriner Fakülte Dergisi. 18 (1): 135-140. doi:10.5772/53076
  • Çoğun H.Y. & Uras, G. (2012). The protective effect of calcium on aluminum toxicity in Oreochromis niloticus tissues (in Turkish with English abstract). Ege Journal of Fisheries and Aquatic Sciences, 29(1): 41-47. doi:10.12714/egejfas.2012.29.1.07
  • De Smet, H. & Blust, R. (2001). Stress responses and changes in protein metabolism in carp cyprinus caprio during cadmium exposure. Ecotoxicology and Environmental Safety, 48: 255-262. doi:10.1006/eesa.2000.2011
  • Exley, C., Chappell, J.S. & Birchall, J.D. (1991). A mechanism for acute aluminum toxicity in fish. The Journal of Theoretical Biology, 151: 418-428. doi:10.1016/S0022-5193(05)80389-3
  • Gabryelak, T., Filipiak, A. & Brichon, G. (2000). Effects of zinc on lipids of erythrocytes from carp (Cyprinus carpio L.) acclimated to different temperatures, Comparative Biochemistry and Physiology Part C. 127: 335-343. doi:10.1016/S0742-8413(00)00161-4
  • Glynn, A., Norrgren, L. & Malmborg, O. (1992). The influence of calcium and humic substances on aluminium accumulation and toxicity in the minnow, phoxinus phoxinus at low pH. Comparative Biochemistry and Physiology, 102 C. 3: 427-432. doi:10.1016/0742-8413(92)90137-V
  • Hilmy, A.M., El Domiaty, N.A., Daabees, A.Y. & Alsarha, A. (1987). The toxicity to Clarias lazera of copper and zinc applied jointly. Comparative Biochemistry and Physiology. 87 C (2): 309-314.
  • doi:10.1016/0742-8413(87)90013-2
  • Hollis, L., McGeer, J.C., McDonald, D.G. & Wood, C.M. (1999). Cadmium accumulation gill cd binding, acclimation, and physiologycal effects during long term sublethal Cd exposure in Rainbow Trout. Aquatic Toxicology, 46: 101-119. doi:10.1016/S0166-445X(98)00118-0
  • Howells, G., Dalziel, T.R.K., Reader, J.P. & Solbe, J.F. (1994). Aluminum and fresh waterfish water quality criteria. In: Howells, G. (Ed) Water quality for freshwater fish (pp. 55-115). Gordon and Breach Science Publication.
  • Hunn, J.B. (1985). Role of calcium in gill function in freshwater fishes. Comparative Biochemistry and Physiology, 82A: 543-547. doi:10.1016/0300-9629(85)90430-X
  • Jain, S.K. (1999). Protective roles of zeolite on short and long term tead toxicity in Teleost fish Heteropneustes fossilis. Chemosphere, 39(2): 247-251. doi:10.1016/S0045-6535(99)00106-X
  • Jain, S.K., Raizada, A.K. & Jain, K. (1997). Protective role of zeolite on lead toxicity in freshwater fish. XIII ISEB., Monopoli, Bari, Italy,
  • James, R., Sampath, K. & Selvamani, P. (1998). Effect of EDTA on reduction of copper toxicity in Oreochromis mossambicus. Bulletin of Environmental Contamination and Toxicology, 60: 487-493. doi:10.1007/s001289900651
  • Kayhan, F.E. (2006). Cadmium bioaccumulation and toxicity in seafood (in Turkish with English abstract). Ege Journal of Fisheries and Aquatic Sciences, 23(1-2): 215-220.
  • Larsson, A., Bengtsson, B.E. & Haux, C. (1981). Disturbed ıon balance in flounder, Platichthys flesus L., exposed to subletal levels of cadmium. Aquatic Toxicology, 1: 19-35. doi:10.1016/0166-445X(81)90004-7
  • McGeer, J.C., Szebedinszky, C., McDonald, D.G. & Wood, C.M. (2000). Effect of chronic sublethal exposure to waterborne Cu, Cd or Zn in Rainbow trout 2: Tissue spesific metal accumulation. Aquatic Toxicology, 50: 245-256. doi:10.1016/S0166-445X(99)00105-8
  • Mishra, M. & Jain, S.K. (2009). Effect of natural ion exchanger Chabazite for remediation of lead toxicity: an experimental study in teleost fish Heteropneustes fossilis. Asian Journal of Experimental Sciences, 23(1): 39-44.
  • Moiseenko, T.I. & Kudryavtseva, L.P. (2001). Trace metal accumulation and fish pathologies in areas affected by mining and metallurgical enterprises in the Kola Region, Russia Environmental Pollution, 114: 285-297. doi:10.1016/S0269-7491(00)00197-4
  • Muramoto, S. (1980). Effects of complexans (EDTA, NTA and DTPA) on the exposure to high concentrations of cadmium, copper, zinc and lead. The Bulletin of Environmental Contamination and Toxicology, 25: 941-946. doi:10.1007/BF01985635
  • Muramato, S. (1983). Elimination of Copper from Cu-contaminated fish by long-term exposure to EDTA and freshwater. Journal of Environmental Science and Health, Part A. 19 (3): 455-461. doi:10.1080/10934528309375113
  • Murphy, C.B. Jr. & Spiegel, S.J. (1983). Bioaccumulation and toxicity of heavy metals and related trace elements. Water Pollution, 55, 6: 816-821.
  • Pascoe, D., Evans, S.A. & Woodworth, J. (1986). Heavy metal toxicity to fish and influences of water hardness. Archives of Environmental Contamination and Toxicology, 15: 481-487. doi:10.1007/BF01056559
  • Pelgrom, S.M.G.J., Lock, R.A.C., Balm, P.H.M. & Wendelaar Bonga, S.E. (1995). Integrated Physiological Response of Tilapia, Oreochromismossambicus, to sublethal copper exposure. Aquatic Toxicology, 32: 303-320. doi:10.1016/0166-445X(95)00004-N
  • Pratap, H.B. & Lock, R.A.C., Wendelaar Bonga, S.E. (1989). Effect of waterborne and dietary cadmium on plasma ıons of the Teleost Oreochromismossambicus in relation to water calcium levels. Archives of Environmental Contamination and Toxicology, 18: 568-575. doi:10.1007/BF01055024
  • Regoli, F. & Orlando, E. (1994). Seasonal variation of tracemetal concentrations in the digestive gland of the Mediterranean mussel Mytilus galloprovincialis, Comparison between a polluted and a non-polluted site. Archives of Environmental Contamination and Toxicology, 27: 36–43. doi:10.1007/BF00203885
  • Reichert, W.L., Federigh, D.A. & Malins, D.C. (1979). Uptake and metabolism of lead and cadmium in Coho Salmon (Oncorhynchus kisutch). Comparative Biochemistry and Physiology, 63 C: 229-234.
  • doi:10.1016/0306-4492(79)90066-2
  • Riget, F., Dietz, R. & Johansen, P. (1997). Zinc, cadmium, mercury and selenium in Greenland fish. Bioscience Meddelelser om Grønland, 48: 1–29.
  • Sağlamtimur, B., Cicik, B. & Erdem, C. (2004). Cadmium Accumulation in Liver, Kidney, Gill and Muscle Tissues of Freshwater Bream (Oreochromis niloticus L. 1758) after a Short-Term Exposure to Copper-Cadmium Mixture (in Turkish with English abstract). Ekoloji, 14: 33-38.
  • Schulz - Baides, M. (1974). Lead uptake from the sea water and food, and lead loss in the common Mussel Mytilus edulis. Marine Biology, 25: 177-193. doi:10.1007/BF00394964
  • Semmens, M.J. & Seyfarth, M. (1978). Theselectivity of clinoptilolite for certain heavymetals. In, Sand LB, Mumpton FA (Eds): Natural zeolite occurance, properties,use, (pp. 517-526). New York: Pergamon Press, Elmsford.
  • Simon, C.M. (1981). Design and operations of a large scale commercical penaeid shrimp hatchery. Journal of the World Mariculture Society, 12: 322-334. doi:10.1111/j.1749-7345.1981.tb00305.x
  • Suresh, A., Sivaramakrishna, B. & Radhakrishnaiah, K. (1993). Cadmium induced changes in ion levels and ATPase activities in the muscle of the fry and fingerlings of the freshwater fish, Cyprinus carpio. Chemosphere, 30,2: 365-375. doi:10.1016/0045-6535(94)00403-H
  • Szebedinszky, C., Mc Geer, J.C., Mc Donald, D.G. & Wood, C.M. (2001). Effects of Chronic Cd Exposure via the Diet or Water on Internal Organ-Specific Distribution and Subsequent Gill Cd Uptake Kinetics in Juvenile Rainbow Trout. Environmental Toxicology Chemistry, 20: 597–607. doi:10.1002/etc.5620200320
  • Tao, S., Liu, C., Dawson, R., Cao, J. & Li, B. (1999). Uptake of Particulate Lead via the Gills of Fish (Carassius auratus). Archives of Environmental Contamination and Toxicology, 37: 352-357. doi:10.1007/s002449900524
  • Thomas, D.G., Brown, M.W., Shurben, D., Solbe, J.F.G., Cryer, A. & Kay, J., (1985). A Comparation of the Sequestration of cadmium and zinc in the tissues of Rainbow Trout (Salmo gairdneri) following exposure to the metals singly or in combination. Comparative Biochemistry and Physiology Part C, 82(1): 55-62. doi:10.1016/0742-8413(85)90209-9
  • Thurberg, F.P., Dawson, M.A. & Collier, R.S. (1973). Effects of copper and cadmium on osmoregulation and oxygen consumption in two species of estuarine crabs. Marine Biology, 23(3): 171-175. doi:10.1007/BF00389481
  • Torre, F.R., Salibian, A. & Ferrari, L. (2000). Biomarkers assessment in juvenile Cyprinus carpio exposed to waterborne cadmium. Environmental Pollution, 109: 277-282. doi:10.1016/S0269-7491(99)00263-8
  • Türkman, A., Aslan, Ş. & Ege, I. (2001). Lead removal from wastewaters by natural zeolites (in Turkish with English abstract). DEU Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 3(2): 13-19.
  • Uçar, A., Alak, G., Topal, A., Arslan, H., Parlak, V., Şensurat, T. & Atamanalp, M. (2012). Investigation of preservative effect of humic acid versus cadmium toxicity on electrolyte of brown trout (Salmo trutta fario) (in Turkish with English abstract). Tarım Bilimleri Araştırma Dergisi, 5(2): 139-143.
  • Venkataramana, P. & Radhakrishnaiah, K. (2001). Copper influenced changes in lactate dehydrogenase and glucose 6- phosphate dehydrogenase activities in the freshwater fish, Labeo rohita (Hamilton). The Bulletin of Environmental Contamination and Toxicology, 67: 257-263. doi:10.1007/s001280118
  • Verbost, P.M., Flik, G., Lock, R.A.C. & Wendelaar Bonga, S.E. (1989). The movement of cadmium through freshwater trout branchial epithelium and ıts ınterference with calcium transport. The Journal of Experimental Biology, 145, 185-197.
  • Viarengo, A. (1985). Biochemical effects of trace metals. Marine Pollution Bulletion. 16, 4: 153-158. doi:10.1016/0025-326X(85)90006-2
  • Wong, C.K.C. & Wong, M.H. (2000). Morphological and biochemical changes in the gills of Tilapia (Oreochromis mossambicus) to ambient cadmium exposure. Aquatic Toxicology, 48: 517-527.
  • doi:10.1016/S0166-445X(99)00060-0
  • Wood, C.M. (1988). Acid-base and ionic exchanges at gills and kidney after exhaustive exercises in the Rainbow Trout. The Journal of Experimental Biology, 136: 461-481.

Tilapia (Oreochromis niloticus Linnaeus, 1758) balığı dokularında kalsiyum ve zeolitin kadmiyum birikimine etkisi

Year 2016, Volume: 33 Issue: 1, 41 - 46, 23.03.2016
https://doi.org/10.12714/egejfas.2016.33.1.07

Abstract

Araştırmamızda kalsiyum ve zeolitin Oreochromis niloticus balık dokularında (böbrek, karaciğer, solungaç ve kas) kadmiyum birikimi üzerine etkileri incelenmiştir. Balıklar 5, 10 ve 15 gün sürelerle 1,0 mg/L Cd, 1,0 mg/L Cd+1,0 mg/L Ca (Cd+Ca), 1,0 mg/L Cd+0,1 g/L Zeolit (Cd+ZE) karışımının etkisine bırakılmış, dokulardaki kadmiyum birikimi ICP-MS Spektrometresi ile ölçülmüştür. Dokulardaki kadmiyum derişimi sürenin uzamasıyla artmıştır. En yüksek kadmiyum birikimi böbrek dokusunda bulunmuş olup, bunu karaciğer, solungaç ve kas dokusu izlemiştir. Etkide kalınan tüm sürelerde, O.niloticus’un dokularında kadmiyum birikimi kalsiyum ve zeolitin varlığında azalmıştır. Çalışma sonucunda, kadmiyum birikiminin zeolit ve kalsiyum tarafından azaltıldığı ve bu azalışta zeolitin etkisinin, kalsiyuma göre, daha fazla olduğu saptanmıştır

References

  • Ali, B.A., Al-Ogaily, S.M., Al-Asgah, N.A. & Gropp, J. (2003). Effect of sublethal concentrations of copper on the growth performance of Oreochromis niloticus. Journal of Applied Ichthyology. 19: 183-188.
  • doi:10.1046/j.1439-0426.2003.00440.x
  • Allen, P. (1994). Mercury accumulation profiles and their modification by interaction with cadmium and lead in the soft tissues of the cichlid Oreochromis aureus during chronicexposure. Bulletin of Environmental Contamination and Toxicology. 53: 684–692. doi:10.1007/BF00196940
  • Almeida, J.A., Novelli, E.L.B, Dal Pai Silva, M. & Alves, J.R. (2001). Environmental cadmium exposure and metabolic responses of the Nile tilapia, Oreochromisniloticus. Environmental Pollution. 114-2: 169-175. doi:10.1016/S0269-7491(00)00221-9
  • Babel, S. & Kurniawan, T.A. (2003). A Research study on Cr (VI) removal from contaminated wastewater using natural zeolite. Ion Exchange. 14: 289-292.
  • Baden, S.P., Eriksson, S.P. & Gerhardt, L. (1999). Accumulation and elimination kinetics of manganese from different tissues of the Norway Lobester Nephrops norvegicus (L.). Aquatic Toxicology. 46: 127-137. doi:10.1016/S0166-445X(98)00123-4
  • Baldisserotto, B., Kamunde, C., Matsuo, A. & Wood, C.M. (2004). A protective effect of dietary calcium against acute waterborne cadmium uptake in rainbow trout. Aquatic Toxicology. 67: 57-73. doi:10.1016/j.aquatox.2003.12.004
  • Berntssen, M.H.G., Waagbo, R., Toften, H. & Lundebye, A.-K. (2003). Effects of dietary cadmium on calcium homeostasis, Ca mobilization and bone deformities in Atlantic Salmon (Salmo salar L.). Parr. Aquaculture Nutrition. 9: 175-183. doi:10.1046/j.1365-2095.2003.00245.x
  • Bjerregaard, P. & Vislie, T. (1985). Effects of cadmium on hemolymph composition in the shore crab Carcinus maenas. Marine Ecology Progress Series, 27: 135-142.
  • Brown, M.W., Thomas, D.G., Shurben, D., Solbe, J.F., Kay, J. & Creyer, D., (1986). A comparasion of the differential accumulation cadmium in the tissues of three species of freshwater fish, Salmogairdneri, Rutilus rutilus and Noemacheilus barbatus. Comparative Biochemistry and Physiology. 84C, 2: 213-217. doi:10.1016/0742-8413(86)90085-X
  • Burnison, B.K., Meinelt, T., Playle, R.C., Pietrock, M., Wienke., A. & Steinberg, C.E.W. (2006). Cadmium accumulation in zebrafish (Danio rerio) embryos is modulated by dissolved organic matter. Aquatic Toxicology, 79: 185–191. doi:10.1016/j.aquatox.2006.06.010
  • Cearley, J.E. & Coleman, R.L. (1974). Cadmium toxicity and bioconcentration in laregmouth bass and bluegill. Bulletin of Environmental Contamination and Toxicology, 11: 146-151. doi:10.1007/BF01684594
  • Cinier, C. De C., Petit-Ramel, M., Faure, R., Garin, D. & Bouvet, Y. (1999). Kinetics of cadmium accumulation and elimination in carp Cyprinus carpio tissues. Comparative Biochemistry and Physology, 122: 345-352. doi:10.1016/S0742-8413(98)10132-9
  • Çoğun, H.Y., Kargın, F. & Yuzereroglu T.A. (2003). Accumulation of copper and cadmium in small and large Nile tiapia Oreochromis niloticus. Bulletin of Environmental Contamination and Toxicology, 71: 8523-8528. doi:10.1007/s00128-003-8523-8
  • Çoğun, H.Y. & Kargın, F. (2004). Effects of pH on the mortality and accumulation of copper in tissues of Oreochromis niloticus. Chemosphere, 55: 277–282. doi:10.1016/j.chemosphere.2003.10.007
  • Çoğun H.Y. & Şahin, M. (2012). The effect of zeolite on reduction of lead toxicity in Nil tilapia (Oreochromis niloticus Linnaeus, 1758). Kafkas Universitesi Veteriner Fakülte Dergisi. 18 (1): 135-140. doi:10.5772/53076
  • Çoğun H.Y. & Uras, G. (2012). The protective effect of calcium on aluminum toxicity in Oreochromis niloticus tissues (in Turkish with English abstract). Ege Journal of Fisheries and Aquatic Sciences, 29(1): 41-47. doi:10.12714/egejfas.2012.29.1.07
  • De Smet, H. & Blust, R. (2001). Stress responses and changes in protein metabolism in carp cyprinus caprio during cadmium exposure. Ecotoxicology and Environmental Safety, 48: 255-262. doi:10.1006/eesa.2000.2011
  • Exley, C., Chappell, J.S. & Birchall, J.D. (1991). A mechanism for acute aluminum toxicity in fish. The Journal of Theoretical Biology, 151: 418-428. doi:10.1016/S0022-5193(05)80389-3
  • Gabryelak, T., Filipiak, A. & Brichon, G. (2000). Effects of zinc on lipids of erythrocytes from carp (Cyprinus carpio L.) acclimated to different temperatures, Comparative Biochemistry and Physiology Part C. 127: 335-343. doi:10.1016/S0742-8413(00)00161-4
  • Glynn, A., Norrgren, L. & Malmborg, O. (1992). The influence of calcium and humic substances on aluminium accumulation and toxicity in the minnow, phoxinus phoxinus at low pH. Comparative Biochemistry and Physiology, 102 C. 3: 427-432. doi:10.1016/0742-8413(92)90137-V
  • Hilmy, A.M., El Domiaty, N.A., Daabees, A.Y. & Alsarha, A. (1987). The toxicity to Clarias lazera of copper and zinc applied jointly. Comparative Biochemistry and Physiology. 87 C (2): 309-314.
  • doi:10.1016/0742-8413(87)90013-2
  • Hollis, L., McGeer, J.C., McDonald, D.G. & Wood, C.M. (1999). Cadmium accumulation gill cd binding, acclimation, and physiologycal effects during long term sublethal Cd exposure in Rainbow Trout. Aquatic Toxicology, 46: 101-119. doi:10.1016/S0166-445X(98)00118-0
  • Howells, G., Dalziel, T.R.K., Reader, J.P. & Solbe, J.F. (1994). Aluminum and fresh waterfish water quality criteria. In: Howells, G. (Ed) Water quality for freshwater fish (pp. 55-115). Gordon and Breach Science Publication.
  • Hunn, J.B. (1985). Role of calcium in gill function in freshwater fishes. Comparative Biochemistry and Physiology, 82A: 543-547. doi:10.1016/0300-9629(85)90430-X
  • Jain, S.K. (1999). Protective roles of zeolite on short and long term tead toxicity in Teleost fish Heteropneustes fossilis. Chemosphere, 39(2): 247-251. doi:10.1016/S0045-6535(99)00106-X
  • Jain, S.K., Raizada, A.K. & Jain, K. (1997). Protective role of zeolite on lead toxicity in freshwater fish. XIII ISEB., Monopoli, Bari, Italy,
  • James, R., Sampath, K. & Selvamani, P. (1998). Effect of EDTA on reduction of copper toxicity in Oreochromis mossambicus. Bulletin of Environmental Contamination and Toxicology, 60: 487-493. doi:10.1007/s001289900651
  • Kayhan, F.E. (2006). Cadmium bioaccumulation and toxicity in seafood (in Turkish with English abstract). Ege Journal of Fisheries and Aquatic Sciences, 23(1-2): 215-220.
  • Larsson, A., Bengtsson, B.E. & Haux, C. (1981). Disturbed ıon balance in flounder, Platichthys flesus L., exposed to subletal levels of cadmium. Aquatic Toxicology, 1: 19-35. doi:10.1016/0166-445X(81)90004-7
  • McGeer, J.C., Szebedinszky, C., McDonald, D.G. & Wood, C.M. (2000). Effect of chronic sublethal exposure to waterborne Cu, Cd or Zn in Rainbow trout 2: Tissue spesific metal accumulation. Aquatic Toxicology, 50: 245-256. doi:10.1016/S0166-445X(99)00105-8
  • Mishra, M. & Jain, S.K. (2009). Effect of natural ion exchanger Chabazite for remediation of lead toxicity: an experimental study in teleost fish Heteropneustes fossilis. Asian Journal of Experimental Sciences, 23(1): 39-44.
  • Moiseenko, T.I. & Kudryavtseva, L.P. (2001). Trace metal accumulation and fish pathologies in areas affected by mining and metallurgical enterprises in the Kola Region, Russia Environmental Pollution, 114: 285-297. doi:10.1016/S0269-7491(00)00197-4
  • Muramoto, S. (1980). Effects of complexans (EDTA, NTA and DTPA) on the exposure to high concentrations of cadmium, copper, zinc and lead. The Bulletin of Environmental Contamination and Toxicology, 25: 941-946. doi:10.1007/BF01985635
  • Muramato, S. (1983). Elimination of Copper from Cu-contaminated fish by long-term exposure to EDTA and freshwater. Journal of Environmental Science and Health, Part A. 19 (3): 455-461. doi:10.1080/10934528309375113
  • Murphy, C.B. Jr. & Spiegel, S.J. (1983). Bioaccumulation and toxicity of heavy metals and related trace elements. Water Pollution, 55, 6: 816-821.
  • Pascoe, D., Evans, S.A. & Woodworth, J. (1986). Heavy metal toxicity to fish and influences of water hardness. Archives of Environmental Contamination and Toxicology, 15: 481-487. doi:10.1007/BF01056559
  • Pelgrom, S.M.G.J., Lock, R.A.C., Balm, P.H.M. & Wendelaar Bonga, S.E. (1995). Integrated Physiological Response of Tilapia, Oreochromismossambicus, to sublethal copper exposure. Aquatic Toxicology, 32: 303-320. doi:10.1016/0166-445X(95)00004-N
  • Pratap, H.B. & Lock, R.A.C., Wendelaar Bonga, S.E. (1989). Effect of waterborne and dietary cadmium on plasma ıons of the Teleost Oreochromismossambicus in relation to water calcium levels. Archives of Environmental Contamination and Toxicology, 18: 568-575. doi:10.1007/BF01055024
  • Regoli, F. & Orlando, E. (1994). Seasonal variation of tracemetal concentrations in the digestive gland of the Mediterranean mussel Mytilus galloprovincialis, Comparison between a polluted and a non-polluted site. Archives of Environmental Contamination and Toxicology, 27: 36–43. doi:10.1007/BF00203885
  • Reichert, W.L., Federigh, D.A. & Malins, D.C. (1979). Uptake and metabolism of lead and cadmium in Coho Salmon (Oncorhynchus kisutch). Comparative Biochemistry and Physiology, 63 C: 229-234.
  • doi:10.1016/0306-4492(79)90066-2
  • Riget, F., Dietz, R. & Johansen, P. (1997). Zinc, cadmium, mercury and selenium in Greenland fish. Bioscience Meddelelser om Grønland, 48: 1–29.
  • Sağlamtimur, B., Cicik, B. & Erdem, C. (2004). Cadmium Accumulation in Liver, Kidney, Gill and Muscle Tissues of Freshwater Bream (Oreochromis niloticus L. 1758) after a Short-Term Exposure to Copper-Cadmium Mixture (in Turkish with English abstract). Ekoloji, 14: 33-38.
  • Schulz - Baides, M. (1974). Lead uptake from the sea water and food, and lead loss in the common Mussel Mytilus edulis. Marine Biology, 25: 177-193. doi:10.1007/BF00394964
  • Semmens, M.J. & Seyfarth, M. (1978). Theselectivity of clinoptilolite for certain heavymetals. In, Sand LB, Mumpton FA (Eds): Natural zeolite occurance, properties,use, (pp. 517-526). New York: Pergamon Press, Elmsford.
  • Simon, C.M. (1981). Design and operations of a large scale commercical penaeid shrimp hatchery. Journal of the World Mariculture Society, 12: 322-334. doi:10.1111/j.1749-7345.1981.tb00305.x
  • Suresh, A., Sivaramakrishna, B. & Radhakrishnaiah, K. (1993). Cadmium induced changes in ion levels and ATPase activities in the muscle of the fry and fingerlings of the freshwater fish, Cyprinus carpio. Chemosphere, 30,2: 365-375. doi:10.1016/0045-6535(94)00403-H
  • Szebedinszky, C., Mc Geer, J.C., Mc Donald, D.G. & Wood, C.M. (2001). Effects of Chronic Cd Exposure via the Diet or Water on Internal Organ-Specific Distribution and Subsequent Gill Cd Uptake Kinetics in Juvenile Rainbow Trout. Environmental Toxicology Chemistry, 20: 597–607. doi:10.1002/etc.5620200320
  • Tao, S., Liu, C., Dawson, R., Cao, J. & Li, B. (1999). Uptake of Particulate Lead via the Gills of Fish (Carassius auratus). Archives of Environmental Contamination and Toxicology, 37: 352-357. doi:10.1007/s002449900524
  • Thomas, D.G., Brown, M.W., Shurben, D., Solbe, J.F.G., Cryer, A. & Kay, J., (1985). A Comparation of the Sequestration of cadmium and zinc in the tissues of Rainbow Trout (Salmo gairdneri) following exposure to the metals singly or in combination. Comparative Biochemistry and Physiology Part C, 82(1): 55-62. doi:10.1016/0742-8413(85)90209-9
  • Thurberg, F.P., Dawson, M.A. & Collier, R.S. (1973). Effects of copper and cadmium on osmoregulation and oxygen consumption in two species of estuarine crabs. Marine Biology, 23(3): 171-175. doi:10.1007/BF00389481
  • Torre, F.R., Salibian, A. & Ferrari, L. (2000). Biomarkers assessment in juvenile Cyprinus carpio exposed to waterborne cadmium. Environmental Pollution, 109: 277-282. doi:10.1016/S0269-7491(99)00263-8
  • Türkman, A., Aslan, Ş. & Ege, I. (2001). Lead removal from wastewaters by natural zeolites (in Turkish with English abstract). DEU Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 3(2): 13-19.
  • Uçar, A., Alak, G., Topal, A., Arslan, H., Parlak, V., Şensurat, T. & Atamanalp, M. (2012). Investigation of preservative effect of humic acid versus cadmium toxicity on electrolyte of brown trout (Salmo trutta fario) (in Turkish with English abstract). Tarım Bilimleri Araştırma Dergisi, 5(2): 139-143.
  • Venkataramana, P. & Radhakrishnaiah, K. (2001). Copper influenced changes in lactate dehydrogenase and glucose 6- phosphate dehydrogenase activities in the freshwater fish, Labeo rohita (Hamilton). The Bulletin of Environmental Contamination and Toxicology, 67: 257-263. doi:10.1007/s001280118
  • Verbost, P.M., Flik, G., Lock, R.A.C. & Wendelaar Bonga, S.E. (1989). The movement of cadmium through freshwater trout branchial epithelium and ıts ınterference with calcium transport. The Journal of Experimental Biology, 145, 185-197.
  • Viarengo, A. (1985). Biochemical effects of trace metals. Marine Pollution Bulletion. 16, 4: 153-158. doi:10.1016/0025-326X(85)90006-2
  • Wong, C.K.C. & Wong, M.H. (2000). Morphological and biochemical changes in the gills of Tilapia (Oreochromis mossambicus) to ambient cadmium exposure. Aquatic Toxicology, 48: 517-527.
  • doi:10.1016/S0166-445X(99)00060-0
  • Wood, C.M. (1988). Acid-base and ionic exchanges at gills and kidney after exhaustive exercises in the Rainbow Trout. The Journal of Experimental Biology, 136: 461-481.
There are 62 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Hikmet Çoğun

İpek Reyhan

Publication Date March 23, 2016
Submission Date March 23, 2016
Published in Issue Year 2016Volume: 33 Issue: 1

Cite

APA Çoğun, H., & Reyhan, İ. (2016). Tilapia (Oreochromis niloticus Linnaeus, 1758) balığı dokularında kalsiyum ve zeolitin kadmiyum birikimine etkisi. Ege Journal of Fisheries and Aquatic Sciences, 33(1), 41-46. https://doi.org/10.12714/egejfas.2016.33.1.07