Research Article
BibTex RIS Cite

Farklı protein seviyesi içeren yemlerin tatlısuda yetiştirilen Avrupa levreği (Dicentrarchus labrax L., 1758) yavrularının büyüme ve yaşama oranları üzerine etkisi

Year 2023, Volume: 40 Issue: 4, 292 - 297, 15.12.2023
https://doi.org/10.12714/egejfas.40.4.08

Abstract

Bu çalışmada tatlı suda yetiştirilen yavru levrek (Dicentrarchus labrax L.,1758) balıklarının beslenmesinde farklı protein oranları içeren yemlerin kullanımının büyüme performanslarına üzerine etkisi araştırılmıştır. Ortalama canlı ağırlıkları 1,0 ± 0,03 gram olan levrek yavruları, tatlı suya adaptasyonlarından sonra 120 litre hacimdeki tanklarda üçer tekrarlı olacak şekilde stoklanmıştır. Çalışmada kullanılan yemler farklı protein / benzer yağ içeriğindedir. Buna göre deneme grupları 45CP (%45 HP / %18 HY), 50CP (%50 HP / %18 HY) ve 55CP (%55 HP / %18 HY) olarak isimlendirilmiştir. Deneme sonunda en yüksek canlı ağırlık artışı 5,84 ± 0,03 g ile 55CP grubunda iken diğer gruplarda 5,73 ± 0,09 g (45CP), 5,8 ± 0,08 g (50CP) olarak tespit edilmiştir. SGR oranları her üç grup için benzer oranlarda olup gruplar arasında istatistiki bir farklılık bulunmamaktadır (P>0,05). Grupların SGR değerleri sırası ile 1,94 ± 0,04 (45CP), 1,89 ± 0,01 (50CP), 1,91 ± 0,02 (55CP) olarak hesaplanmıştır. FCR değerlerine bakıldığında 45CP ve 55CP grupları arasında istatistiki bir farklılık tespit edilmemişken, 50CP grubu istatistiki olarak diğer gruplardan daha düşük bir FCR oranı göstermiştir (P<0,05). FCR değerleri sırası ile 1,36 ± 0,05, 1,29 ± 0,03, 1,37 ± 0,04 olarak hesaplanmıştır. Grupların yaşama oranları arasında bir farklılığa rastlanmamıştır. Çalışma sonucuna göre özellikle yavru dönemlerinde levrek balıklarının tatlı suda yetiştirilebileceği, halen kullanılmakta olan ticari yemlere göre daha düşük oranlarda protein içeren yemlerle de balıkların beslenebileceği gözlenmiştir.

References

  • Allegrucci, G., Fortunato, C., Cataudella, S., & Sbordoni, V. (1994). Acclimation to freshwater of the sea bass: Evidence of selective mortality of allozyme genotypes. In A.R. Beaumont, (Ed.), Genetic and Evolution of Aquatic Organisms, 486-502, Chapman and Hall, London.
  • Allegrucci, G., Fortunato, C., & Sbordoni, V. (1997). Genetic structure and sllozyme variation of sea bass (Dicentrarchus labrax and D. punctatus) in the Mediterranean Sea. Marine Biology, 128, 347–358. https://doi.org/10.1007/s002270050100
  • Bernardino, R.J., & Fernandes, C. (2016, July). Growth performance for European sea bass fingerlings, Dicentrarchus labrax, reared at different salinities. In IMMR International Meeting on Marine Research. https://doi.org/10.3389/conf.FMARS.2016.04.00031
  • Brown, M., Nematipour, G.R., & Gatlin, G.M. (1992). Dietary protein requirement of juvenile sunshine bass at different salinities. The Progressive Fish-Culturist, 54(3), 148-156. https://doi.org/10.1577/1548-8640(1992)054<0148:DPROJS>2.3.CO;2
  • Caccone, G., Allegrucci, G., Fortunato, C., & Sbordoni, V. (1997). Genetic differentiation within the European sea bass (D. labrax) as revealed by RAPD-PCR assays. Journal of Heredity, 88(4), 316–324. https://doi.org/10.1093/oxfordjournals.jhered.a023109
  • Cataudella, S., Allegrucci, G., Bronzi, P., Cataldi, E., Cioni, C., Corti, M., Crosetti, D., de Merich, D., Fortunato, C., Garibaldi, L., Loy, A., Marino, G., Sola, L., & Sbordoni, V. (1991). Multidisciplinary Approach to the optimization of sea bass (Dicentrarchus labrax) rearing in freshwater. In Aquaculture Europe '91. International Conference, Dublin, Ireland. EAS Special Publication, 14, 55-57.
  • Cnaani, A., Stavi, A., Smirnov, R., & Harpaz, S. (2012). Rearing white grouper (Epinephelus aeneus) in low salinity water: effects of dietary salt supplementation. Israeli Journal of Aquaculture–Bamidgeh, 64, 1-5. https://doi.org/10.46989/001c.20633
  • Dendrinos, P., & Thorpe, J.P. (1985). Effects of reduced salinity on growth and body composition in the European bass Dicentrarchus labrax (L.). Aquaculture, 49(3-4), 333-358. https://doi.org/10.1016/0044-8486(85)90090-0
  • Deng, J., Zhang, X., Han, X., Tao, L., Bi, B., & Kang, B. (2014). Dietary protein requirement of juvenile dianchi golden-line barbell, Sinocyclocheilus grahami. Journal of World Aquaculture Society, 45, 421–429. https://doi.org/10.1111/jwas.12137
  • Eroldoğan, O.T., & Kumlu, M. (2002). Growth performance, body traits and fillet composition of the European sea bass (Dicentrarchus labrax) reared in various salinities and freshwater. Turkish Journal of Veterinary & Animal Sciences, 26(5), 993-1001.
  • FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en
  • Ghisaura, S., Anedda, R., Pagnozzi, D., Biosa, G., Spada, S., Bonaglini, E., Cappuccinelli, R., Roggio, T., Uzzau, S., & Addis, M.F. (2014). Impact of three commercial feed formulations on farmed gilthead sea bream (Sparus aurata, L.) metabolism as inferred from liver and blood serum proteomics. Proteome Science, 12, 1-18. https://doi.org/10.1186/s12953-014-0044-3
  • Giffard-Mena, I., Lorin-Nebel, C., Charmantier, G., Castille, R., & Boulo, V. (2008). Adaptation of the sea-bass (Dicentrarchus labrax) to freshwater: role of aquaporins and Na+/K+-Atpases. Comparative Biochemistry and Physiology. Part A: Molecular & Integrative Physiology, 150(3), 332–338 https://doi.org/10.1016/j.cbpa.2008.04.004
  • Halver, J.E. (1976). The nutritional requirements of cultivated warmwater and coldwater fish species. FAO Technical Conference on Aquaculture, Kyoto (Japan).
  • Hoşsu, B., Korkut, A.Y., & Fırat ,A., (2005). Fish feeding and feed technology 1 (Fish Feeding Physiology and Biochemistry). Ege University Fisheries Faculty Publication No: 50. Bornova, İzmir (in Turkish)
  • Jana, P., Prasad Sahu, N., Sardar, P., Shamna, N., Varghese, T., Dharmendra Deo, A., Harikrishna, V., Paul, M., Panmei, H., Gupta, G., Nanda, C. & Krishna, G. (2021). Dietary protein requirement of white shrimp, Penaeus vannamei (Boone, 1931) juveniles, reared in inland ground water of medium salinity. Aquaculture Research, 52, 2501 2517. https://doi.org/10.1111/are.15100
  • Jensen, M.K., Madsen, S.S., & Kristiansen, K. (1998). Osmoregulation and salinity effects on the expression and activity of Na+, K+-Atpase in the gills of European sea bass, Dicentrarchus labrax (L.). Journal of Experimental Zoology, 282, 290–300. https://doi.org/10.1002/(SICI)1097-010X(19981015)282:3<290::AID-JEZ2>3.0.CO;2-H
  • Kim, J., & Lall, S.P. (2001). Amino acid composition of whole body tissue of atlantic halibut (Hippoglossus hippoglossus), yellowtail flounder (Pleuronectes ferruginea) and Japanese flounder (Paralichthy solivaceus). Aquaculture, 187, 367–373. https://doi.org/10.1016/S0044-8486(00)00322-7
  • Kokou, F., Con, P., Barki, A., Nitzan, T., Slosman, T., Mizrahi, I., & Cnaani, A. (2019). Short- and long-term low-salinity acclimation effects on the branchial and intestinal gene expression in the European sea bass (Dicentrarchus labrax). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 231, 11 18. https://doi.org/10.1016/j.cbpa.2019.01.018
  • Kousoulaki, K., Saether, B. S., Albrektsen, S., & Noble, C. (2015). Review on European seabass (Dicentrarchus labrax Linnaeus, 1758) nutrition and feed management: A practical guide for optimizing feed formulation and farming protocols. Aquaculture Nutrition, 21, 129 151. https://doi.org/10.1111/anu.12233
  • Lovell, R.T. (1989). Nutrition and feeding of fish. New York, Springer. https://doi.org/10.1007/978-1-4757-1174-5
  • Metailler, R. (1986). Experimental in nutrition. In A. Bruno (Ed.), Mediterranean Regional Aquaculture Project, Nutrition in Marine Aquaculture, (pp.1-11). Lisbon. https://www.fao.org/3/s5347e/S5347E12.htm
  • Mritunjoy, P., Parimal, S., Narottam, P., Ashutosh, D., Tincy, V., Nazeema, S., Prasanta, J., & Gopal, K. (2022). Effect of dietary protein level on growth and metabolism of gift juveniles reared in inland ground saline water of medium salinity. Journal of Applied Aquaculture, 35(4), 948-974. https://doi.org/10.1080/10454438.2022.2054672
  • Nebel, C., Romestand, B., Nègre-Sadargues, G., Grousset, E., Aujoulat, F., Bacal, J., Bonhomme, F., & Charmantier, G. (2005). Differential freshwater adaptation in juvenile sea-bass Dicentrarchus labrax: Involvement of gills and urinary system. The Journal of Experimental Biology, 208, 3859–3871. https://doi.org/10.1242/jeb.01853
  • Oliva-Teles, A. (2000). Recent advances in European sea bass and gilthead sea bream nutrition. Aquaculture International, 8, 477–492. https://doi.org/10.1023/A:1009236517555
  • Peres, H., & Oliva-Teles, A. (1999). Effect of dietary lipid level on growth performance and feed utilization by European sea bass juveniles (Dicentrarchus labrax). Aquaculture 179, 325 334. https://doi.org/10.1016/S0044-8486(99)00168-4
  • Rimoldi, S., Bossi, E., Harpaz, S., Cattaneo, A. G., Bernardini, G., Saroglia, M., & Terova, G. (2015). Intestinal B(0)AT1 (SLC6A19) and PEPT1 (SLC15A1) mRNA levels in European sea bass (Dicentrarchus labrax) reared in freshwater and fed fish and plant protein sources. Journal of Nutritional Science, 4(21), 1-13. https://doi.org/10.1017/jns.2015.9
  • Saleem, B., Orma, O., Abd El-Wahab, A., & Ibrahim, T. (2022). Growth performance parameters of European sea bass (Dicentrarchus labrax) cultured in marine water farm and fed commercial diets of different protein levels. Mansoura Veterinary Medical Journal, 23(1), 10-17. https://doi.org/10.21608/mvmj.2022.229849
  • Shalaby, S.M, El-Dakar, A.Y., Osman, M.F., & Mohammed, A.S. (2023). Reduction of dietary fishmeal inclusion in practical diets of the seabass, (Dicentrarchus labrax), juveniles by plant protein feedstuff. Egyptian Journal of Aquatic Biology and Fisheries, 27(1), 589-604. https://doi.org/10.21608/ejabf.2023.289748
  • Talukdar, A., Kumar, S., Varghese, T., Jain, K. K., Sahu, N. P., & Sahoo, S. (2019). Feeding gelatinized carbohydrate in the diets of magur, Clarias batrachus (Linnaeus, 1758): Effects on growth performance, enzyme activities and expression of muscle regulatory factors. Aquaculture Research, 50, 765–777. https://doi.org/10.1111/are.13933
  • Turkish Statistical Institute (2022). Aquaculture statistics. Ankara. https://data.tuik.gov.tr/Bulten/Index?p=Su Urunleri-2022-49678 (in Turkish)
  • Varsamos, S., Nebel, C., & Charmantier, G. (2005). Ontogeny of osmoregulation in postembryonic fish: A review. Comparative Biochemistry and Physiology, Part A, 141, 401 429. https://doi.org/10.1016/j.cbpb.2005.01.013
  • Venturini, G., Cataldi, E., Marino, G., Pucci, P., Garibaldi, L., Bronzi, P., & Cataudella, S. (1992). Serum ions concentration and ATPase activity in gills, kidney and esophagus of European sea bass (Dicentrarchus labrax, Pisces, Perciformes) during acclimation trials to freshwater. Comparative Biochemistry and Physiology Part A: Physiology, 103(3), 451-454. https://doi.org/10.1016/0300-9629(92)90271-Q
  • Winfree, R.A., & Stickney, R.R. (1981). Effects of dietary protein and energy on growth, feed conversion efficiency and body composition of Tilapia aurea. Journal of Nutrition, 111(6):1001 1012. https://doi.org/10.1093/jn/111.6.1001

The effect of feeds containing different protein levels on growth and survival rates of European sea bass (Dicentrarchus labrax L., 1758) juveniles grown in freshwater

Year 2023, Volume: 40 Issue: 4, 292 - 297, 15.12.2023
https://doi.org/10.12714/egejfas.40.4.08

Abstract

In this study, the effect of the use of feeds containing different protein ratios on the growth performance of juvenile sea bass (Dicentrarchus labrax L., 1758) reared in freshwater was investigated. Sea bass fry with an average body weight of 1.0 ± 0.03 g were stocked in 120 liter tanks in triplicate after their adaptation to freshwater. The feeds used in the study had different protein/similar fat content. Accordingly, the experimental groups were named as 45CP (45% CP / 18% CF), 50CP (50% CP / 18% CF) and 55CP (55% CP / 18% CF). At the end of the experiment, the highest body weight gain was 5.84 ± 0.03 g in the 55CP group, while the other groups were 5.73 ± 0.09 g (45CP) and 5.8 ± 0.08 g (50CP). SGR rates were similar for all three groups and there was no statistical difference between the groups (P>0.05). SGR values of the groups were calculated as 1.94 ± 0.04 (45CP), 1.89 ± 0.01 (50CP), 1.91 ± 0.02 (55CP), respectively. There was no statistical difference between the 45CP and 55CP groups, while the 50CP group showed a statistically lower FCR rate than the other groups (P<0.05). FCR values were calculated as 1.36 ± 0.05, 1.29 ± 0.03, 1.37 ± 0.04, respectively. There was no difference between the survival rates of the groups. According to the results of the study, it was concluded that sea bass fish can be raised in freshwater, especially in the fry stage, and that it is more effective than the commercial feeds currently used.

Ethical Statement

Approval was obtained from Ege University Animal Experiments Ethics Committee (25.12.2019/2019+-116)

References

  • Allegrucci, G., Fortunato, C., Cataudella, S., & Sbordoni, V. (1994). Acclimation to freshwater of the sea bass: Evidence of selective mortality of allozyme genotypes. In A.R. Beaumont, (Ed.), Genetic and Evolution of Aquatic Organisms, 486-502, Chapman and Hall, London.
  • Allegrucci, G., Fortunato, C., & Sbordoni, V. (1997). Genetic structure and sllozyme variation of sea bass (Dicentrarchus labrax and D. punctatus) in the Mediterranean Sea. Marine Biology, 128, 347–358. https://doi.org/10.1007/s002270050100
  • Bernardino, R.J., & Fernandes, C. (2016, July). Growth performance for European sea bass fingerlings, Dicentrarchus labrax, reared at different salinities. In IMMR International Meeting on Marine Research. https://doi.org/10.3389/conf.FMARS.2016.04.00031
  • Brown, M., Nematipour, G.R., & Gatlin, G.M. (1992). Dietary protein requirement of juvenile sunshine bass at different salinities. The Progressive Fish-Culturist, 54(3), 148-156. https://doi.org/10.1577/1548-8640(1992)054<0148:DPROJS>2.3.CO;2
  • Caccone, G., Allegrucci, G., Fortunato, C., & Sbordoni, V. (1997). Genetic differentiation within the European sea bass (D. labrax) as revealed by RAPD-PCR assays. Journal of Heredity, 88(4), 316–324. https://doi.org/10.1093/oxfordjournals.jhered.a023109
  • Cataudella, S., Allegrucci, G., Bronzi, P., Cataldi, E., Cioni, C., Corti, M., Crosetti, D., de Merich, D., Fortunato, C., Garibaldi, L., Loy, A., Marino, G., Sola, L., & Sbordoni, V. (1991). Multidisciplinary Approach to the optimization of sea bass (Dicentrarchus labrax) rearing in freshwater. In Aquaculture Europe '91. International Conference, Dublin, Ireland. EAS Special Publication, 14, 55-57.
  • Cnaani, A., Stavi, A., Smirnov, R., & Harpaz, S. (2012). Rearing white grouper (Epinephelus aeneus) in low salinity water: effects of dietary salt supplementation. Israeli Journal of Aquaculture–Bamidgeh, 64, 1-5. https://doi.org/10.46989/001c.20633
  • Dendrinos, P., & Thorpe, J.P. (1985). Effects of reduced salinity on growth and body composition in the European bass Dicentrarchus labrax (L.). Aquaculture, 49(3-4), 333-358. https://doi.org/10.1016/0044-8486(85)90090-0
  • Deng, J., Zhang, X., Han, X., Tao, L., Bi, B., & Kang, B. (2014). Dietary protein requirement of juvenile dianchi golden-line barbell, Sinocyclocheilus grahami. Journal of World Aquaculture Society, 45, 421–429. https://doi.org/10.1111/jwas.12137
  • Eroldoğan, O.T., & Kumlu, M. (2002). Growth performance, body traits and fillet composition of the European sea bass (Dicentrarchus labrax) reared in various salinities and freshwater. Turkish Journal of Veterinary & Animal Sciences, 26(5), 993-1001.
  • FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en
  • Ghisaura, S., Anedda, R., Pagnozzi, D., Biosa, G., Spada, S., Bonaglini, E., Cappuccinelli, R., Roggio, T., Uzzau, S., & Addis, M.F. (2014). Impact of three commercial feed formulations on farmed gilthead sea bream (Sparus aurata, L.) metabolism as inferred from liver and blood serum proteomics. Proteome Science, 12, 1-18. https://doi.org/10.1186/s12953-014-0044-3
  • Giffard-Mena, I., Lorin-Nebel, C., Charmantier, G., Castille, R., & Boulo, V. (2008). Adaptation of the sea-bass (Dicentrarchus labrax) to freshwater: role of aquaporins and Na+/K+-Atpases. Comparative Biochemistry and Physiology. Part A: Molecular & Integrative Physiology, 150(3), 332–338 https://doi.org/10.1016/j.cbpa.2008.04.004
  • Halver, J.E. (1976). The nutritional requirements of cultivated warmwater and coldwater fish species. FAO Technical Conference on Aquaculture, Kyoto (Japan).
  • Hoşsu, B., Korkut, A.Y., & Fırat ,A., (2005). Fish feeding and feed technology 1 (Fish Feeding Physiology and Biochemistry). Ege University Fisheries Faculty Publication No: 50. Bornova, İzmir (in Turkish)
  • Jana, P., Prasad Sahu, N., Sardar, P., Shamna, N., Varghese, T., Dharmendra Deo, A., Harikrishna, V., Paul, M., Panmei, H., Gupta, G., Nanda, C. & Krishna, G. (2021). Dietary protein requirement of white shrimp, Penaeus vannamei (Boone, 1931) juveniles, reared in inland ground water of medium salinity. Aquaculture Research, 52, 2501 2517. https://doi.org/10.1111/are.15100
  • Jensen, M.K., Madsen, S.S., & Kristiansen, K. (1998). Osmoregulation and salinity effects on the expression and activity of Na+, K+-Atpase in the gills of European sea bass, Dicentrarchus labrax (L.). Journal of Experimental Zoology, 282, 290–300. https://doi.org/10.1002/(SICI)1097-010X(19981015)282:3<290::AID-JEZ2>3.0.CO;2-H
  • Kim, J., & Lall, S.P. (2001). Amino acid composition of whole body tissue of atlantic halibut (Hippoglossus hippoglossus), yellowtail flounder (Pleuronectes ferruginea) and Japanese flounder (Paralichthy solivaceus). Aquaculture, 187, 367–373. https://doi.org/10.1016/S0044-8486(00)00322-7
  • Kokou, F., Con, P., Barki, A., Nitzan, T., Slosman, T., Mizrahi, I., & Cnaani, A. (2019). Short- and long-term low-salinity acclimation effects on the branchial and intestinal gene expression in the European sea bass (Dicentrarchus labrax). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 231, 11 18. https://doi.org/10.1016/j.cbpa.2019.01.018
  • Kousoulaki, K., Saether, B. S., Albrektsen, S., & Noble, C. (2015). Review on European seabass (Dicentrarchus labrax Linnaeus, 1758) nutrition and feed management: A practical guide for optimizing feed formulation and farming protocols. Aquaculture Nutrition, 21, 129 151. https://doi.org/10.1111/anu.12233
  • Lovell, R.T. (1989). Nutrition and feeding of fish. New York, Springer. https://doi.org/10.1007/978-1-4757-1174-5
  • Metailler, R. (1986). Experimental in nutrition. In A. Bruno (Ed.), Mediterranean Regional Aquaculture Project, Nutrition in Marine Aquaculture, (pp.1-11). Lisbon. https://www.fao.org/3/s5347e/S5347E12.htm
  • Mritunjoy, P., Parimal, S., Narottam, P., Ashutosh, D., Tincy, V., Nazeema, S., Prasanta, J., & Gopal, K. (2022). Effect of dietary protein level on growth and metabolism of gift juveniles reared in inland ground saline water of medium salinity. Journal of Applied Aquaculture, 35(4), 948-974. https://doi.org/10.1080/10454438.2022.2054672
  • Nebel, C., Romestand, B., Nègre-Sadargues, G., Grousset, E., Aujoulat, F., Bacal, J., Bonhomme, F., & Charmantier, G. (2005). Differential freshwater adaptation in juvenile sea-bass Dicentrarchus labrax: Involvement of gills and urinary system. The Journal of Experimental Biology, 208, 3859–3871. https://doi.org/10.1242/jeb.01853
  • Oliva-Teles, A. (2000). Recent advances in European sea bass and gilthead sea bream nutrition. Aquaculture International, 8, 477–492. https://doi.org/10.1023/A:1009236517555
  • Peres, H., & Oliva-Teles, A. (1999). Effect of dietary lipid level on growth performance and feed utilization by European sea bass juveniles (Dicentrarchus labrax). Aquaculture 179, 325 334. https://doi.org/10.1016/S0044-8486(99)00168-4
  • Rimoldi, S., Bossi, E., Harpaz, S., Cattaneo, A. G., Bernardini, G., Saroglia, M., & Terova, G. (2015). Intestinal B(0)AT1 (SLC6A19) and PEPT1 (SLC15A1) mRNA levels in European sea bass (Dicentrarchus labrax) reared in freshwater and fed fish and plant protein sources. Journal of Nutritional Science, 4(21), 1-13. https://doi.org/10.1017/jns.2015.9
  • Saleem, B., Orma, O., Abd El-Wahab, A., & Ibrahim, T. (2022). Growth performance parameters of European sea bass (Dicentrarchus labrax) cultured in marine water farm and fed commercial diets of different protein levels. Mansoura Veterinary Medical Journal, 23(1), 10-17. https://doi.org/10.21608/mvmj.2022.229849
  • Shalaby, S.M, El-Dakar, A.Y., Osman, M.F., & Mohammed, A.S. (2023). Reduction of dietary fishmeal inclusion in practical diets of the seabass, (Dicentrarchus labrax), juveniles by plant protein feedstuff. Egyptian Journal of Aquatic Biology and Fisheries, 27(1), 589-604. https://doi.org/10.21608/ejabf.2023.289748
  • Talukdar, A., Kumar, S., Varghese, T., Jain, K. K., Sahu, N. P., & Sahoo, S. (2019). Feeding gelatinized carbohydrate in the diets of magur, Clarias batrachus (Linnaeus, 1758): Effects on growth performance, enzyme activities and expression of muscle regulatory factors. Aquaculture Research, 50, 765–777. https://doi.org/10.1111/are.13933
  • Turkish Statistical Institute (2022). Aquaculture statistics. Ankara. https://data.tuik.gov.tr/Bulten/Index?p=Su Urunleri-2022-49678 (in Turkish)
  • Varsamos, S., Nebel, C., & Charmantier, G. (2005). Ontogeny of osmoregulation in postembryonic fish: A review. Comparative Biochemistry and Physiology, Part A, 141, 401 429. https://doi.org/10.1016/j.cbpb.2005.01.013
  • Venturini, G., Cataldi, E., Marino, G., Pucci, P., Garibaldi, L., Bronzi, P., & Cataudella, S. (1992). Serum ions concentration and ATPase activity in gills, kidney and esophagus of European sea bass (Dicentrarchus labrax, Pisces, Perciformes) during acclimation trials to freshwater. Comparative Biochemistry and Physiology Part A: Physiology, 103(3), 451-454. https://doi.org/10.1016/0300-9629(92)90271-Q
  • Winfree, R.A., & Stickney, R.R. (1981). Effects of dietary protein and energy on growth, feed conversion efficiency and body composition of Tilapia aurea. Journal of Nutrition, 111(6):1001 1012. https://doi.org/10.1093/jn/111.6.1001
There are 34 citations in total.

Details

Primary Language English
Subjects Pisciculture
Journal Section Articles
Authors

Kutsal Gamsız 0000-0003-3277-9488

Ali Korkut 0000-0002-1096-5725

Aysun Kop 0000-0003-1724-5672

Early Pub Date December 8, 2023
Publication Date December 15, 2023
Submission Date August 18, 2023
Published in Issue Year 2023Volume: 40 Issue: 4

Cite

APA Gamsız, K., Korkut, A., & Kop, A. (2023). The effect of feeds containing different protein levels on growth and survival rates of European sea bass (Dicentrarchus labrax L., 1758) juveniles grown in freshwater. Ege Journal of Fisheries and Aquatic Sciences, 40(4), 292-297. https://doi.org/10.12714/egejfas.40.4.08