Research Article
BibTex RIS Cite

Determination of lipid quality and mercury levels of sardine and rainbow trout cooked with different methods

Year 2023, Volume: 40 Issue: 3, 182 - 188, 15.09.2023
https://doi.org/10.12714/egejfas.40.3.04

Abstract

This study aimed to investigate the effects of baking and pan-frying methods on the lipid quality and mercury (Hg) levels of two important fish species in Türkiye, namely, fileted sardine (Sardina pilchardus) and rainbow trout (Oncorhynchus mykiss). The results revealed that sardines significantly decreased n-3 fatty acids depending on the cooking process, while the best n-6/n-3 ratio was observed in baked sardines, with higher rates found in pan-fried fish. Notably, pan-fried rainbow trout cooked with butter showed the highest Atherogenic index (AI) of 0.71±0.32 and Thrombogenic index (TI) of 0.61±1.43, as well as a hypocholesterolemic/hypercholesterolemic index (HH) of 0.79 ± 0.17. Conversely, fried sardines exhibited lower Atherogenic and Thrombogenic scores, with fried sardines cooked in sunflower oil having a hypocholesterolemic/hypercholesterolemic index of 4.85 ± 0.3. There were no significant variations in Hg content between raw and cooked fish. However, when compared to the raw control, the rise in Hg content for baked fish was substantial (p < 0.05) (baked rainbow trout 0.18 mg/kg and sardine 0.29 mg/kg). The decrease in FAs (Fatty Acids) due to cooking methods can be ordered as follows: Raw sardine > baked > fried. Conversely, the increase in FAs due to the cooking methods can be ordered as follows: fried > baked > raw sardine. Baked rainbow trout had much lower levels of palmitic acid, stearic acid, and myristic acid than the raw material. However, these levels were significantly increased in rainbow trout cooked in a frying pan. Additionally, oleic acid levels in fried rainbow trout were detected to be lower than in other preparations, whereas they were equivalent in baked rainbow trout.

Supporting Institution

Ege University Scientific Research Projects Coordination Unit.

Project Number

FGA-2018-20293

Thanks

Ege University SRPCU funding this investigation. Project Number: FGA-2018-20293

References

  • Akkaya, M.R. (2018). Prediction of fatty acid composition of sunflower seeds by near-infrared reflectance spectroscopy. Journal of Food Science and Technology, 55(6), 2318–2325. https://doi.org/10.1007/s13197-018-3150-x
  • Alexi, N., Kogiannou, D., Oikonomopoulou, I., Kalogeropoulos, N., Byrne, D. V., & Grigorakis, K. (2019). Culinary preparation effects on lipid and sensory quality of farmed gilthead seabream (Sparus aurata) and meagre (Argyrosomus regius): An inter-species comparison. Food Chemistry, 301, 125263. https://doi.org/10.1016/j.foodchem.2019.125263
  • Bilgin, Ş., İzci, L., Günlü, A., & Bolat, Y. (2010). Effects of pan frying with different oils on some of the chemical components, quality parameters and cholesterol levels of rainbow trout (Oncorhynchus mykiss). African Journal of Biotechnology, 9(39), 6573-6577.
  • Bloom, N.S. (1992). On the chemical form of mercury in edible fish and marine invertebrate tissue. Canadian Journal of Fisheries and Aquatic Sciences, 49, 1010–1017. https://doi.org/10.1139/f92-113
  • Burger, J., Dixon, C., Boring, S., & Gochfeld, M. (2003). Effect of deep frying fish on risk from mercury. Journal of Toxicology Environmental Health Part A. 66, 817-828. https://doi.org/10.1080/15287390306382
  • Chen, J.P ., & Liu, H.B. (2020). Nutritional indices for assessing fatty acids: a mini-review. International Journal of Molecular Sciences, 21, 1, 5695. https://doi.org/10.3390/ijms21165695
  • Dahl, L., Duinker, A., Næss, S., Markhus, M. W., Nerhus, I., Midtbø, L. K., & Kjellevold, M. (2020). Iodine and mercury content in raw, boiled, pan-fried, and oven-baked Atlantic cod (Gadus morhua). Foods, 9(11), 1652. https://doi.org/10.3390/foods9111652
  • Demirtaş Erol, N., Erdem, O.A., Yilmaz, S.T., Kayalar, H., & Cakli, S. (2022). Effects of the BHA and basil essential oil on nutritional, chemical, and sensory characteristics of sunflower oil and sardine (Sardina pilchardus) fillets during repeated deep-frying. LWT-Food Science and Technology, 163, 113557. https://doi.org/10.1016/j.lwt.2022.113557
  • EFSA (2012a). EFSA panel on dietetic products, nutrition and allergies (NDA); scientific opinion related to the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). <http://www.efsa.europa.eu/en/efsajournal/doc/2815.pdf > Accessed 07.07.2021.
  • EFSA (2012b). EFSA panel on contaminants in the food chain (CONTAM); scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. <http://www.efsa.europa.eu/en/efsajournal/doc/2985.pdf> Accessed 07.07.2021.
  • Erdem, Ö.A., & Dinçer, M.T. (2019). Evaluation of nutritional, physical and sensory properties of flathead grey mullet's (Mugil cephalus) flesh after cooking. Journal of Food Safety and Food Quality- Archiv Für Lebensmittelhygiene, 70(5), 149-155. https://doi.org/10.2376/0003-925X-70-149
  • Erdem, Ö.A., Alkan, B., & Dinçer, M.T. (2020). Comparison on nutritional properties of wild and cultured brown trout and Atlantic salmon. Ege Journal of Fisheries and Aquatic Sciences, 37(1), 37-41. https://doi.org/10.12714/egejfas.37.1.05
  • Farag, M. M. (2013). Effect of different cooking methods on nucleic acid nitrogen bases content of fresh sardine fish and its nutritive value. World Journal of Dairy & Food Sciences, 8(2), 156 164. https://doi.org/10.1016/j.foodchem.2005.08.055
  • Flaskerud, K., Bukowski, M., Golovko, M., Johnson, L., Brose, S., Ali, A., & Raatz, S. (2017). Effects of cooking techniques on fatty acid and oxylipin content of farmed rainbow trout (Oncorhynchus mykiss). Food Science & Nutrition, 5(6), 1195-1204. https://doi.org/10.1002/fsn3.512
  • Girard, C., Charette, T., Leclerc, M., Shapiro, B. J., & Amyot, M. (2018). Cooking and co-ingested polyphenols reduce in vitro methylmercury bioaccessibility from fish and may alter exposure in humans. Science of The Total Environment, 616, 863 874. https://doi.org/10.1016/j.scitotenv.2017.10.236
  • Jadán-Piedra, C., Alcántara, C., Monedero, V., Zúñiga, M., Vélez, D., & Devesa, V. (2017). The use of lactic acid bacteria to reduce mercury bioaccessibility. Food Chemistry, 228. https://doi.org/10.1016/j.foodchem.2017.01.157
  • Islam, M. A., Mohibbullah, M., Suraiya, S., Sarower‐E‐Mahfuj, M., Ahmed, S., & Haq, M. (2020). Nutritional characterization of freshwater mud eel (Monopterus cuchia) muscle cooked by different thermal processes. Food Science & Nutrition, 8(11), 6247-6258. https://doi.org/10.1002/fsn3.1920
  • IUPAC, (1979). Standard Methods for Analysis of Oils, Fats and Derivatives, 6th Edition (Fifth Edition Method II.D.19) PergamonPres, 96- 102. Oxford, UK.
  • Kalogeropoulos, N., Karavoltsos, S., Sakellari, A., Avramidou, S., Dassenakis, M., & Scoullos, M. (2012). Heavy metals in raw, fried and grilled Mediterranean finfish and shellfish. Food and Chemical Toxicology, 50(10), 3702-3708. https://doi.org/10.1016/j.fct.2012.07.01
  • Karimian-Khosroshahi, N., Hosseini, H., Rezaei, M., Khaksar, R., & Mahmoudzadeh, M. (2016). Effect of different cooking methods on minerals, vitamins, and nutritional quality indices of rainbow trout (Oncorhynchus mykiss), International Journal of Food Properties, 19 (11), 2471-2480. https://doi.org/10.1080/10942912.2015.1039028
  • Khansari, F. E., Ghazi-Khansari, M., & Abdollahi, M. (2005). Heavy metals content of canned tuna fish. Food Chemistry, 93(2), 293-296. https://doi.org/10.1016/j.foodchem.2004.09.025
  • Kris-Etherton, P., Harris, L. , & Appel,W.,(2002). American Heart Association Nutrition Commitee. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation, 106, 2747 2757. https://doi.org/10.1161/01.CIR.0000038493.65177.94
  • Larrieu, T., & Layé, S. (2018). Food for mood: Relevance of nutritional Omega-3 fatty acids for depression and anxiety. Frontiers in Physiology, 9, 1047. https://doi.org/10.3389/fphys.2018.01047
  • Liao, W., Wang, G., Zhao, W., Zhang, M., Wu, Y., Liu, X., & Li, K. (2019). Change in mercury speciation in seafood after cooking and gastrointestinal digestion. Journal of Hazardous Materials, 375, 130-137. https://doi.org/10.1016/j.jhazmat.2019.03.093
  • Liao, W., Zhao, W., Wu, Y., Rong, N., Liu, X., Li, K., & Wang, G. (2020). Multiple metal (loid) s bioaccessibility from cooked seafood and health risk assessment. Environmental Geochemistry and Health, 42(11), 4037-4050. https://doi.org/10.1007/s10653-020-00661-9
  • Matos, J., Lourenço, H.M., Brito, P., Maulvault, A.L., Martins, L.L., & Afonso, C. (2015). Influence of bioaccessibility of total mercury, methyl-mercury and selenium on the risk/benefit associated to the consumption of raw and cooked blue shark (Prionace glauca). Environmental Research, 143, 123-129. https://doi.org/10.1016/j.envres.2015.09.015
  • Morgan, J.N., Berry, M.R., & Graves, R.L. (1997). Effects of commonly used cooking practices on total mercury concentration in fish and their impact on exposure assessments. Journal of Exposure Analysis and Environmental Epidemiology, 7, 119-133.
  • Perugini, M., Zezza, D., Tulini, S.M.R., Abete, M.C., Monaco, G., Conte, A., & Amorena, M. (2016). Effect of cooking on total mercury content in Norway lobster and European hake and public health impact. Marine Pollution Bulletin, 109(1), 521 525. https://doi.org/10.1016/j.marpolbul.2016.05.010
  • Sacks, F.M., & Katan, M. (2002). Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoproteins and cardiovascular disease. The American Journal of Medicine, 113, 13-24. https://doi.org/10.1016/S0002-9343(01)00987-1
  • Sandheinrich M., & Wiener J. ,(2011). Methylmercury in freshwater fish: Recent advances in assessing toxicity of environmentally relevant exposures. Environmental Contaminations in Biota Interpreting Tissue Concentrations, 2011(2), 169–190. https://doi.org/10.1201/b10598-5
  • Santos-Silva, J., Bessa, R.J.B., & Santos-Silva, F. (2002) Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. fatty acid composition of meat. Livestock Production Science, 77,187-194. https://doi.org/10.1016/S0301-6226(02)00059-3
  • Schmidt, L., Bizzi, C. A., Duarte, F.A., Muller, E.I., Krupp, E., Feldmann, J., & Flores, E.M. (2015). Evaluation of Hg species after culinary treatments of fish. Food Control, 47, 413 419. https://doi.org/10.1016/j.foodcont.2014.07.040
  • Ulbricht, T.L., & Southgate, D.A. (1991). Coronary heart disease: seven dietary factors. The Lancet, 338, Issue 8773. https://doi.org/10.1016/0140-6736(91)91846-M
  • U.S. Environmental Protection Agency (EPA) 1994. Test Methods for Evaluating Solid Waste, SW-846, 3rd ed., Office of Solid Waste and Emergency Response, Washington, D.C., November 1986; Update II, September 1994.
  • Winiarska‐Mieczan, A., & Grela, E.R. (2017). Content of cadmium and lead in raw, fried and baked commercial frozen fishery products consumed in Poland. Journal of the Science of Food and Agriculture, 97(9), 2969-2974. https://doi.org/10.1002/jsfa.8136
  • Zhang, Y., Wang, Q., Bi, Y., Cheng, K.W., & Chen, F. (2019). Nutritional and functional activities of protein from steamed, baked, and high hydrostatic pressure treated cod (Gadus morhua). Food Control, 96, 9-15. https://doi.org/10.1016/j.foodcont.2018.08.023

Farklı yöntemlerle pişirilen sardalya ve gökkuşağı alabalığının lipit kalitesi ve civa düzeylerinin belirlenmesi

Year 2023, Volume: 40 Issue: 3, 182 - 188, 15.09.2023
https://doi.org/10.12714/egejfas.40.3.04

Abstract

Project Number

FGA-2018-20293

References

  • Akkaya, M.R. (2018). Prediction of fatty acid composition of sunflower seeds by near-infrared reflectance spectroscopy. Journal of Food Science and Technology, 55(6), 2318–2325. https://doi.org/10.1007/s13197-018-3150-x
  • Alexi, N., Kogiannou, D., Oikonomopoulou, I., Kalogeropoulos, N., Byrne, D. V., & Grigorakis, K. (2019). Culinary preparation effects on lipid and sensory quality of farmed gilthead seabream (Sparus aurata) and meagre (Argyrosomus regius): An inter-species comparison. Food Chemistry, 301, 125263. https://doi.org/10.1016/j.foodchem.2019.125263
  • Bilgin, Ş., İzci, L., Günlü, A., & Bolat, Y. (2010). Effects of pan frying with different oils on some of the chemical components, quality parameters and cholesterol levels of rainbow trout (Oncorhynchus mykiss). African Journal of Biotechnology, 9(39), 6573-6577.
  • Bloom, N.S. (1992). On the chemical form of mercury in edible fish and marine invertebrate tissue. Canadian Journal of Fisheries and Aquatic Sciences, 49, 1010–1017. https://doi.org/10.1139/f92-113
  • Burger, J., Dixon, C., Boring, S., & Gochfeld, M. (2003). Effect of deep frying fish on risk from mercury. Journal of Toxicology Environmental Health Part A. 66, 817-828. https://doi.org/10.1080/15287390306382
  • Chen, J.P ., & Liu, H.B. (2020). Nutritional indices for assessing fatty acids: a mini-review. International Journal of Molecular Sciences, 21, 1, 5695. https://doi.org/10.3390/ijms21165695
  • Dahl, L., Duinker, A., Næss, S., Markhus, M. W., Nerhus, I., Midtbø, L. K., & Kjellevold, M. (2020). Iodine and mercury content in raw, boiled, pan-fried, and oven-baked Atlantic cod (Gadus morhua). Foods, 9(11), 1652. https://doi.org/10.3390/foods9111652
  • Demirtaş Erol, N., Erdem, O.A., Yilmaz, S.T., Kayalar, H., & Cakli, S. (2022). Effects of the BHA and basil essential oil on nutritional, chemical, and sensory characteristics of sunflower oil and sardine (Sardina pilchardus) fillets during repeated deep-frying. LWT-Food Science and Technology, 163, 113557. https://doi.org/10.1016/j.lwt.2022.113557
  • EFSA (2012a). EFSA panel on dietetic products, nutrition and allergies (NDA); scientific opinion related to the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). <http://www.efsa.europa.eu/en/efsajournal/doc/2815.pdf > Accessed 07.07.2021.
  • EFSA (2012b). EFSA panel on contaminants in the food chain (CONTAM); scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. <http://www.efsa.europa.eu/en/efsajournal/doc/2985.pdf> Accessed 07.07.2021.
  • Erdem, Ö.A., & Dinçer, M.T. (2019). Evaluation of nutritional, physical and sensory properties of flathead grey mullet's (Mugil cephalus) flesh after cooking. Journal of Food Safety and Food Quality- Archiv Für Lebensmittelhygiene, 70(5), 149-155. https://doi.org/10.2376/0003-925X-70-149
  • Erdem, Ö.A., Alkan, B., & Dinçer, M.T. (2020). Comparison on nutritional properties of wild and cultured brown trout and Atlantic salmon. Ege Journal of Fisheries and Aquatic Sciences, 37(1), 37-41. https://doi.org/10.12714/egejfas.37.1.05
  • Farag, M. M. (2013). Effect of different cooking methods on nucleic acid nitrogen bases content of fresh sardine fish and its nutritive value. World Journal of Dairy & Food Sciences, 8(2), 156 164. https://doi.org/10.1016/j.foodchem.2005.08.055
  • Flaskerud, K., Bukowski, M., Golovko, M., Johnson, L., Brose, S., Ali, A., & Raatz, S. (2017). Effects of cooking techniques on fatty acid and oxylipin content of farmed rainbow trout (Oncorhynchus mykiss). Food Science & Nutrition, 5(6), 1195-1204. https://doi.org/10.1002/fsn3.512
  • Girard, C., Charette, T., Leclerc, M., Shapiro, B. J., & Amyot, M. (2018). Cooking and co-ingested polyphenols reduce in vitro methylmercury bioaccessibility from fish and may alter exposure in humans. Science of The Total Environment, 616, 863 874. https://doi.org/10.1016/j.scitotenv.2017.10.236
  • Jadán-Piedra, C., Alcántara, C., Monedero, V., Zúñiga, M., Vélez, D., & Devesa, V. (2017). The use of lactic acid bacteria to reduce mercury bioaccessibility. Food Chemistry, 228. https://doi.org/10.1016/j.foodchem.2017.01.157
  • Islam, M. A., Mohibbullah, M., Suraiya, S., Sarower‐E‐Mahfuj, M., Ahmed, S., & Haq, M. (2020). Nutritional characterization of freshwater mud eel (Monopterus cuchia) muscle cooked by different thermal processes. Food Science & Nutrition, 8(11), 6247-6258. https://doi.org/10.1002/fsn3.1920
  • IUPAC, (1979). Standard Methods for Analysis of Oils, Fats and Derivatives, 6th Edition (Fifth Edition Method II.D.19) PergamonPres, 96- 102. Oxford, UK.
  • Kalogeropoulos, N., Karavoltsos, S., Sakellari, A., Avramidou, S., Dassenakis, M., & Scoullos, M. (2012). Heavy metals in raw, fried and grilled Mediterranean finfish and shellfish. Food and Chemical Toxicology, 50(10), 3702-3708. https://doi.org/10.1016/j.fct.2012.07.01
  • Karimian-Khosroshahi, N., Hosseini, H., Rezaei, M., Khaksar, R., & Mahmoudzadeh, M. (2016). Effect of different cooking methods on minerals, vitamins, and nutritional quality indices of rainbow trout (Oncorhynchus mykiss), International Journal of Food Properties, 19 (11), 2471-2480. https://doi.org/10.1080/10942912.2015.1039028
  • Khansari, F. E., Ghazi-Khansari, M., & Abdollahi, M. (2005). Heavy metals content of canned tuna fish. Food Chemistry, 93(2), 293-296. https://doi.org/10.1016/j.foodchem.2004.09.025
  • Kris-Etherton, P., Harris, L. , & Appel,W.,(2002). American Heart Association Nutrition Commitee. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation, 106, 2747 2757. https://doi.org/10.1161/01.CIR.0000038493.65177.94
  • Larrieu, T., & Layé, S. (2018). Food for mood: Relevance of nutritional Omega-3 fatty acids for depression and anxiety. Frontiers in Physiology, 9, 1047. https://doi.org/10.3389/fphys.2018.01047
  • Liao, W., Wang, G., Zhao, W., Zhang, M., Wu, Y., Liu, X., & Li, K. (2019). Change in mercury speciation in seafood after cooking and gastrointestinal digestion. Journal of Hazardous Materials, 375, 130-137. https://doi.org/10.1016/j.jhazmat.2019.03.093
  • Liao, W., Zhao, W., Wu, Y., Rong, N., Liu, X., Li, K., & Wang, G. (2020). Multiple metal (loid) s bioaccessibility from cooked seafood and health risk assessment. Environmental Geochemistry and Health, 42(11), 4037-4050. https://doi.org/10.1007/s10653-020-00661-9
  • Matos, J., Lourenço, H.M., Brito, P., Maulvault, A.L., Martins, L.L., & Afonso, C. (2015). Influence of bioaccessibility of total mercury, methyl-mercury and selenium on the risk/benefit associated to the consumption of raw and cooked blue shark (Prionace glauca). Environmental Research, 143, 123-129. https://doi.org/10.1016/j.envres.2015.09.015
  • Morgan, J.N., Berry, M.R., & Graves, R.L. (1997). Effects of commonly used cooking practices on total mercury concentration in fish and their impact on exposure assessments. Journal of Exposure Analysis and Environmental Epidemiology, 7, 119-133.
  • Perugini, M., Zezza, D., Tulini, S.M.R., Abete, M.C., Monaco, G., Conte, A., & Amorena, M. (2016). Effect of cooking on total mercury content in Norway lobster and European hake and public health impact. Marine Pollution Bulletin, 109(1), 521 525. https://doi.org/10.1016/j.marpolbul.2016.05.010
  • Sacks, F.M., & Katan, M. (2002). Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoproteins and cardiovascular disease. The American Journal of Medicine, 113, 13-24. https://doi.org/10.1016/S0002-9343(01)00987-1
  • Sandheinrich M., & Wiener J. ,(2011). Methylmercury in freshwater fish: Recent advances in assessing toxicity of environmentally relevant exposures. Environmental Contaminations in Biota Interpreting Tissue Concentrations, 2011(2), 169–190. https://doi.org/10.1201/b10598-5
  • Santos-Silva, J., Bessa, R.J.B., & Santos-Silva, F. (2002) Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. fatty acid composition of meat. Livestock Production Science, 77,187-194. https://doi.org/10.1016/S0301-6226(02)00059-3
  • Schmidt, L., Bizzi, C. A., Duarte, F.A., Muller, E.I., Krupp, E., Feldmann, J., & Flores, E.M. (2015). Evaluation of Hg species after culinary treatments of fish. Food Control, 47, 413 419. https://doi.org/10.1016/j.foodcont.2014.07.040
  • Ulbricht, T.L., & Southgate, D.A. (1991). Coronary heart disease: seven dietary factors. The Lancet, 338, Issue 8773. https://doi.org/10.1016/0140-6736(91)91846-M
  • U.S. Environmental Protection Agency (EPA) 1994. Test Methods for Evaluating Solid Waste, SW-846, 3rd ed., Office of Solid Waste and Emergency Response, Washington, D.C., November 1986; Update II, September 1994.
  • Winiarska‐Mieczan, A., & Grela, E.R. (2017). Content of cadmium and lead in raw, fried and baked commercial frozen fishery products consumed in Poland. Journal of the Science of Food and Agriculture, 97(9), 2969-2974. https://doi.org/10.1002/jsfa.8136
  • Zhang, Y., Wang, Q., Bi, Y., Cheng, K.W., & Chen, F. (2019). Nutritional and functional activities of protein from steamed, baked, and high hydrostatic pressure treated cod (Gadus morhua). Food Control, 96, 9-15. https://doi.org/10.1016/j.foodcont.2018.08.023
There are 36 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Şükran Çaklı 0000-0002-2419-9064

Nida Demirtaş Erol 0000-0001-8323-5689

Evren Burcu Şen Yılmaz 0000-0003-3203-5497

Pınar Baldemir 0000-0001-7732-0772

Atilla Çaklı 0000-0002-6631-3638

Project Number FGA-2018-20293
Early Pub Date September 3, 2023
Publication Date September 15, 2023
Submission Date January 13, 2023
Published in Issue Year 2023Volume: 40 Issue: 3

Cite

APA Çaklı, Ş., Demirtaş Erol, N., Şen Yılmaz, E. B., Baldemir, P., et al. (2023). Determination of lipid quality and mercury levels of sardine and rainbow trout cooked with different methods. Ege Journal of Fisheries and Aquatic Sciences, 40(3), 182-188. https://doi.org/10.12714/egejfas.40.3.04