Araştırma Makalesi
BibTex RIS Kaynak Göster

Pırasa (Allium ampeloprasum) atığının mikroalg Chlorella vulgaris kültürü için potansiyeli: Ön değerlendirme

Yıl 2024, Cilt: 41 Sayı: 4, 316 - 320, 11.12.2024
https://doi.org/10.12714/egejfas.41.4.09

Öz

Pırasa ekonomik ve sağlıklı bir bitki türüdür. Zengin diyet lifleri, amino asitler, antioksidan kapasitesini artıran biyoaktif bileşikler ve 20'den fazla farklı yağ asidi içerir. Potasyum, demir ve selenyum açısından zengindir ve mikroalg yetiştiriciliğinde değerli bir kaynak olarak kullanılabilir. Bu çalışmada, pırasa yaprak atıkları ile Chlorella vulgaris mikroalg türlerinin biyokütle üretiminin araştırılması amaçlanmıştır. Deneyde kullanılacak pırasa ekstraktını elde etmek için pırasa yaprakları 40 °C'de bir fırında kurutuldu ve bir havan ve tokmakla ezilerek süzüldü. Pırasa yaprakları önce 10 ml Dimetilsülfoksit ile 0,1 g/L'ye kadar çözüldü ve damıtılmış su ile son hacim 100 ml'ye kadar seyreltildi. C. vulgaris 0.01, 0.025, 0.05, 0.1 ve 1.0 g/L pırasa ekstraktı konsantrasyonlarına 72 saat süreyle maruz bırakılmış ve kontrol grubunda BG-11 zenginleştirme ortamı kullanılmıştır. Elde edilen verilere göre, pırasa yaprakları C. vulgaris yetiştirilmesinde kullanıldığında, 0.05 g/L konsantrasyonda BG-11 zenginleştirme ortamına göre %160 gibi çok yüksek bir artış gözlenmiştir. Ancak pırasa yapraklarının tamamen kullanıldığı grupta kontrol grubuna göre %64 oranında artış gözlenmiştir. Bu çalışma, gıda endüstrisinde farklı alanlarda yoğun olarak kullanılmaya başlanan C. vulgaris türünün yoğun biyokütleye sahip kültür elde edilmesinde sebze atıklarının kullanılmasının uygun olduğunu ve özellikle pırasa atıklarının yüksek biyokütle artışını imkan sağladığını kanıtlamıştır. Bu çalışma düşük konsantarasyon da dahi yüksek biyokütle artışını sağlayan pırasa atığı gibi bitkisel atıkların mikro alg kültüründe kullanılarak maliyetlerin düşürülebildiğini ve sürdürülebilir etkili kültür tekniklerinin kullanılabilirliğini ispatlamaktadır.

Kaynakça

  • Ahmad, M.T., Shariff, M., Md. Yusoff, F., Goh, Y.M., & Banerjee, S. (2020). Applications of microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture, 12(1), 328-346. https://doi.org/10.1111/raq.12320
  • Ak, İ., Oğuz, M., Benas, K., & Göksan, T. (2013). Cost-effective production of Arthrospira (Spirulina) platensis. Journal of Food, Agriculture & Environment, 11(3-4), 1521-1525.
  • Bas-Bellver, C., Barrera, C., Betoret, N., & Seguí, L. (2020). Turning agri-food cooperative vegetable residues into functional powdered ingredients for the food industry. Sustainability, 12(4), 1284. https://doi.org/10.3390/su12041284
  • Benas, K., & Ak, I. (2022). Effect of different led light sources on growth and pigment composition of Dunaliella salina Teodoresco (Chlorophyceae). COMU Journal of Marine Sciences and Fisheries, 5(1), 19-25. https://doi.org/10.46384/jmsf.1023978
  • Bhandari, B., Bansal, N., Zhang, M., & Schuck, P. (2013). Handbook of food powders. Handbook of Food Powders: Processes and Properties. Woodhead Publishing Limited. https://doi.org/10.1533/9780857098672
  • Cai, T., Park, S.Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews, 19, 360-369.
  • Celebi-Toprak, F., & Alan, A.R. (2021). Genetic Improvement of Leek (Allium ampeloprasum L.). Advances in Plant Breeding Strategies: Vegetable Crops: Volume 8: Bulbs, Roots and Tubers, 51-97.
  • Cheah, W.Y., Show, PL., Juan, J.C., Chang, J.S., & Ling, T.C. (2018). Enhancing biomass and lipid productions of microalgae in palm oil mill effluent using carbon and nutrient supplementation. Energy Conversion and Management, 164, 188 197. https://doi.org/10.1016/j.enconman.2018.02.094
  • Chew, K.W., Chia, S.R., Show, P.L., Ling, T.C., Arya, S.S., & Chang, J.S. (2018). Food waste compost as an organic nutrient source for the cultivation of Chlorella vulgaris. Bioresource Technology, 267, 356-362. https://doi.org/10.1016/j.biortech.2018.07.069
  • Cheirsilp, B., Maneechote, W., Srinuanpan, S., & Angelidaki, I. (2023). Microalgae as tools for bio-circular-green economy: Zero-waste approaches for sustainable production and biorefineries of microalgal biomass. Bioresource Technology, 129620. https://doi.org/10.1016/j.biortech.2023.129620
  • Chung, Y.S., Lee, J.W., & Chung, C.H. (2017). Molecular challenges in microalgae towards cost-effective production of quality biodiesel. Renewable and Sustainable Energy Reviews, 74, 139-144. https://doi.org/10.1016/j.rser.2017.02.048
  • Doymaz, I. (2008). Drying of leek slices using heated air. Journal of Food Process Engineering, 31(5), 721-737.
  • García-Herrera, P., Morales, P., Fernández-Ruiz, V., Sánchez-Mata, M.C., Cámara, M., Carvalho, A.M., Ferreira, I.C., Pardo-de-Santayana, M., Molina, M., & Tardío, J. (2014). Nutrients phytochemicals and antioxidant activity in wild populations of Allium ampeloprasum L., a valuable underutilized vegetable. Food Research International, 62, 272–279. https://doi.org/10.1016/j.foodres.2014.03.004
  • Goula, A.M., & Lazarides, H.N. (2015). Integrated processes can turn industrial food waste into valuable food by-products and/or ingredients: The cases of olive mill and pomegranate wastes. Journal of Food Engineering, 167, 45-50. https://doi.org/10.1016/j.jfoodeng.2015.01.003
  • Hsieh, C.H., & Wu, W.T. (2009). Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresource Technology, 100(17), 3921-3926. https://doi.org/10.1016/j.biortech.2009.03.019
  • Karam, M.C., Petit, J., Zimmer, D., Djantou, E.B., & Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188, 32-49. https://doi.org/10.1016/j.jfoodeng.2016.05.001
  • Kligerman, D.C., & Bouwer, E.J. (2015). Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review. Renewable and Sustainable Energy Reviews, 52, 1834-1846.
  • Najda, A., Błaszczyk, L., Winiarczyk, K., Dyduch, J., & Tchórzewska, D. (2016). Comparative studies of nutritional and health-enhancing properties in the “garlic-like” plant Allium ampeloprasum var. Ampeloprasum (GHG-L) and A. sativum. Scientia Horticulturae, 201, 247 255. https://doi.org/10.1016/j.scienta.2016.01.044
  • Neacsu, M., Vaughan, N., Raikos, V., Multari, S., Duncan, G.J., Duthie, G.G., & Russell, W. R. (2015). Phytochemical profile of commercially available food plant powders: Their potential role in healthier food reformulations. Food Chemistry, 179, 159 169. https://doi.org/10.1016/j.foodchem.2015.01.128
  • OECD. (2011). OECD Guidelines for the testing of chemicals. Freshwater alga and cyanobacteria, growth inhibition test. Organisation Economic Cooperation Development, 1-25.
  • Ozdamar, K. (1999).Statistical data analysis with package programs. Kaan Publication. (in Turkish)
  • Peter, A.P., Tan, X., Lim, J.Y., Chew, K.W., Koyande, A.K., & Show, P.L. (2022). Environmental analysis of Chlorella vulgaris cultivation in large scale closed system under waste nutrient source. Chemical Engineering Journal, 433, 134254. https://doi.org/10.1016/j.cej.2021.134254
  • Shelke, P.A., Rafiq, S.M., Bhavesh, C., Rafiq, S.I., Swapnil, P., & Mushtaq, R. (2020). Leek (Allium ampeloprasum L.). Antioxidants in Vegetables and Nuts Properties and Health Benefits, 309 331. https://doi.org/10.1007/978-981-15-7470-2_16
  • Singh, M., & Das, K.C. (2014). Low cost nutrients for algae cultivation. Algal Biorefineries: Volume 1: Cultivation of cells and products, 69-82.
  • Tekin, N., Ergörünlü, B., Karatay, S.E., & Dönmez, G. (2021). Enhanced lipid accumulation of Chlorella vulgaris with agricultural waste under optimized photoheterotrophic conditions. Biomass Conversion and Biorefinery, 1-12.
  • Turan, D., & Çakal Arslan, Ö. (2023). Investigation of toxic effects of BPA and BPA analogues (BPS and BPAF) on Spirulina sp., Desmodesmus subspicatus and Chlorella vulgaris. Ege Journal of Fisheries and Aquatic Sciences, 40(4), 286-291. https://doi.org/10.12714/egejfas.40.4.07
  • Wang, X., Li, Z., Long, P., Yan, L., Gao, W., Chen, Y., & Sui, P. (2017). Sustainability evaluation of recycling in agricultural systems by emergy accounting. Resources, Conservation and Recycling, 117, 114-124. https://doi.org/10.1016/j.resconrec.2016.11.009
  • Zhu, C., Ji, Y., Du, X., Kong, F., Chi, Z., & Zhao, Y. (2022). A smart and precise mixing strategy for efficient and cost-effective microalgae production in open ponds. Science of the Total Environment, 852, 158515. https://doi.org/10.1016/j.scitotenv.2022.158515

Potential of leek (Allium ampeloprasum) waste for microalgae Chlorella vulgaris cultivation: A preliminary evaluation

Yıl 2024, Cilt: 41 Sayı: 4, 316 - 320, 11.12.2024
https://doi.org/10.12714/egejfas.41.4.09

Öz

Leek is an economical and healthy plant species. It contains rich dietary fibers, amino acids, bioactive compounds that increase its antioxidant capacity and more than 20 different fatty acids. It is rich in potassium, iron and selenium and can be used as a valuable source for microalgae cultivation. For impotance of leek, this study investigated the biomass production of Chlorella vulgaris microalgae species with leek leaf waste. To obtain the leek extract to be used for the experiment, leek leaves were dried in an oven at 40 °C and crushed in a mortar and pestle and filtered. Leek leaves were first dissolved with 10 ml DMSO (Dimethylsulfoxide) to 0.1 g/L and diluted with distilled water to a final volume of 100 ml. Chlorella vulgaris was exposed to leek extract concentrations of 0.01, 0.025, 0.05, 0.1 and 1.0 g/L for 72 hours and BG-11 enrichment medium was used in the control group. According to the data obtained, when leek leaves were used in the cultivation of C. vulgaris microalgae, a very high increase of 160% was observed at a concentration of 0.05 g/L compared to BG-11 enrichment medium. However, in the group where leek leaves were used completely, 64% increase was observed compared to the control group. This study proved that C. vulgaris have significant potential for food industries and the biocompost of vegetables is a suitable medium for microalgae cultivation. This study has proven that the use of vegetable wastes is suitable for obtaining a culture with high biomass of C. vulgaris microalgae, which has been used intensively in different areas of the food industry, and that leek wastes in particular provide high biomass growth. Therefore, the lower concentration of leek served as the best medium to increase the growth and biomass of C. vulgaris. This study proves that costs can be reduced and sustainable effective culture techniques can be used in microalgae culture by using vegetable wastes such as leek waste, which provides high biomass growth even at low concentrations.

Etik Beyan

No specific ethical approval was necessary for the study.

Destekleyen Kurum

The study was supported by Izmir ISTEK Schools.

Teşekkür

İzmir İstek Koleji

Kaynakça

  • Ahmad, M.T., Shariff, M., Md. Yusoff, F., Goh, Y.M., & Banerjee, S. (2020). Applications of microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture, 12(1), 328-346. https://doi.org/10.1111/raq.12320
  • Ak, İ., Oğuz, M., Benas, K., & Göksan, T. (2013). Cost-effective production of Arthrospira (Spirulina) platensis. Journal of Food, Agriculture & Environment, 11(3-4), 1521-1525.
  • Bas-Bellver, C., Barrera, C., Betoret, N., & Seguí, L. (2020). Turning agri-food cooperative vegetable residues into functional powdered ingredients for the food industry. Sustainability, 12(4), 1284. https://doi.org/10.3390/su12041284
  • Benas, K., & Ak, I. (2022). Effect of different led light sources on growth and pigment composition of Dunaliella salina Teodoresco (Chlorophyceae). COMU Journal of Marine Sciences and Fisheries, 5(1), 19-25. https://doi.org/10.46384/jmsf.1023978
  • Bhandari, B., Bansal, N., Zhang, M., & Schuck, P. (2013). Handbook of food powders. Handbook of Food Powders: Processes and Properties. Woodhead Publishing Limited. https://doi.org/10.1533/9780857098672
  • Cai, T., Park, S.Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews, 19, 360-369.
  • Celebi-Toprak, F., & Alan, A.R. (2021). Genetic Improvement of Leek (Allium ampeloprasum L.). Advances in Plant Breeding Strategies: Vegetable Crops: Volume 8: Bulbs, Roots and Tubers, 51-97.
  • Cheah, W.Y., Show, PL., Juan, J.C., Chang, J.S., & Ling, T.C. (2018). Enhancing biomass and lipid productions of microalgae in palm oil mill effluent using carbon and nutrient supplementation. Energy Conversion and Management, 164, 188 197. https://doi.org/10.1016/j.enconman.2018.02.094
  • Chew, K.W., Chia, S.R., Show, P.L., Ling, T.C., Arya, S.S., & Chang, J.S. (2018). Food waste compost as an organic nutrient source for the cultivation of Chlorella vulgaris. Bioresource Technology, 267, 356-362. https://doi.org/10.1016/j.biortech.2018.07.069
  • Cheirsilp, B., Maneechote, W., Srinuanpan, S., & Angelidaki, I. (2023). Microalgae as tools for bio-circular-green economy: Zero-waste approaches for sustainable production and biorefineries of microalgal biomass. Bioresource Technology, 129620. https://doi.org/10.1016/j.biortech.2023.129620
  • Chung, Y.S., Lee, J.W., & Chung, C.H. (2017). Molecular challenges in microalgae towards cost-effective production of quality biodiesel. Renewable and Sustainable Energy Reviews, 74, 139-144. https://doi.org/10.1016/j.rser.2017.02.048
  • Doymaz, I. (2008). Drying of leek slices using heated air. Journal of Food Process Engineering, 31(5), 721-737.
  • García-Herrera, P., Morales, P., Fernández-Ruiz, V., Sánchez-Mata, M.C., Cámara, M., Carvalho, A.M., Ferreira, I.C., Pardo-de-Santayana, M., Molina, M., & Tardío, J. (2014). Nutrients phytochemicals and antioxidant activity in wild populations of Allium ampeloprasum L., a valuable underutilized vegetable. Food Research International, 62, 272–279. https://doi.org/10.1016/j.foodres.2014.03.004
  • Goula, A.M., & Lazarides, H.N. (2015). Integrated processes can turn industrial food waste into valuable food by-products and/or ingredients: The cases of olive mill and pomegranate wastes. Journal of Food Engineering, 167, 45-50. https://doi.org/10.1016/j.jfoodeng.2015.01.003
  • Hsieh, C.H., & Wu, W.T. (2009). Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresource Technology, 100(17), 3921-3926. https://doi.org/10.1016/j.biortech.2009.03.019
  • Karam, M.C., Petit, J., Zimmer, D., Djantou, E.B., & Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188, 32-49. https://doi.org/10.1016/j.jfoodeng.2016.05.001
  • Kligerman, D.C., & Bouwer, E.J. (2015). Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review. Renewable and Sustainable Energy Reviews, 52, 1834-1846.
  • Najda, A., Błaszczyk, L., Winiarczyk, K., Dyduch, J., & Tchórzewska, D. (2016). Comparative studies of nutritional and health-enhancing properties in the “garlic-like” plant Allium ampeloprasum var. Ampeloprasum (GHG-L) and A. sativum. Scientia Horticulturae, 201, 247 255. https://doi.org/10.1016/j.scienta.2016.01.044
  • Neacsu, M., Vaughan, N., Raikos, V., Multari, S., Duncan, G.J., Duthie, G.G., & Russell, W. R. (2015). Phytochemical profile of commercially available food plant powders: Their potential role in healthier food reformulations. Food Chemistry, 179, 159 169. https://doi.org/10.1016/j.foodchem.2015.01.128
  • OECD. (2011). OECD Guidelines for the testing of chemicals. Freshwater alga and cyanobacteria, growth inhibition test. Organisation Economic Cooperation Development, 1-25.
  • Ozdamar, K. (1999).Statistical data analysis with package programs. Kaan Publication. (in Turkish)
  • Peter, A.P., Tan, X., Lim, J.Y., Chew, K.W., Koyande, A.K., & Show, P.L. (2022). Environmental analysis of Chlorella vulgaris cultivation in large scale closed system under waste nutrient source. Chemical Engineering Journal, 433, 134254. https://doi.org/10.1016/j.cej.2021.134254
  • Shelke, P.A., Rafiq, S.M., Bhavesh, C., Rafiq, S.I., Swapnil, P., & Mushtaq, R. (2020). Leek (Allium ampeloprasum L.). Antioxidants in Vegetables and Nuts Properties and Health Benefits, 309 331. https://doi.org/10.1007/978-981-15-7470-2_16
  • Singh, M., & Das, K.C. (2014). Low cost nutrients for algae cultivation. Algal Biorefineries: Volume 1: Cultivation of cells and products, 69-82.
  • Tekin, N., Ergörünlü, B., Karatay, S.E., & Dönmez, G. (2021). Enhanced lipid accumulation of Chlorella vulgaris with agricultural waste under optimized photoheterotrophic conditions. Biomass Conversion and Biorefinery, 1-12.
  • Turan, D., & Çakal Arslan, Ö. (2023). Investigation of toxic effects of BPA and BPA analogues (BPS and BPAF) on Spirulina sp., Desmodesmus subspicatus and Chlorella vulgaris. Ege Journal of Fisheries and Aquatic Sciences, 40(4), 286-291. https://doi.org/10.12714/egejfas.40.4.07
  • Wang, X., Li, Z., Long, P., Yan, L., Gao, W., Chen, Y., & Sui, P. (2017). Sustainability evaluation of recycling in agricultural systems by emergy accounting. Resources, Conservation and Recycling, 117, 114-124. https://doi.org/10.1016/j.resconrec.2016.11.009
  • Zhu, C., Ji, Y., Du, X., Kong, F., Chi, Z., & Zhao, Y. (2022). A smart and precise mixing strategy for efficient and cost-effective microalgae production in open ponds. Science of the Total Environment, 852, 158515. https://doi.org/10.1016/j.scitotenv.2022.158515
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Yönetimi (Diğer)
Bölüm Makaleler
Yazarlar

Koray Benas 0000-0002-7626-5596

Muhammet Ali Karaaslan 0000-0003-3737-2361

Özlem Çakal Arslan 0000-0001-7777-3886

Erken Görünüm Tarihi 9 Aralık 2024
Yayımlanma Tarihi 11 Aralık 2024
Gönderilme Tarihi 2 Temmuz 2024
Kabul Tarihi 5 Aralık 2024
Yayımlandığı Sayı Yıl 2024Cilt: 41 Sayı: 4

Kaynak Göster

APA Benas, K., Karaaslan, M. A., & Çakal Arslan, Ö. (2024). Potential of leek (Allium ampeloprasum) waste for microalgae Chlorella vulgaris cultivation: A preliminary evaluation. Ege Journal of Fisheries and Aquatic Sciences, 41(4), 316-320. https://doi.org/10.12714/egejfas.41.4.09