Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye'nin farklı kıyı bölgelerinden Çin şapkası, Patella caerulea (Linnaeus, 1758) ve deniz kestanesinde Paracentrotus lividus (Lamarck, 1816) polonyum-210 biyoakümülasyonunun mevsimsel olarak değerlendirilmesi

Yıl 2024, Cilt: 41 Sayı: 4, 273 - 279, 11.12.2024
https://doi.org/10.12714/egejfas.41.4.03

Öz

Bu çalışma, iki deniz omurgasız türünde polonyum-210 (²¹⁰Po) aktivite konsantrasyonlarının mevsimsel değişimlerini incelemiştir: Çin şapkası (Patella caerulea) ve deniz kestanesi (Paracentrotus lividus). Aralık 2018'den Ekim 2019'a kadar olan dönemde, Ege ve Marmara Denizi kıyılarında mevsimsel örnek toplama çalışmaları üç farklı istasyonda gerçekleştirildi. Bu istasyonlar İzmir-Urla, Karaburun ve İstanbul Adaları-Kınalıada olarak belirlendi. ²¹⁰Po'nun boyuta bağlı birikimini değerlendirmek için numuneler boy gruplarına ayrılmıştır. Her iki türdeki aktivite konsantrasyonları mevsimsel dalgalanmalar göstermiş olup, Çin şapkası örneklerinde 4,9 ± 3,4 Bq kg⁻¹ kuru ağırlık ile 28,0 ± 8,4 Bq kg⁻¹ kuru ağırlık arasında, deniz kestanelerinde ise 8,7 ± 6,1 Bq kg⁻¹ kuru ağırlık ile 58,0 ± 18,5 Bq kg⁻¹ kuru ağırlık arasında değişmiştir. Tüm örnekleme istasyonlarında en yüksek ²¹⁰Po aktivite konsantrasyonları sürekli olarak bahar aylarında gözlenmiştir.

Proje Numarası

FYL-2019-20457

Kaynakça

  • Bartolomé, L., Bustamante, M., Navarro, P., Tajadura, J., Gorostiaga, J.M., Díez, I., Zuloaga, O., & Etxebarria, N. (2011). The use of limpets as monitor of PAHs pollution in the Cantabrian coast. Continental Shelf Research, 31(17), 1818–1826. https://doi.org/10.1016/j.csr.2011.08.001
  • Baskaran, M. (2011). Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: A review. Journal of Environmental Radioactivity, 102(5), 500 513. https://doi.org/10.1016/j.jenvrad.2010.10.007
  • Beiras, R., Bellas, J., Fernández, N., Lorenzo, J.I., & Cobelo-Garcı́a, A. (2003). Assessment of coastal marine pollution in Galicia (NW Iberian Peninsula); metal concentrations in seawater, sediments and mussels (Mytilus galloprovincialis) versus embryo–larval bioassays using Paracentrotus lividus and Ciona intestinalis. Marine Environmental Research, 56(4), 531–553. https://doi.org/10.1016/S0141-1136(03)00042-4
  • Brown, J., Teien, H.C., Thørring, H., Skipperud, L., Hosseini, A., Lind, O.C., Oughton, D., & Salbu, B. (2024). Transfer of radionuclides through ecological systems: Lessons learned from 10 years of research within CERAD CoE. Science of The Total Environment, 940, 173503. https://doi.org/10.1016/j.scitotenv.2024.173503
  • Bu-Olayan, A.H., & Thomas, B.V. (2001). Arsenic levels in the marine ecosystem off the Kuwait Coast, Arabian Gulf. The Environmentalist, 21(1), 71–75. https://doi.org/10.1023/A:1010646305952
  • Campanella, L., Conti, M.E., Cubadda, F., & Sucapane, C. (2001). Trace metals in seagrass, algae and molluscs from an uncontaminated area in the Mediterranean. Environmental Pollution, 111(1), 117–126. https://doi.org/10.1016/S0269-7491(99)00327-9
  • Carvalho, F., Fernandes, S., Fesenko, S., Holm, E., Howard, B., Martin, P., Phaneuf, M., Porcelli, D., Pröhl, G., & Twining, J. (2017). The Environental Behaviour of Polonium. International Atomic Energy Agency, Technical Reports Series, No. 484,255 p.
  • Cravo, A., Foster, P., & Bebianno, M.J. (2002). Minor and trace elements in the shell of Patella aspera (Röding 1798). Environment International, 28(4), 295–302. https://doi.org/10.1016/S0160-4120(02)00038-7
  • Çulha, M., & Bat, L. (2010). Visible decline of limpet Patella caerulea Linnaeus, 1758, a biomonitor species, at the Sinop peninsula and vicinity (the Southern Black Sea, Turkey). Journal of Environmental Protection and Ecology, 11(3).
  • Dorey, N., Martin, S., Oberhänsli, F., Teyssié, J.-L., Jeffree, R., & Lacoue-Labarthe, T. (2018). Ocean acidification modulates the incorporation of radio-labeled heavy metals in the larvae of the Mediterranean Sea urchin Paracentrotus lividus. Journal of Environmental Radioactivity, 190–191, 20–30. https://doi.org/10.1016/j.jenvrad.2018.04.017
  • Flynn, W.W. (1968). The determination of low levels of polonium-210 in environmental materials. Analytica Chimica Acta, 43, 221–227. https://doi.org/10.1016/S0003-2670(00)89210-7
  • Hansen, V., Mosbech, A., Rigét, F. F., Søgaard-Hansen, J., Bjerregaard, P., Dietz, R., Sonne, C., Asmund, G., Bøknæs, N., Olsen, M., Gustavson, K., Boertmann, D., Fabricius, S. D., Clausen, D. S., & Hansen, A. S. (2022). Background 210Po activity concentrations in Greenland marine biota and dose assessment. Science of the Total Environment, 806, 150508. https://doi.org/10.1016/j.scitotenv.2021.150508
  • His, E., Beiras, R., & Seaman, M.N.L. (1999). The Assessment of Marine Pollution - Bioassays with Bivalve Embryos and Larvae (pp. 1–178). https://doi.org/10.1016/S0065-2881(08)60428-9
  • Hurtado-Bermúdez, S., Valencia, J.M., Rivera-Silva, J., Mas, J.L., Aparicio, I., Santos, J.L., & Alonso, E. (2019). Levels of radionuclide concentrations in benthic invertebrate species from the Balearic Islands, Western Mediterranean, during 2012–2018. Marine Pollution Bulletin, 149, 110519.
  • Jewel, M.A.S., Haque, M.M., Haq, M.S., & Khan, S. (2002). Seasonal dynamics of phytoplankton in relation to environmental factors in the Maheshkhali channel, Cox’s Bazar, Bangladesh. Bangladesh Journal of Fisheries Research, 6,2, 173-181. http://hdl.handle.net/1834/33303
  • Khaili, A., Touiss, I., El Azhari, H., El Maadoudi, M., Rharrass, A., Chairi, H., Barrijal, S., & Essalmani, H. (2024). Bacteriological study of the sea urchin Paracentrotus lividus (Lamarck, 1816) gonads associated with seawater physico-chemistry and environmental factors in the Mediterranean Sea of Morocco. Egyptian Journal of Aquatic Research, 50(1), 78–87. https://doi.org/10.1016/j.ejar.2024.02.005
  • Kobayashi, N. (1971). Fertilized sea urchin eggs as an indicatory materials for marine pollution bioassay, preliminary experiments. Publications of the Seto Marine Biological Laboratory,18, 379–408.
  • Kobayashi, N. (1972). Marine pollution bioassay by using sea urchin eggs in the Inland Sea of Japan (Seto-Naikai). Publications of the Seto Marine Biological Laboratory,19(6), 359–381.
  • Kobayashi, N. (1990). Marine pollution bioassay by sea urchin eggs, attempt to enhance sensitivity. Publications of the Seto Marine Biological Laboratory, 34(4/6), 225–237.
  • Kobayashi, N. (1995). Bioassay data for marine pollution using echinoderms. In P. N. Cheremisinoff (Ed.), Encyclopedia of Environmental Control Technology, 9, 539–609.
  • Kül, M., Uğur Görgün, A. & Filizok, I. (2020). Activity concentrations of 210Po and 210Pb in fish and mussels in İzmir, Turkey, and the related health risk assessment (dose assessment and pesticide levels) to the consumers. Environmental Monitoring and Assessment, 192(8), 553. https://doi.org/10.1007/s10661-020-08486-w
  • Lök, A., & Köse, A. (2006). Gonadosomatic index changes in sea urchins (Paracentrotus lividus, Arbacia lixula) collected from Urla–İskele. Ege Journal of Fisheries & Aquatic Sciences, 23(1), 7–11.
  • Makmur, M., Prihatiningsih, W.R., & Yahya, M.N. (2020). Baseline concentration of Polonium-210 (210 Po) in several biota from Jakarta Bay. IOP Conference Series: Earth and Environmental Science, 429(1), 012061. https://doi.org/10.1088/1755-1315/429/1/012061
  • McDonald, P., Fowler, S.W., Heyraud, M., & Baxter, M.S. (1986). Polonium-210 in mussels and its implications for environmental alpha-autoradiography. Journal of Environmental Radioactivity, 3(4), 293–303. https://doi.org/10.1016/0265-931X(86)90004-4
  • Nakhlé, K.F., Cossa, D., Khalaf, G., & Beliaeff, B. (2006). Brachidontes variabilis and Patella sp. as quantitative biological indicators for cadmium, lead and mercury in the Lebanese coastal waters. Environmental Pollution, 142(1), 73–82. https://doi.org/10.1016/j.envpol.2005.09.016
  • Nuñez, J.D., Laitano, M.V., & Cledón, M. (2012). An intertidal limpet species as a bioindicator: Pollution effects reflected by shell characteristics. Ecological Indicators, 14(1), 178 183. https://doi.org/10.1016/j.ecolind.2011.07.015
  • Padilla-Gamiño, J.L., Alma, L., Spencer, L.H., Venkataraman, Y.R., & Wessler, L. (2022). Ocean acidification does not overlook sex: Review of understudied effects and implications of low pH on marine invertebrate sexual reproduction. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.977754
  • Peck, L.S., Convey, P., & Barnes, D.K.A. (2005). Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biological Reviews, 81(01), 75. https://doi.org/10.1017/S1464793105006871
  • Pérez, S., Sánchez-Marín, P., Bellas, J., Viñas, L., Besada, V., & Fernández, N. (2019). Limpets (Patella spp. Mollusca, Gastropoda) as model organisms for biomonitoring environmental quality. Ecological Indicators, 101, 150–162. https://doi.org/10.1016/j.ecolind.2019.01.016
  • Prusina, I., Sarà, G., De Pirro, M., Dong, Y.-W., Han, G.-D., Glamuzina, B., & Williams, G. A. (2014). Variations in physiological responses to thermal stress in congeneric limpets in the Mediterranean Sea. Journal of Experimental Marine Biology and Ecology, 456, 34–40. https://doi.org/10.1016/j.jembe.2014.03.011
  • Putri, S.O.H., Putra, D.I.P., Pambudi, F.I., Makmur, M., Prihatiningsih, W.R., Yusuf, S., & Mulyaningsih, Th. R. (2022). Analysis of polonium-210 and dose assessment in marine fishery muscle from Southern Coast of Sukabumi. IOP Conference Series: Earth and Environmental Science, 1119(1), 012085. https://doi.org/10.1088/1755-1315/1119/1/012085
  • Reeves, B., Beccia, M.R., Solari, P.L., Smiles, D.E., Shuh, D.K., Berthomieu, C., Marcellin, D., Bremond, N., Mangialajo, L., Pagnotta, S., Monfort, M., Moulin, C., & Den Auwer, C. (2019). Uranium Uptake in Paracentrotus lividus Sea Urchin, Accumulation and Speciation. Environmental Science & Technology, 53(14), 7974 7983. https://doi.org/10.1021/acs.est.8b06380
  • Reguera, P., Couceiro, L., & Fernández, N. (2018). A review of the empirical literature on the use of limpets Patella spp. (Mollusca: Gastropoda) as bioindicators of environmental quality. Ecotoxicology and Environmental Safety, 148, 593–600. https://doi.org/10.1016/j.ecoenv.2017.11.004
  • Rithu, Mst. N.A., Matsumoto, A., Hirakawa, N., Ito, Y., & Arakawa, H. (2022). Contamination of sea urchin Mesocentrotus nudus by radiocesium released during the Fukushima Daiichi Nuclear Power Plant accident. PLOS ONE, 17(8), e0269947. https://doi.org/10.1371/journal.pone.0269947
  • Sánchez-Marín, P., Schultze, F., & Besada, V. (2022). Use of limpets as alternative to mussels in metal pollution monitoring; application in the Canary Islands. Environmental Pollution, 308, 119614. https://doi.org/10.1016/j.envpol.2022.119614
  • Santhanabharathi, B., Pradhoshini, K.P., Suhail Ahmed, M., Priyadharshini, M., Shafeeka Parveen, M.H., Alam, L., Mofizur Rahman, I.M., Duong, V.H., Ud Din War, M., & Saiyad Musthafa, M. (2023). Source, fate and transfer of primordial radionuclides as potential contaminants in environmental matrices of high and low background radiation areas – a critical review. International Journal of Environmental Analytical Chemistry, 1–27. https://doi.org/10.1080/03067319.2023.2277891
  • Stewart, G.M., Fowler, S.W., & Fisher, N.S. (2008). The bioaccumulation of U- and Th-series radionuclides in marine organisms. In S. Krishnaswami, J.K. Cochran (Eds.), U-Th Series Nuclides in Aquatic Systems, 269-305, Elsevier, Amsterdam. https://doi.org/10.1016/S1569-4860(07)00008-3
  • Storelli, M. M., & Marcotrigiano, G. O. (2005). Bioindicator organisms: Heavy metal pollution evaluation in the Ionian Sea (Mediterranean Sea-Italy). Environmental Monitoring and Assessment, 102(1–3), 159–166. https://doi.org/10.1007/s10661-005-6018-2
  • Sun, Y.-X., Hu, L.-S., & Dong, Y.-W. (2023). Microhabitat-specific diurnal metabolomic responses of the intertidal limpet Cellana toreuma to winter low temperature. iScience, 26(3), 106128. https://doi.org/10.1016/j.isci.2023.106128
  • Thiessen, K.M., Thorne, M.C., Maul, P.R., Pröhl, G., & Wheater, H.S. (1999). Modelling radionuclide distribution and transport in the environment. Environmental Pollution, 100(1 3), 151 177. https://doi.org/10.1016/S0269-7491(99)00090-1
  • Viñas, L., Pérez-Fernández, B., Soriano, J.A., López, M., Bargiela, J., & Alves, I. (2018). Limpet (Patella sp) as a biomonitor for organic pollutants. A proxy for mussel? Marine Pollution Bulletin, 133, 271–280. https://doi.org/10.1016/j.marpolbul.2018.05.046
  • Virgin, S.D.S., & Schiel, D.R. (2023). Physiological responses of cooccurring intertidal limpets (Cellana spp.) to acute and repeated heat stress. Journal of Experimental Marine Biology and Ecology, 565, 151912. https://doi.org/10.1016/j.jembe.2023.151912
  • Warnau, M., Teyssié, J., & Fowler, S. (1996). Biokinetics of selected heavy metals and radionuclides in the common Mediterranean echinoid Paracentrotus lividus: Sea water and food exposures. Marine Ecology Progress Series, 141, 83–94. https://doi.org/10.3354/meps141083
  • Xu, R.A., & Barker, M.F. (1990). Photoperiodic regulation of oogenesis in the starfish Sclerasterias mollis (Hutton 1872) (Echinodermata: Asteroidea). Journal of Experimental Marine Biology and Ecology, 141(2–3), 159–168. https://doi.org/10.1016/0022-0981(90)90221-W

Assessment of polonium-210 bioaccumulation in Mediterranean limpet Patella caerulea (Linnaeus, 1758) and sea urchin Paracentrotus lividus (Lamarck, 1816) from different coastal areas of Türkiye: Inclusion of a seasonal investigation

Yıl 2024, Cilt: 41 Sayı: 4, 273 - 279, 11.12.2024
https://doi.org/10.12714/egejfas.41.4.03

Öz

This study investigated the seasonal variations of polonium-210 (²¹⁰Po) activity concentrations in two marine invertebrate species: Mediterranean limpet (P. caerulea) and the sea urchin (P. lividus). Seasonal sample collection was conducted across three Aegean and Sea of Marmara coastal stations from December 2018 to October 2019. The stations included İzmir-Urla, Karaburun, and İstanbul Island-Kınalıada. To assess the size-dependent bioaccumulation of ²¹⁰Po, individuals were categorized into size groups. The activity concentrations in both species exhibited seasonal fluctuations, ranging from 4.9 ± 3.4 Bq kg⁻¹ dry weight to 28.0 ± 8.4 Bq kg⁻¹ dry weight in Mediterranean limpets and 8.7 ± 6.1 Bq kg⁻¹ dry weight to 58.0 ± 18.5 Bq kg⁻¹ dry weight in sea urchins. The highest ²¹⁰Po activity concentrations were consistently observed in spring across all sampling locations.

Etik Beyan

Ethics Committee approval certificate is not required for materials used in this study. For this reason, Ethics Committee Certificate was not obtained in this study.

Destekleyen Kurum

Ege Üniversitesi

Proje Numarası

FYL-2019-20457

Teşekkür

This Project has been partially funded by Ege University Scientific Reasearch Project No: FYL-2019-20457.

Kaynakça

  • Bartolomé, L., Bustamante, M., Navarro, P., Tajadura, J., Gorostiaga, J.M., Díez, I., Zuloaga, O., & Etxebarria, N. (2011). The use of limpets as monitor of PAHs pollution in the Cantabrian coast. Continental Shelf Research, 31(17), 1818–1826. https://doi.org/10.1016/j.csr.2011.08.001
  • Baskaran, M. (2011). Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: A review. Journal of Environmental Radioactivity, 102(5), 500 513. https://doi.org/10.1016/j.jenvrad.2010.10.007
  • Beiras, R., Bellas, J., Fernández, N., Lorenzo, J.I., & Cobelo-Garcı́a, A. (2003). Assessment of coastal marine pollution in Galicia (NW Iberian Peninsula); metal concentrations in seawater, sediments and mussels (Mytilus galloprovincialis) versus embryo–larval bioassays using Paracentrotus lividus and Ciona intestinalis. Marine Environmental Research, 56(4), 531–553. https://doi.org/10.1016/S0141-1136(03)00042-4
  • Brown, J., Teien, H.C., Thørring, H., Skipperud, L., Hosseini, A., Lind, O.C., Oughton, D., & Salbu, B. (2024). Transfer of radionuclides through ecological systems: Lessons learned from 10 years of research within CERAD CoE. Science of The Total Environment, 940, 173503. https://doi.org/10.1016/j.scitotenv.2024.173503
  • Bu-Olayan, A.H., & Thomas, B.V. (2001). Arsenic levels in the marine ecosystem off the Kuwait Coast, Arabian Gulf. The Environmentalist, 21(1), 71–75. https://doi.org/10.1023/A:1010646305952
  • Campanella, L., Conti, M.E., Cubadda, F., & Sucapane, C. (2001). Trace metals in seagrass, algae and molluscs from an uncontaminated area in the Mediterranean. Environmental Pollution, 111(1), 117–126. https://doi.org/10.1016/S0269-7491(99)00327-9
  • Carvalho, F., Fernandes, S., Fesenko, S., Holm, E., Howard, B., Martin, P., Phaneuf, M., Porcelli, D., Pröhl, G., & Twining, J. (2017). The Environental Behaviour of Polonium. International Atomic Energy Agency, Technical Reports Series, No. 484,255 p.
  • Cravo, A., Foster, P., & Bebianno, M.J. (2002). Minor and trace elements in the shell of Patella aspera (Röding 1798). Environment International, 28(4), 295–302. https://doi.org/10.1016/S0160-4120(02)00038-7
  • Çulha, M., & Bat, L. (2010). Visible decline of limpet Patella caerulea Linnaeus, 1758, a biomonitor species, at the Sinop peninsula and vicinity (the Southern Black Sea, Turkey). Journal of Environmental Protection and Ecology, 11(3).
  • Dorey, N., Martin, S., Oberhänsli, F., Teyssié, J.-L., Jeffree, R., & Lacoue-Labarthe, T. (2018). Ocean acidification modulates the incorporation of radio-labeled heavy metals in the larvae of the Mediterranean Sea urchin Paracentrotus lividus. Journal of Environmental Radioactivity, 190–191, 20–30. https://doi.org/10.1016/j.jenvrad.2018.04.017
  • Flynn, W.W. (1968). The determination of low levels of polonium-210 in environmental materials. Analytica Chimica Acta, 43, 221–227. https://doi.org/10.1016/S0003-2670(00)89210-7
  • Hansen, V., Mosbech, A., Rigét, F. F., Søgaard-Hansen, J., Bjerregaard, P., Dietz, R., Sonne, C., Asmund, G., Bøknæs, N., Olsen, M., Gustavson, K., Boertmann, D., Fabricius, S. D., Clausen, D. S., & Hansen, A. S. (2022). Background 210Po activity concentrations in Greenland marine biota and dose assessment. Science of the Total Environment, 806, 150508. https://doi.org/10.1016/j.scitotenv.2021.150508
  • His, E., Beiras, R., & Seaman, M.N.L. (1999). The Assessment of Marine Pollution - Bioassays with Bivalve Embryos and Larvae (pp. 1–178). https://doi.org/10.1016/S0065-2881(08)60428-9
  • Hurtado-Bermúdez, S., Valencia, J.M., Rivera-Silva, J., Mas, J.L., Aparicio, I., Santos, J.L., & Alonso, E. (2019). Levels of radionuclide concentrations in benthic invertebrate species from the Balearic Islands, Western Mediterranean, during 2012–2018. Marine Pollution Bulletin, 149, 110519.
  • Jewel, M.A.S., Haque, M.M., Haq, M.S., & Khan, S. (2002). Seasonal dynamics of phytoplankton in relation to environmental factors in the Maheshkhali channel, Cox’s Bazar, Bangladesh. Bangladesh Journal of Fisheries Research, 6,2, 173-181. http://hdl.handle.net/1834/33303
  • Khaili, A., Touiss, I., El Azhari, H., El Maadoudi, M., Rharrass, A., Chairi, H., Barrijal, S., & Essalmani, H. (2024). Bacteriological study of the sea urchin Paracentrotus lividus (Lamarck, 1816) gonads associated with seawater physico-chemistry and environmental factors in the Mediterranean Sea of Morocco. Egyptian Journal of Aquatic Research, 50(1), 78–87. https://doi.org/10.1016/j.ejar.2024.02.005
  • Kobayashi, N. (1971). Fertilized sea urchin eggs as an indicatory materials for marine pollution bioassay, preliminary experiments. Publications of the Seto Marine Biological Laboratory,18, 379–408.
  • Kobayashi, N. (1972). Marine pollution bioassay by using sea urchin eggs in the Inland Sea of Japan (Seto-Naikai). Publications of the Seto Marine Biological Laboratory,19(6), 359–381.
  • Kobayashi, N. (1990). Marine pollution bioassay by sea urchin eggs, attempt to enhance sensitivity. Publications of the Seto Marine Biological Laboratory, 34(4/6), 225–237.
  • Kobayashi, N. (1995). Bioassay data for marine pollution using echinoderms. In P. N. Cheremisinoff (Ed.), Encyclopedia of Environmental Control Technology, 9, 539–609.
  • Kül, M., Uğur Görgün, A. & Filizok, I. (2020). Activity concentrations of 210Po and 210Pb in fish and mussels in İzmir, Turkey, and the related health risk assessment (dose assessment and pesticide levels) to the consumers. Environmental Monitoring and Assessment, 192(8), 553. https://doi.org/10.1007/s10661-020-08486-w
  • Lök, A., & Köse, A. (2006). Gonadosomatic index changes in sea urchins (Paracentrotus lividus, Arbacia lixula) collected from Urla–İskele. Ege Journal of Fisheries & Aquatic Sciences, 23(1), 7–11.
  • Makmur, M., Prihatiningsih, W.R., & Yahya, M.N. (2020). Baseline concentration of Polonium-210 (210 Po) in several biota from Jakarta Bay. IOP Conference Series: Earth and Environmental Science, 429(1), 012061. https://doi.org/10.1088/1755-1315/429/1/012061
  • McDonald, P., Fowler, S.W., Heyraud, M., & Baxter, M.S. (1986). Polonium-210 in mussels and its implications for environmental alpha-autoradiography. Journal of Environmental Radioactivity, 3(4), 293–303. https://doi.org/10.1016/0265-931X(86)90004-4
  • Nakhlé, K.F., Cossa, D., Khalaf, G., & Beliaeff, B. (2006). Brachidontes variabilis and Patella sp. as quantitative biological indicators for cadmium, lead and mercury in the Lebanese coastal waters. Environmental Pollution, 142(1), 73–82. https://doi.org/10.1016/j.envpol.2005.09.016
  • Nuñez, J.D., Laitano, M.V., & Cledón, M. (2012). An intertidal limpet species as a bioindicator: Pollution effects reflected by shell characteristics. Ecological Indicators, 14(1), 178 183. https://doi.org/10.1016/j.ecolind.2011.07.015
  • Padilla-Gamiño, J.L., Alma, L., Spencer, L.H., Venkataraman, Y.R., & Wessler, L. (2022). Ocean acidification does not overlook sex: Review of understudied effects and implications of low pH on marine invertebrate sexual reproduction. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.977754
  • Peck, L.S., Convey, P., & Barnes, D.K.A. (2005). Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biological Reviews, 81(01), 75. https://doi.org/10.1017/S1464793105006871
  • Pérez, S., Sánchez-Marín, P., Bellas, J., Viñas, L., Besada, V., & Fernández, N. (2019). Limpets (Patella spp. Mollusca, Gastropoda) as model organisms for biomonitoring environmental quality. Ecological Indicators, 101, 150–162. https://doi.org/10.1016/j.ecolind.2019.01.016
  • Prusina, I., Sarà, G., De Pirro, M., Dong, Y.-W., Han, G.-D., Glamuzina, B., & Williams, G. A. (2014). Variations in physiological responses to thermal stress in congeneric limpets in the Mediterranean Sea. Journal of Experimental Marine Biology and Ecology, 456, 34–40. https://doi.org/10.1016/j.jembe.2014.03.011
  • Putri, S.O.H., Putra, D.I.P., Pambudi, F.I., Makmur, M., Prihatiningsih, W.R., Yusuf, S., & Mulyaningsih, Th. R. (2022). Analysis of polonium-210 and dose assessment in marine fishery muscle from Southern Coast of Sukabumi. IOP Conference Series: Earth and Environmental Science, 1119(1), 012085. https://doi.org/10.1088/1755-1315/1119/1/012085
  • Reeves, B., Beccia, M.R., Solari, P.L., Smiles, D.E., Shuh, D.K., Berthomieu, C., Marcellin, D., Bremond, N., Mangialajo, L., Pagnotta, S., Monfort, M., Moulin, C., & Den Auwer, C. (2019). Uranium Uptake in Paracentrotus lividus Sea Urchin, Accumulation and Speciation. Environmental Science & Technology, 53(14), 7974 7983. https://doi.org/10.1021/acs.est.8b06380
  • Reguera, P., Couceiro, L., & Fernández, N. (2018). A review of the empirical literature on the use of limpets Patella spp. (Mollusca: Gastropoda) as bioindicators of environmental quality. Ecotoxicology and Environmental Safety, 148, 593–600. https://doi.org/10.1016/j.ecoenv.2017.11.004
  • Rithu, Mst. N.A., Matsumoto, A., Hirakawa, N., Ito, Y., & Arakawa, H. (2022). Contamination of sea urchin Mesocentrotus nudus by radiocesium released during the Fukushima Daiichi Nuclear Power Plant accident. PLOS ONE, 17(8), e0269947. https://doi.org/10.1371/journal.pone.0269947
  • Sánchez-Marín, P., Schultze, F., & Besada, V. (2022). Use of limpets as alternative to mussels in metal pollution monitoring; application in the Canary Islands. Environmental Pollution, 308, 119614. https://doi.org/10.1016/j.envpol.2022.119614
  • Santhanabharathi, B., Pradhoshini, K.P., Suhail Ahmed, M., Priyadharshini, M., Shafeeka Parveen, M.H., Alam, L., Mofizur Rahman, I.M., Duong, V.H., Ud Din War, M., & Saiyad Musthafa, M. (2023). Source, fate and transfer of primordial radionuclides as potential contaminants in environmental matrices of high and low background radiation areas – a critical review. International Journal of Environmental Analytical Chemistry, 1–27. https://doi.org/10.1080/03067319.2023.2277891
  • Stewart, G.M., Fowler, S.W., & Fisher, N.S. (2008). The bioaccumulation of U- and Th-series radionuclides in marine organisms. In S. Krishnaswami, J.K. Cochran (Eds.), U-Th Series Nuclides in Aquatic Systems, 269-305, Elsevier, Amsterdam. https://doi.org/10.1016/S1569-4860(07)00008-3
  • Storelli, M. M., & Marcotrigiano, G. O. (2005). Bioindicator organisms: Heavy metal pollution evaluation in the Ionian Sea (Mediterranean Sea-Italy). Environmental Monitoring and Assessment, 102(1–3), 159–166. https://doi.org/10.1007/s10661-005-6018-2
  • Sun, Y.-X., Hu, L.-S., & Dong, Y.-W. (2023). Microhabitat-specific diurnal metabolomic responses of the intertidal limpet Cellana toreuma to winter low temperature. iScience, 26(3), 106128. https://doi.org/10.1016/j.isci.2023.106128
  • Thiessen, K.M., Thorne, M.C., Maul, P.R., Pröhl, G., & Wheater, H.S. (1999). Modelling radionuclide distribution and transport in the environment. Environmental Pollution, 100(1 3), 151 177. https://doi.org/10.1016/S0269-7491(99)00090-1
  • Viñas, L., Pérez-Fernández, B., Soriano, J.A., López, M., Bargiela, J., & Alves, I. (2018). Limpet (Patella sp) as a biomonitor for organic pollutants. A proxy for mussel? Marine Pollution Bulletin, 133, 271–280. https://doi.org/10.1016/j.marpolbul.2018.05.046
  • Virgin, S.D.S., & Schiel, D.R. (2023). Physiological responses of cooccurring intertidal limpets (Cellana spp.) to acute and repeated heat stress. Journal of Experimental Marine Biology and Ecology, 565, 151912. https://doi.org/10.1016/j.jembe.2023.151912
  • Warnau, M., Teyssié, J., & Fowler, S. (1996). Biokinetics of selected heavy metals and radionuclides in the common Mediterranean echinoid Paracentrotus lividus: Sea water and food exposures. Marine Ecology Progress Series, 141, 83–94. https://doi.org/10.3354/meps141083
  • Xu, R.A., & Barker, M.F. (1990). Photoperiodic regulation of oogenesis in the starfish Sclerasterias mollis (Hutton 1872) (Echinodermata: Asteroidea). Journal of Experimental Marine Biology and Ecology, 141(2–3), 159–168. https://doi.org/10.1016/0022-0981(90)90221-W
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ekoloji (Diğer)
Bölüm Makaleler
Yazarlar

Duygu Arslantürk 0000-0003-3124-0608

Aysun Uğur Görgün 0000-0002-3156-5202

Işık Filizok 0009-0003-9647-447X

Proje Numarası FYL-2019-20457
Erken Görünüm Tarihi 9 Aralık 2024
Yayımlanma Tarihi 11 Aralık 2024
Gönderilme Tarihi 10 Mayıs 2024
Kabul Tarihi 26 Eylül 2024
Yayımlandığı Sayı Yıl 2024Cilt: 41 Sayı: 4

Kaynak Göster

APA Arslantürk, D., Uğur Görgün, A., & Filizok, I. (2024). Assessment of polonium-210 bioaccumulation in Mediterranean limpet Patella caerulea (Linnaeus, 1758) and sea urchin Paracentrotus lividus (Lamarck, 1816) from different coastal areas of Türkiye: Inclusion of a seasonal investigation. Ege Journal of Fisheries and Aquatic Sciences, 41(4), 273-279. https://doi.org/10.12714/egejfas.41.4.03