Research Article
BibTex RIS Cite

Ulva sp.'nin aktif bileşiklerinin elde edilmesi için ekstraksiyon koşullarının optimizasyonu

Year 2024, Volume: 41 Issue: 3, 194 - 206, 15.09.2024
https://doi.org/10.12714/egejfas.41.3.04

Abstract

Deniz marulu olarak bilinen yeşil bir makroalg olan Ulva sp., antimutajenik, antikoagülan, antikanser, antiinflamatuar, antibakteriyel ve nutrasötik özelliklere sahip polisakkaritler, proteinler, mineraller ve biyoaktif bileşikler açısından zengindir. Ege Denizi kıyılarında bol miktarda bulunması, genellikle atık olarak atıldığı için çevresel bir zorluk oluşturmaktadır. Ancak Ulva sp. kozmetiklerde ve diyet takviyelerinde yüksek değerli ürünler için potansiyel taşımaktadır. Tepki yüzey metodolojisi kullanılarak biyoaktif bileşiklerinin ekstraksiyonunun optimize edilmesi, etanol konsantrasyonunun, katı/sıvı oranının ve ekstraksiyon süresinin ayarlanmasını içermektedir. Değerlendirilen temel tepkiler arasında verim, toplam polisakkaritler, toplam protein, toplam fenol, toplam antioksidan aktivite, alfa-glukozidaz inhibitör aktivitesi ve maya hücresi glikoz alımı yer almıştır. Bu çalışmada, ekstraksiyon koşullarındaki değişikliklere bağlı olarak ekstraksiyon verimleri %0,86 ile %22,47 arasında değişmiştir. En yüksek toplam protein içeriği 106.88 mg BSA/g kuru ekstre iken, polisakkarit içeriği %15.42 olarak belirlendi. Toplam fenol içeriği ve antioksidan kapasitesi için en yüksek değerler sırasıyla 82.15 mg GAE/g kuru ekstre ve 63.63 mg Trolox/g kuru ekstre olarak bulundu. Ekstraktlardaki toplam antioksidan ve fenolik bileşik miktarlarının belirlenmesi, potansiyel uygulamalarını genişletebilir. Ayrıca, Ulva sp. ekstraktlarının diyabet tedavisinde inhibitör olarak potansiyel uygulaması, hem alfa-glukozidaz enzim inhibisyonunu hem de maya hücrelerinde glikoz alımını değerlendiren deneyler yoluyla gösterilmiştir. Sonuçlar, Ulva sp.'nin atıktan değerli antidiyabetik ürünlere dönüştürülmesi için çevre dostu bir yaklaşımı desteklemektedir.

Project Number

223M357

References

  • Abbassy, M.A., Marzouk, M.A., Rabea, E.I., & Abd-Elnabi, A.D. (2014). Insecticidal and fungicidal activity of Ulva lactuca Linnaeus (Chlorophyta) extracts and their fractions. Annual Research & Review in Biology, 4(13), 2252-2262. https://doi.org/10.9734/ARRB/2014/9511
  • Abd-Ellatef, G.E.F., Ahmed, O.M., Abdel-Reheim, E.S., & Abdel-Hamid, A.H.Z. (2017). Ulva lactuca polysaccharides prevent wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation. Breast Cancer: Targets and Therapy, 9, 67 83. https://doi.org/10.2147/BCTT.S125165
  • Abou El Azm, N., Fleita, D., Rifaat, D., Mpingirika, E.Z., Amleh, A., & El-Sayed, M.M. (2019). Production of bioactive compounds from the sulfated polysaccharides extracts of Ulva lactuca: Post-extraction enzymatic hydrolysis followed by ion-exchange chromatographic fractionation. Molecules, 24(11), 2132. https://doi.org/10.3390/molecules24112132
  • Alghazeer, R., Whida, F., Abduelrhman, E., Gammoudi, F., & Azwai, S. (2013). Screening of antibacterial activity in marine green, red and brown macroalgae from the western coast of Libya. Natural Science, 5(1), 7-14. https://doi.org/10.4236/ns.2013.51002
  • Alsufyani, T., Califano, G., Deicke, M., Grueneberg, J., Weiss, A., Engelen, A. H., ... & Wichard, T. (2020). Macroalgal-bacterial interactions: Identification and role of thallusin in morphogenesis of the seaweed Ulva (Chlorophyta). Journal of Experimental Botany, 71(11), 3340-3349. https://doi.org/10.1093/jxb/eraa066
  • Alves, A., Sousa, R.A., & Reis, R.L. (2013). A practical perspective on ulvan extracted from green algae. Journal of Applied Phycology, 25, 407-424. https://doi.org/10.1007/s10811-012-9875-4
  • Amrullah, A., & Farobie, O. (2023, June). Distribution of Phenolic Compounds from Ulva Lactuca and Sargassum sp. via Slow-Pyrolysis. In IOP Conference Series: Earth and Environmental Science, 1201(1), 012088. IOP Publishing. https://doi.org/10.1088/1755-1315/1201/1/012088
  • Arsianti, A., Fadilah, F., Fatmawaty, Y., Wibisono, L.K., Kusmardi, S., Azizah, N.N., Putrianingsih, R., Murniasih, T., Rasyid, A., & Pangestuti, R. (2016). Phytochemical composition and anticancer activity of seaweeds Ulva lactuca and Eucheuma cottonii against breast MCF-7 and colon HCT-116 cells. Asian Journal of Pharaceutical and Clinicical Research, 9(6), 115 119. https://doi.org/10.22159/ajpcr.2016.v9i6.13798
  • Barakat, K.M., Ismail, M.M., Abou El Hassayeb, H.E., El Sersy, N.A., & Elshobary, M.E. (2022). Chemical characterization and biological activities of ulvan extracted from Ulva fasciata (Chlorophyta). Rendiconti Lincei. Scienze Fisiche e Naturali, 33(4), 829 841. https://doi.org/10.1007/s12210-022-01103-7
  • Belhadj, S., Gargouri, M., Guerriero, G., & Hentati, O. (2021). Polysaccharides from the green alga Ulva lactuca improve antioxidant balance and bone mineral density in diabetic rats. Biomedical and Environmental Sciences, 34(8), 637-640.
  • Ben Amor, C., Jmel, M.A., Chevallier, P., Mantovani, D., & Smaali, I. (2023). Efficient extraction of a high molecular weight ulvan from stranded Ulva sp. biomass: Application on the active biomembrane synthesis. Biomass Conversion and Biorefinery, 1-11.
  • Chen, J., Zeng, W., Gan, J., Li, Y., Pan, Y., Li, J., & Chen, H. (2021). Physicochemical properties and anti-oxidation activities of ulvan from Ulva ertusa Kjellm. Algal Research, 55, 102269. https://doi.org/10.1016/j.algal.2021.102269
  • Chen, Y., Wu, W., Ni, X., Farag, M.A., Capanoglu, E., & Zhao, C. (2022). Regulatory mechanisms of the green alga Ulva lactuca oligosaccharide via the metabolomics and gut microbiome in diabetic mice. Current Research in Food Science, 5, 1127 1139. https://doi.org/10.1016/j.crfs.2022.07.003
  • Chiu, Y.H., Chan, Y. L., Li, T.L., & Wu, C.J. (2012). Inhibition of Japanese encephalitis virus infection by the sulfated polysaccharide extracts from Ulva lactuca. Marine Biotechnology, 14, 468 478. https://doi.org/10.1007/s10126-011-9428-x
  • Devaki, T., Sathivel, A., & BalajiRaghavendran, H.R. (2009). Stabilization of mitochondrial and microsomal function by polysaccharide of Ulva lactuca on d-Galactosamine induced hepatitis in rats. Chemico-Biological Interactions, 177(2), 83-88. https://doi.org/10.1016/j.cbi.2008.09.036
  • Feng, Y., An, Z., Chen, H., He, X., Wang, W., Li, X., Zhang, H., Li, F., & Liu, D. (2020). Ulva prolifera extract alleviates intestinal oxidative stress via Nrf2 signaling in weaned piglets challenged with hydrogen peroxide. Frontiers in Immunology, 11, 599735. https://doi.org/10.3389/fimmu.2020.599735
  • Fort, A., McHale, M., Cascella, K., Potin, P., Perrineau, M.M., Kerrison, P.D., da Costa, E., Calado, R., Domingues, M.D.R., Costa Azevedo, I., Sousa-Pinto, I., Gachon, C., van der Werf, A., de Visser, W., Beniers, J.E., Jansen, H., Guiry, M.D., & Sulpice, R. (2022). Exhaustive reanalysis of barcode sequences from public repositories highlights ongoing misidentifications and impacts taxa diversity and distribution. Molecular Ecology Resources, 22(1), 86-101. https://doi.org/10.1111/1755-0998.13453
  • Hassan, S., Abd El-Twab, S., Hetta, M., & Mahmoud, B. (2011). Improvement of lipid profile and antioxidant of hypercholesterolemic albino rats by polysaccharides extracted from the green alga Ulva lactuca Linnaeus. Saudi Journal of Biological Sciences, 18(4), 333-340. https://doi.org/10.1016/j.sjbs.2011.01.005
  • Hassan, S.M., & Ghareib, H.R. (2009). Bioactivity of Ulva lactuca L. acetone extract on germination and growth of lettuce and tomato plants. African Journal of Biotechnology, 8(16).
  • He, J., Chen, L., Chu, B., & Zhang, C. (2018). Determination of total polysaccharides and total flavonoids in Chrysanthemum morifolium using near-infrared hyperspectral imaging and multivariate analysis. Molecules, 23(9), 2395. https://doi.org/10.3390/molecules23092395
  • Ibrahim, M.I., Amer, M.S., Ibrahim, H.A., & Zaghloul, E.H. (2022). Considerable production of ulvan from Ulva lactuca with special emphasis on its antimicrobial and anti-fouling properties. Applied Biochemistry and Biotechnology, 194(7), 3097-3118. https://doi.org/10.1007/s12010-022-03867-y
  • Juul, L., Møller, A.H., Bruhn, A., Jensen, S.K., & Dalsgaard, T.K. (2021). Protein solubility is increased by antioxidant addition during protein extraction from the green macroalga, Ulva sp. Journal of Applied Phycology, 33(1), 545-555. https://doi.org/10.1007/s10811-020-02285-z
  • Kim, J.H., Kim, S.A., Edwards, M.S., & Lee, I.A. (2018). Anti-inflammatory effects of polyphenol extracts from Ulva linza (Ulvophyceae, Chlorophyta). Toxicology and Environmental Health Sciences, 10, 212-219. https://doi.org/10.1007/s13530-018-0366-0
  • L. Al-Malki, A., Barbour, E.K., Balamash, K.S., Alshubaily, F.A., Abualnaja, K.O., Abdulaal, W.H., Zeyadi, M.A., Al-Zahrani, M.H., Kumosani, T.A., & Moselhy, S.S. (2019) Antiglycation and fatty acids profiling in response to phyocyanin extracted from Chlorophyta Ulva lactuca algae loaded on albumin nano-particles (ULANP) in diabetic rats. Journal of Pharmaceutical Research International, 26(4), 1-7. https://doi.org/10.9734/jpri/2019/v26i430144
  • Labbaci, F.Z., & Boukortt, F.O. (2020). Beneficial effects of Algerian green alga Ulva lactuca and its hydroethanolic extract on insulin resistance and cholesterol reverse transport in high-fat/streptozotocin diabetic rats. Preventive Nutrition and Food Science, 25(4), 353. https://doi.org/10.3746/pnf.2020.25.4.353
  • Lankatillake, C., Luo, S., Flavel, M., Lenon, G.B., Gill, H., Huynh, T., & Dias, D.A. (2021). Screening natural product extracts for potential enzyme inhibitors: Protocols, and the standardisation of the usage of blanks in α-amylase, α-glucosidase and lipase assays. Plant Methods, 17, 1-19. https://doi.org/10.1186/s13007-020-00702-5
  • Le, B., Golokhvast, K.S., Yang, S. H., & Sun, S. (2019). Optimization of microwave-assisted extraction of polysaccharides from Ulva pertusa and evaluation of their antioxidant activity. Antioxidants, 8(5), 129. https://doi.org/10.3390/antiox8050129
  • Milchakova, N.A. (2011). Marine plants of the Black Sea. An illustrated field guide. https://doi.org/10.21072/978-966-02-5801-3
  • Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science (London, England: 1979), 84(4), 407 412. https://doi.org/10.1042/cs0840407
  • Nabil-Adam, A., & Shreadah, M.A. (2021). Ameliorative role of Ulva extract against heavy metal mixture-induced cardiovascular through oxidative/antioxidant pathways and inflammatory biomarkers. Environmental Science and Pollution Research, 28, 27006-27024. https://doi.org/10.1007/s11356-020-11994-4
  • Nazarudin, M.F., Isha, A., Mastuki, S.N., Ain, N.M., Mohd Ikhsan, N.F., Abidin, A.Z., & Aliyu-Paiko, M. (2020). Chemical composition and evaluation of the α‐glucosidase ınhibitory and cytotoxic properties of marine algae Ulva intestinalis, Halimeda macroloba, and Sargassum ilicifolium. Evidence‐Based Complementary and Alternative Medicine, 2020(1), 2753945. https://doi.org/10.1155/2020/2753945
  • Ning, L., Yao, Z., & Zhu, B. (2022). Ulva (Enteromorpha) polysaccharides and oligosaccharides: a potential functional food source from green-tide-forming macroalgae. Marine Drugs, 20(3), 202. https://doi.org/10.3390/md20030202
  • Nayak, A.K., Hasnain, M.S., Dhara, A.K., & Pal, D. (2021). Plant polysaccharides in pharmaceutical applications. Bioactive Natural Products for Pharmaceutical Applications, 93-125. https://doi.org/10.1007/978-3-030-54027-2
  • Pan-Utai, W., Pantoa, T., Roytrakul, S., Praiboon, J., Kosawatpat, P., Tamtin, M., & Thongdang, B. (2022). Ultrasonic-assisted extraction and antioxidant potential of valuable protein from Ulva rigida macroalgae. Life, 13(1), 86. https://doi.org/10.3390/life13010086
  • Pappou, S., Dardavila, M.M., Savvidou, M.G., Louli, V., Magoulas, K., & Voutsas, E. (2022). Extraction of bioactive compounds from Ulva lactuca. Applied Sciences, 12(4), 2117. https://doi.org/10.3390/app12042117
  • Pengzhan, Y., Quanbin, Z., Ning, L., Zuhong, X., Yanmei, W., & Zhi'en, L. (2003). Polysaccharides from Ulva pertusa (Chlorophyta) and preliminary studies on their antihyperlipidemia activity. Journal of Applied Phycology, 15, 21-27. https://doi.org/10.1023/A:1022997622334
  • Pitchaipillai, R., & Ponniah, T. (2016). In vitro antidiabetic activity of ethanolic leaf extract of Bruguiera cylindrica L.-glucose uptake by yeast cells method. International Biological and Biomedical Journal, 2(4), 171-175.
  • Plaza, M., Cifuentes, A., & Ibáñez, E. (2008). In the search of new functional food ingredients from algae. Trends in Food Science & Technology, 19(1), 31-39. https://doi.org/10.1016/j.tifs.2007.07.012
  • Přerovská, T., Jindřichová, B., Henke, S., Yvin, J.C., Ferrieres, V., Burketová, L., Lipovová, P., & Nguema-Ona, E. (2022). Arabinogalactan protein-like proteins from Ulva lactuca activate immune responses and plant resistance in an oilseed crop. Frontiers in Plant Science, 13, 893858. https://doi.org/10.3389/fpls.2022.893858
  • Rashad, S., El-Chaghaby, G., Lima, E.C., & Simoes dos Reis, G. (2023). Optimizing the ultrasonic-assisted extraction of antioxidants from Ulva lactuca algal biomass using factorial design. Biomass Conversion and Biorefinery, 13(7), 5681-5690. https://doi.org/10.1007/s13399-021-01516-8
  • Rasyid, A. (2017). Evaluation of nutritional composition of the dried seaweed Ulva lactuca from Pameungpeuk waters, Indonesia. Tropical Life Sciences Research, 28(2), 119. https://doi.org/10.21315/tlsr2017.28.2.9
  • Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144 158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Spavieri, J., Kaiser, M., Casey, R., Hingley‐Wilson, S., Lalvani, A., Blunden, G., & Tasdemir, D. (2010). Antiprotozoal, antimycobacterial and cytotoxic potential of some British green algae. Phytotherapy Research, 24(7), 1095-1098. https://doi.org/10.1002/ptr.3072
  • Steinbruch, E., Wise, J., Levkov, K., Chemodanov, A., Israel, Á., Livney, Y.D., & Golberg, A. (2023). Enzymatic cell wall degradation combined with pulsed electric fields increases yields of water-soluble-protein extraction from the green marine macroalga Ulva sp. Innovative Food Science & Emerging Technologies, 84, 103231. https://doi.org/10.1016/j.ifset.2022.103231
  • Suarez Garcia, E., Miranda, C. F., Cesario, M. T., Wijffels, R. H., van den Berg, C., & Eppink, M. H. (2023). Ionic liquid-assisted selective extraction and partitioning of biomolecules from macroalgae. ACS Sustainable Chemistry & Engineering, 11(5), 1752 1762. https://doi.org/10.1021/acssuschemeng.2c05823
  • Tas, S., Celikler, S., Ziyanok‐Ayvalik, S., Sarandol, E., & Dirican, M. (2011). Ulva rigida improves carbohydrate metabolism, hyperlipidemia and oxidative stress in streptozotocin‐induced diabetic rats. Cell Biochemistry and Function, 29(2), 108-113. https://doi.org/10.1002/cbf.1729
  • Trentin, R., Custódio, L., Rodrigues, M.J., Moschin, E., Sciuto, K., Da Silva, J.P., & Moro, I. (2020). Exploring Ulva australis Areschoug for possible biotechnological applications: In vitro antioxidant and enzymatic inhibitory properties, and fatty acids contents. Algal Research, 50, 101980. https://doi.org/10.1016/j.algal.2020.101980
  • Trivedi, N., Baghel, R.S., Bothwell, J., Gupta, V., Reddy, C.R.K., Lali, A.M., & Jha, B. (2016). An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Scientific Reports, 6(1), 30728. https://doi.org/10.1038/srep30728
  • Tüney, İ., Cadirci, B.H., Ünal, D., & Sukatar, A. (2006). Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turkish Journal of Biology, 30(3), 171-175.
  • Tong, T., Liu, Y.J., Zhang, P., & Kang, S.G. (2020). Antioxidant, anti-inflammatory, and α-amylase inhibitory activities of Ulva lactuca extract. Food Science and Preservation, 27(4), 513-521. https://doi.org/10.11002/kjfp.2020.27.4.513
  • Ummat, V., Sivagnanam, S.P., Rajauria, G., O'Donnell, C., & Tiwari, B.K. (2021). Advances in pre-treatment techniques and green extraction technologies for bioactives from seaweeds. Trends in Food Science & Technology, 110, 90-106. https://doi.org/10.1016/j.tifs.2021.01.018
  • Unnikrishnan, P.S., Animish, A., Madhumitha, G., Suthindhiran, K., & Jayasri, M.A. (2022). Bioactivity guided study for the isolation and identification of antidiabetic compounds from edible seaweed-Ulva reticulata. Molecules, 27(24), 8827. https://doi.org/10.3390/molecules27248827
  • Vega-Gálvez, A., Uribe, E., Gómez-Pérez, L.S., García, V., Mejias, N., & Pastén, A. (2022). Drying kinetic modeling and assessment of mineral content, antimicrobial activity, and potential α-glucosidase activity inhibition of a green seaweed (Ulva spp.) subjected to different drying methods. ACS Omega, 7(38), 34230 34238. https://doi.org/10.1021/acsomega.2c03617
  • Yaich, H., Amira, A. B., Abbes, F., Bouaziz, M., Besbes, S., Richel, A., ... & Garna, H. (2017). Effect of extraction procedures on structural, thermal and antioxidant properties of ulvan from Ulva lactuca collected in Monastir coast. International Journal of Biological Macromolecules, 105, 1430-1439. https://doi.org/10.1016/j.ijbiomac.2017.07.141
  • Wekre, M.E., Kåsin, K., Underhaug, J., Holmelid, B., & Jordheim, M. (2019). Quantification of polyphenols in seaweeds: A case study of Ulva intestinalis. Antioxidants, 8(12), 612. https://doi.org/10.3390/antiox8120612

Optimization of extraction conditions for obtaining active compounds of Ulva sp.

Year 2024, Volume: 41 Issue: 3, 194 - 206, 15.09.2024
https://doi.org/10.12714/egejfas.41.3.04

Abstract

Ulva sp., a green macroalgae known as sea lettuce, is rich in polysaccharides, proteins, minerals, and bioactive compounds with antimutagenic, anticoagulant, anticancer, anti-inflammatory, antibacterial, and nutraceutical properties. Its abundance along the Aegean Sea coast poses an environmental challenge, as it is often disposed of as waste. However, Ulva sp. holds potential for high-value products in cosmetics and dietary supplements. Optimizing the extraction of its bioactive compounds using response surface methodology involved adjusting ethanol concentration, solid/liquid ratio, and extraction time. Key responses evaluated included yield, total polysaccharides, total protein, total phenol, total antioxidant activity, alpha-glucosidase inhibitory activity, and yeast cell glucose uptake. In this study, extraction yields ranged from 0.86% to 22.47% based on variations in extraction conditions. The highest total protein content was 106.88 mg BSA/g dry extract, while the polysaccharide content was determined to be 15.42%. The highest values for total phenol content and antioxidant capacity were found to be 82.15 mg GAE/g dry extract and 63.63 mg Trolox/g dry extract, respectively. The determination of the total amounts of antioxidants and phenolic compounds in extracts may expand their potential applications. In addition, the potential application of Ulva sp extracts as inhibitors for the treatment of diabetes has been demonstrated through experiments assessing both alpha-glucosidase enzyme inhibition and glucose uptake in yeast cells. The results support an environmentally friendly approach for the utilization of Ulva sp. from waste into valuable antidiabetic products.

Ethical Statement

Ethical approval is not required for this study.

Supporting Institution

Turkish Scientific and Technological Research Institution (Grant number: 223M357)

Project Number

223M357

References

  • Abbassy, M.A., Marzouk, M.A., Rabea, E.I., & Abd-Elnabi, A.D. (2014). Insecticidal and fungicidal activity of Ulva lactuca Linnaeus (Chlorophyta) extracts and their fractions. Annual Research & Review in Biology, 4(13), 2252-2262. https://doi.org/10.9734/ARRB/2014/9511
  • Abd-Ellatef, G.E.F., Ahmed, O.M., Abdel-Reheim, E.S., & Abdel-Hamid, A.H.Z. (2017). Ulva lactuca polysaccharides prevent wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation. Breast Cancer: Targets and Therapy, 9, 67 83. https://doi.org/10.2147/BCTT.S125165
  • Abou El Azm, N., Fleita, D., Rifaat, D., Mpingirika, E.Z., Amleh, A., & El-Sayed, M.M. (2019). Production of bioactive compounds from the sulfated polysaccharides extracts of Ulva lactuca: Post-extraction enzymatic hydrolysis followed by ion-exchange chromatographic fractionation. Molecules, 24(11), 2132. https://doi.org/10.3390/molecules24112132
  • Alghazeer, R., Whida, F., Abduelrhman, E., Gammoudi, F., & Azwai, S. (2013). Screening of antibacterial activity in marine green, red and brown macroalgae from the western coast of Libya. Natural Science, 5(1), 7-14. https://doi.org/10.4236/ns.2013.51002
  • Alsufyani, T., Califano, G., Deicke, M., Grueneberg, J., Weiss, A., Engelen, A. H., ... & Wichard, T. (2020). Macroalgal-bacterial interactions: Identification and role of thallusin in morphogenesis of the seaweed Ulva (Chlorophyta). Journal of Experimental Botany, 71(11), 3340-3349. https://doi.org/10.1093/jxb/eraa066
  • Alves, A., Sousa, R.A., & Reis, R.L. (2013). A practical perspective on ulvan extracted from green algae. Journal of Applied Phycology, 25, 407-424. https://doi.org/10.1007/s10811-012-9875-4
  • Amrullah, A., & Farobie, O. (2023, June). Distribution of Phenolic Compounds from Ulva Lactuca and Sargassum sp. via Slow-Pyrolysis. In IOP Conference Series: Earth and Environmental Science, 1201(1), 012088. IOP Publishing. https://doi.org/10.1088/1755-1315/1201/1/012088
  • Arsianti, A., Fadilah, F., Fatmawaty, Y., Wibisono, L.K., Kusmardi, S., Azizah, N.N., Putrianingsih, R., Murniasih, T., Rasyid, A., & Pangestuti, R. (2016). Phytochemical composition and anticancer activity of seaweeds Ulva lactuca and Eucheuma cottonii against breast MCF-7 and colon HCT-116 cells. Asian Journal of Pharaceutical and Clinicical Research, 9(6), 115 119. https://doi.org/10.22159/ajpcr.2016.v9i6.13798
  • Barakat, K.M., Ismail, M.M., Abou El Hassayeb, H.E., El Sersy, N.A., & Elshobary, M.E. (2022). Chemical characterization and biological activities of ulvan extracted from Ulva fasciata (Chlorophyta). Rendiconti Lincei. Scienze Fisiche e Naturali, 33(4), 829 841. https://doi.org/10.1007/s12210-022-01103-7
  • Belhadj, S., Gargouri, M., Guerriero, G., & Hentati, O. (2021). Polysaccharides from the green alga Ulva lactuca improve antioxidant balance and bone mineral density in diabetic rats. Biomedical and Environmental Sciences, 34(8), 637-640.
  • Ben Amor, C., Jmel, M.A., Chevallier, P., Mantovani, D., & Smaali, I. (2023). Efficient extraction of a high molecular weight ulvan from stranded Ulva sp. biomass: Application on the active biomembrane synthesis. Biomass Conversion and Biorefinery, 1-11.
  • Chen, J., Zeng, W., Gan, J., Li, Y., Pan, Y., Li, J., & Chen, H. (2021). Physicochemical properties and anti-oxidation activities of ulvan from Ulva ertusa Kjellm. Algal Research, 55, 102269. https://doi.org/10.1016/j.algal.2021.102269
  • Chen, Y., Wu, W., Ni, X., Farag, M.A., Capanoglu, E., & Zhao, C. (2022). Regulatory mechanisms of the green alga Ulva lactuca oligosaccharide via the metabolomics and gut microbiome in diabetic mice. Current Research in Food Science, 5, 1127 1139. https://doi.org/10.1016/j.crfs.2022.07.003
  • Chiu, Y.H., Chan, Y. L., Li, T.L., & Wu, C.J. (2012). Inhibition of Japanese encephalitis virus infection by the sulfated polysaccharide extracts from Ulva lactuca. Marine Biotechnology, 14, 468 478. https://doi.org/10.1007/s10126-011-9428-x
  • Devaki, T., Sathivel, A., & BalajiRaghavendran, H.R. (2009). Stabilization of mitochondrial and microsomal function by polysaccharide of Ulva lactuca on d-Galactosamine induced hepatitis in rats. Chemico-Biological Interactions, 177(2), 83-88. https://doi.org/10.1016/j.cbi.2008.09.036
  • Feng, Y., An, Z., Chen, H., He, X., Wang, W., Li, X., Zhang, H., Li, F., & Liu, D. (2020). Ulva prolifera extract alleviates intestinal oxidative stress via Nrf2 signaling in weaned piglets challenged with hydrogen peroxide. Frontiers in Immunology, 11, 599735. https://doi.org/10.3389/fimmu.2020.599735
  • Fort, A., McHale, M., Cascella, K., Potin, P., Perrineau, M.M., Kerrison, P.D., da Costa, E., Calado, R., Domingues, M.D.R., Costa Azevedo, I., Sousa-Pinto, I., Gachon, C., van der Werf, A., de Visser, W., Beniers, J.E., Jansen, H., Guiry, M.D., & Sulpice, R. (2022). Exhaustive reanalysis of barcode sequences from public repositories highlights ongoing misidentifications and impacts taxa diversity and distribution. Molecular Ecology Resources, 22(1), 86-101. https://doi.org/10.1111/1755-0998.13453
  • Hassan, S., Abd El-Twab, S., Hetta, M., & Mahmoud, B. (2011). Improvement of lipid profile and antioxidant of hypercholesterolemic albino rats by polysaccharides extracted from the green alga Ulva lactuca Linnaeus. Saudi Journal of Biological Sciences, 18(4), 333-340. https://doi.org/10.1016/j.sjbs.2011.01.005
  • Hassan, S.M., & Ghareib, H.R. (2009). Bioactivity of Ulva lactuca L. acetone extract on germination and growth of lettuce and tomato plants. African Journal of Biotechnology, 8(16).
  • He, J., Chen, L., Chu, B., & Zhang, C. (2018). Determination of total polysaccharides and total flavonoids in Chrysanthemum morifolium using near-infrared hyperspectral imaging and multivariate analysis. Molecules, 23(9), 2395. https://doi.org/10.3390/molecules23092395
  • Ibrahim, M.I., Amer, M.S., Ibrahim, H.A., & Zaghloul, E.H. (2022). Considerable production of ulvan from Ulva lactuca with special emphasis on its antimicrobial and anti-fouling properties. Applied Biochemistry and Biotechnology, 194(7), 3097-3118. https://doi.org/10.1007/s12010-022-03867-y
  • Juul, L., Møller, A.H., Bruhn, A., Jensen, S.K., & Dalsgaard, T.K. (2021). Protein solubility is increased by antioxidant addition during protein extraction from the green macroalga, Ulva sp. Journal of Applied Phycology, 33(1), 545-555. https://doi.org/10.1007/s10811-020-02285-z
  • Kim, J.H., Kim, S.A., Edwards, M.S., & Lee, I.A. (2018). Anti-inflammatory effects of polyphenol extracts from Ulva linza (Ulvophyceae, Chlorophyta). Toxicology and Environmental Health Sciences, 10, 212-219. https://doi.org/10.1007/s13530-018-0366-0
  • L. Al-Malki, A., Barbour, E.K., Balamash, K.S., Alshubaily, F.A., Abualnaja, K.O., Abdulaal, W.H., Zeyadi, M.A., Al-Zahrani, M.H., Kumosani, T.A., & Moselhy, S.S. (2019) Antiglycation and fatty acids profiling in response to phyocyanin extracted from Chlorophyta Ulva lactuca algae loaded on albumin nano-particles (ULANP) in diabetic rats. Journal of Pharmaceutical Research International, 26(4), 1-7. https://doi.org/10.9734/jpri/2019/v26i430144
  • Labbaci, F.Z., & Boukortt, F.O. (2020). Beneficial effects of Algerian green alga Ulva lactuca and its hydroethanolic extract on insulin resistance and cholesterol reverse transport in high-fat/streptozotocin diabetic rats. Preventive Nutrition and Food Science, 25(4), 353. https://doi.org/10.3746/pnf.2020.25.4.353
  • Lankatillake, C., Luo, S., Flavel, M., Lenon, G.B., Gill, H., Huynh, T., & Dias, D.A. (2021). Screening natural product extracts for potential enzyme inhibitors: Protocols, and the standardisation of the usage of blanks in α-amylase, α-glucosidase and lipase assays. Plant Methods, 17, 1-19. https://doi.org/10.1186/s13007-020-00702-5
  • Le, B., Golokhvast, K.S., Yang, S. H., & Sun, S. (2019). Optimization of microwave-assisted extraction of polysaccharides from Ulva pertusa and evaluation of their antioxidant activity. Antioxidants, 8(5), 129. https://doi.org/10.3390/antiox8050129
  • Milchakova, N.A. (2011). Marine plants of the Black Sea. An illustrated field guide. https://doi.org/10.21072/978-966-02-5801-3
  • Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science (London, England: 1979), 84(4), 407 412. https://doi.org/10.1042/cs0840407
  • Nabil-Adam, A., & Shreadah, M.A. (2021). Ameliorative role of Ulva extract against heavy metal mixture-induced cardiovascular through oxidative/antioxidant pathways and inflammatory biomarkers. Environmental Science and Pollution Research, 28, 27006-27024. https://doi.org/10.1007/s11356-020-11994-4
  • Nazarudin, M.F., Isha, A., Mastuki, S.N., Ain, N.M., Mohd Ikhsan, N.F., Abidin, A.Z., & Aliyu-Paiko, M. (2020). Chemical composition and evaluation of the α‐glucosidase ınhibitory and cytotoxic properties of marine algae Ulva intestinalis, Halimeda macroloba, and Sargassum ilicifolium. Evidence‐Based Complementary and Alternative Medicine, 2020(1), 2753945. https://doi.org/10.1155/2020/2753945
  • Ning, L., Yao, Z., & Zhu, B. (2022). Ulva (Enteromorpha) polysaccharides and oligosaccharides: a potential functional food source from green-tide-forming macroalgae. Marine Drugs, 20(3), 202. https://doi.org/10.3390/md20030202
  • Nayak, A.K., Hasnain, M.S., Dhara, A.K., & Pal, D. (2021). Plant polysaccharides in pharmaceutical applications. Bioactive Natural Products for Pharmaceutical Applications, 93-125. https://doi.org/10.1007/978-3-030-54027-2
  • Pan-Utai, W., Pantoa, T., Roytrakul, S., Praiboon, J., Kosawatpat, P., Tamtin, M., & Thongdang, B. (2022). Ultrasonic-assisted extraction and antioxidant potential of valuable protein from Ulva rigida macroalgae. Life, 13(1), 86. https://doi.org/10.3390/life13010086
  • Pappou, S., Dardavila, M.M., Savvidou, M.G., Louli, V., Magoulas, K., & Voutsas, E. (2022). Extraction of bioactive compounds from Ulva lactuca. Applied Sciences, 12(4), 2117. https://doi.org/10.3390/app12042117
  • Pengzhan, Y., Quanbin, Z., Ning, L., Zuhong, X., Yanmei, W., & Zhi'en, L. (2003). Polysaccharides from Ulva pertusa (Chlorophyta) and preliminary studies on their antihyperlipidemia activity. Journal of Applied Phycology, 15, 21-27. https://doi.org/10.1023/A:1022997622334
  • Pitchaipillai, R., & Ponniah, T. (2016). In vitro antidiabetic activity of ethanolic leaf extract of Bruguiera cylindrica L.-glucose uptake by yeast cells method. International Biological and Biomedical Journal, 2(4), 171-175.
  • Plaza, M., Cifuentes, A., & Ibáñez, E. (2008). In the search of new functional food ingredients from algae. Trends in Food Science & Technology, 19(1), 31-39. https://doi.org/10.1016/j.tifs.2007.07.012
  • Přerovská, T., Jindřichová, B., Henke, S., Yvin, J.C., Ferrieres, V., Burketová, L., Lipovová, P., & Nguema-Ona, E. (2022). Arabinogalactan protein-like proteins from Ulva lactuca activate immune responses and plant resistance in an oilseed crop. Frontiers in Plant Science, 13, 893858. https://doi.org/10.3389/fpls.2022.893858
  • Rashad, S., El-Chaghaby, G., Lima, E.C., & Simoes dos Reis, G. (2023). Optimizing the ultrasonic-assisted extraction of antioxidants from Ulva lactuca algal biomass using factorial design. Biomass Conversion and Biorefinery, 13(7), 5681-5690. https://doi.org/10.1007/s13399-021-01516-8
  • Rasyid, A. (2017). Evaluation of nutritional composition of the dried seaweed Ulva lactuca from Pameungpeuk waters, Indonesia. Tropical Life Sciences Research, 28(2), 119. https://doi.org/10.21315/tlsr2017.28.2.9
  • Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144 158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Spavieri, J., Kaiser, M., Casey, R., Hingley‐Wilson, S., Lalvani, A., Blunden, G., & Tasdemir, D. (2010). Antiprotozoal, antimycobacterial and cytotoxic potential of some British green algae. Phytotherapy Research, 24(7), 1095-1098. https://doi.org/10.1002/ptr.3072
  • Steinbruch, E., Wise, J., Levkov, K., Chemodanov, A., Israel, Á., Livney, Y.D., & Golberg, A. (2023). Enzymatic cell wall degradation combined with pulsed electric fields increases yields of water-soluble-protein extraction from the green marine macroalga Ulva sp. Innovative Food Science & Emerging Technologies, 84, 103231. https://doi.org/10.1016/j.ifset.2022.103231
  • Suarez Garcia, E., Miranda, C. F., Cesario, M. T., Wijffels, R. H., van den Berg, C., & Eppink, M. H. (2023). Ionic liquid-assisted selective extraction and partitioning of biomolecules from macroalgae. ACS Sustainable Chemistry & Engineering, 11(5), 1752 1762. https://doi.org/10.1021/acssuschemeng.2c05823
  • Tas, S., Celikler, S., Ziyanok‐Ayvalik, S., Sarandol, E., & Dirican, M. (2011). Ulva rigida improves carbohydrate metabolism, hyperlipidemia and oxidative stress in streptozotocin‐induced diabetic rats. Cell Biochemistry and Function, 29(2), 108-113. https://doi.org/10.1002/cbf.1729
  • Trentin, R., Custódio, L., Rodrigues, M.J., Moschin, E., Sciuto, K., Da Silva, J.P., & Moro, I. (2020). Exploring Ulva australis Areschoug for possible biotechnological applications: In vitro antioxidant and enzymatic inhibitory properties, and fatty acids contents. Algal Research, 50, 101980. https://doi.org/10.1016/j.algal.2020.101980
  • Trivedi, N., Baghel, R.S., Bothwell, J., Gupta, V., Reddy, C.R.K., Lali, A.M., & Jha, B. (2016). An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Scientific Reports, 6(1), 30728. https://doi.org/10.1038/srep30728
  • Tüney, İ., Cadirci, B.H., Ünal, D., & Sukatar, A. (2006). Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turkish Journal of Biology, 30(3), 171-175.
  • Tong, T., Liu, Y.J., Zhang, P., & Kang, S.G. (2020). Antioxidant, anti-inflammatory, and α-amylase inhibitory activities of Ulva lactuca extract. Food Science and Preservation, 27(4), 513-521. https://doi.org/10.11002/kjfp.2020.27.4.513
  • Ummat, V., Sivagnanam, S.P., Rajauria, G., O'Donnell, C., & Tiwari, B.K. (2021). Advances in pre-treatment techniques and green extraction technologies for bioactives from seaweeds. Trends in Food Science & Technology, 110, 90-106. https://doi.org/10.1016/j.tifs.2021.01.018
  • Unnikrishnan, P.S., Animish, A., Madhumitha, G., Suthindhiran, K., & Jayasri, M.A. (2022). Bioactivity guided study for the isolation and identification of antidiabetic compounds from edible seaweed-Ulva reticulata. Molecules, 27(24), 8827. https://doi.org/10.3390/molecules27248827
  • Vega-Gálvez, A., Uribe, E., Gómez-Pérez, L.S., García, V., Mejias, N., & Pastén, A. (2022). Drying kinetic modeling and assessment of mineral content, antimicrobial activity, and potential α-glucosidase activity inhibition of a green seaweed (Ulva spp.) subjected to different drying methods. ACS Omega, 7(38), 34230 34238. https://doi.org/10.1021/acsomega.2c03617
  • Yaich, H., Amira, A. B., Abbes, F., Bouaziz, M., Besbes, S., Richel, A., ... & Garna, H. (2017). Effect of extraction procedures on structural, thermal and antioxidant properties of ulvan from Ulva lactuca collected in Monastir coast. International Journal of Biological Macromolecules, 105, 1430-1439. https://doi.org/10.1016/j.ijbiomac.2017.07.141
  • Wekre, M.E., Kåsin, K., Underhaug, J., Holmelid, B., & Jordheim, M. (2019). Quantification of polyphenols in seaweeds: A case study of Ulva intestinalis. Antioxidants, 8(12), 612. https://doi.org/10.3390/antiox8120612
There are 55 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Articles
Authors

Gizem Öder 0000-0002-5386-2822

Oguz Bayraktar 0000-0003-4210-2825

Beyza Tutku Bıçakçı 0000-0002-6638-0355

Project Number 223M357
Early Pub Date September 2, 2024
Publication Date September 15, 2024
Submission Date April 5, 2024
Acceptance Date July 29, 2024
Published in Issue Year 2024Volume: 41 Issue: 3

Cite

APA Öder, G., Bayraktar, O., & Bıçakçı, B. T. (2024). Optimization of extraction conditions for obtaining active compounds of Ulva sp. Ege Journal of Fisheries and Aquatic Sciences, 41(3), 194-206. https://doi.org/10.12714/egejfas.41.3.04