Research Article
BibTex RIS Cite

Determination of anti-cancer and antioxidant properties of protein extracts obtained from aquatic Helophorus (Coleoptera: Helophoridae) insects

Year 2023, Volume: 40 Issue: 1, 35 - 42, 15.03.2023
https://doi.org/10.12714/egejfas.40.1.05

Abstract



In this study, protein extraction was performed from the aquatic insect Helophorus aquaticus (Linnaeus, 1758) and Helophorus syriacus (Kuwert, 1885) species belonging to the genus Helophorus (Coleoptera: Helophoridae). Then, these protein extracts were studied in vitro. These species were collected from the shallow parts of various streams, springs, creeks, ponds and hot springs from Bingöl city centre and its districts between May to June 2017. The protein amount was determined 34.78 mg/mL in the H. aquaticus and 35.14 mg/mL in the H. syriacus, after that he antioxidant capacity of protein extracts was examined. Metal chelating activity was determined as 90-88.5% and DPPH removal activity 53.19-61.7% for H. aquaticus and H. syriacus respectively. Protein samples belonging to both species were tested for cell vitality with WST-1 in PC-3 (prostate cancer) cells with in vitro cell culture. Upon examination of the test results, it has been found out that protein extracts from both of the studied species caused a decrease in cell inhibition. The highest cell inhibition was observed in samples with 1000 μg/mL insect protein extract added. In this study, protein expression providing apoptosis was examined with the Western blot technique after the effective dose was established. By looking at the proteins of Cyt-C and Caspase 3 with the Western blot technique, the efficacy of the protein extracts from both species was demonstrated effectively for the in vitro PC-3 line in non-apoptosis cell death. As a result of the study, insect proteins were shown to support the production of proteins that ensure cell death with the western blot technique.


Supporting Institution

This works were supported by the Science Research Foundation of Bingol University of Turkey

Thanks

We thank Abdullah Mart for the identification of the species. We would also like to thank Ekrem Darendelioğlu for his help and laboratory for the Western Blot part of the study.

References

  • Berenbaum, M.R. (1993). Sequestered plant toxins and insect palatability. The Food Insects Newsletter, 6(3), 6-9.
  • Blum, M.S., 1994. The limits of entomophagy: a discretionary gourmand in a world of toxic Insects. The Food Insects Newsletter, 7(1), 6-11.
  • Bulet, P., Stöcklin, R., & Menin. L. (2004). Anti-microbial peptides: from invertebrates to vertebrates. Immunological Reviews, 198, 169-184. https://doi.org/10.1111/j.0105-2896.2004.0124.x
  • Caf, F., Yildiz, G., Özdemir, N.S., & Mart A. (2020). A chemotaxonomic approach to fatty acid composition of the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae). Turkish Journal of Entomology, 44(3), 399-412. https://doi.org/10.16970/entoted.657190
  • Chernysh, S., Kim, S.I., Bekker, G., Pleskach, V.A., Filatova, N.A., Anikin, V.B., & Bulet, P. (2002). Antiviral and antitumor peptides from insects. Proceedings of the National Academy of Sciences, 99(20), 12628-12632. https://doi.org/10.1073/pnas.192301899
  • Charbonnier, S., Gallego, O., & Gavin, A.C. (2008). The social network of a cell: Recent advances in interactome mapping. Biotechnology Annual Review, 14, 1-28. https://doi.org/10.1016/S1387-2656(08)00001-X
  • Colell, A., Ricci, J.E., Tait S., Milasta, S., Maurer, U., Bouchier-Hayes, L., Fitzgerald, P., Guio-Carrion, A., Waterhouse, N.J., Li, C.W., Mari, B., Barbry, P., Newmeyer, D.D., Beere, H.M., & Green D.R. (2007). GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell, 129(5), 983-997. https://doi.org/10.1016/j.cell.2007.03.045
  • Costa-Neto, E.M. (2002). The use of insects folk medicine in the State of Bahai, Northeastern Brazil, with notes on insects reported elsewhere in Brazilian folk medicine. Human Ecology, 30(2), 254-263. https://doi.org/10.1023/A:1015696830997
  • Coşkun, M., Kayis, T., Ozalp, P., Kocalar, K., Tatlicioğlu, C. I., & Emre, I. (2009). The effects of a meridic diet on the sex ratio of offspring, on glycogen and protein content, and on productivity and longevity of adult Pimpla turionellae (Hymenoptera: Ichneumonidae) for five generations. Belgian Journal of Zoology, 139(2), 103-108.
  • Darılmaz, M. (2010). Investigation of Inner West Anatolia Aquatic Coleoptera Fauna. Doctoral dissertation, Gazi University Institute of Science and Technology, Turkey (in Turkish)
  • da Silva Lucas, A. J., de Oliveira, L. M., da Rocha, M., & Prentice, C. (2020). Edible insects: an alternative of nutritional, functional and bioactive compounds. Food Chemistry, 311, 126022. https://doi.org/10.1016/j.foodchem.2019.126022
  • Defoliart, G.R. (1995). Edible insects as minilivestock. Biodiversity and Conservation, 4, 306-321. https://doi.org/10.1007/BF00055976
  • Di Mattia, C., Battista, N., Sacchetti, G., & Serafini, M. (2019). Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects and invertebrates. Frontiers in Nutrition, 6, (106). https://doi.org/10.3389/fnut.2019.00106
  • Doucet, C.M., & Hetzer, M.W. (2010). Nuclear pore biogenesis into an intact nuclear envelope. Choromosoma, 119, 469-477. https://doi.org/10.1007/s00412-010-0289-2
  • Duffey, S.S. (1980). Sequestration of plant natural products by insects. Annual Review of Entomology, 25, 447-477. https://doi.org/10.1146/annurev.en.25.010180.002311
  • Fikáček M., Schmied H., & Prokop, J. (2010). Fossil hydrophilid beetles (Coleoptera: Hydrophilidae) of the Late Oligocene Rott Formation (Germany). Acta Geologica Sinica 84 (4), 732-750. https://doi.org/10.1111/j.1755-6724.2010.00239.x
  • Gil, M.I., Tomás-Barberán, F.A., Hess-Pierce, B., Holcroft, D.M., & Kader, A.A. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry 48, 4581-4589. https://doi.org/10.1021/jf000404a
  • Hatano, T., Kagawa, H., Yasuhara, T., & Okuda, T. (1988). Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects, Chemical and Pharmaceutical Bulletin, 36(6), 2090-2097. https://doi.org/10.1248/cpb.36.2090
  • Jantzen da Silva Lucas, A., Menegon de Oliveira, L., da Rocha, M., & Prentice, C. (2020). Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chemistry, 311, 126022. https://doi.org/10.1016/j.foodchem.2019.126022
  • Karaś, M., Baraniak, B., Rybczynska, K., Gminski, J., Gaweł- Bezben, K., & Jakubczyk, A. (2015). The influence of heat treatment of chickpea seeds on antioxidant and fibroblast growth-stimulating activity of peptide fractions obtained from proteins digested under simulated gastrointestinal conditions. International Journal of Food Science & Technology, 50, 2097-2103. https://doi.org/10.1111/ijfs.12872
  • Koczulla, A.R., & Bals, R. (2003). Antimicrobial peptides-current status and therapeutic potentials. Drugs, 63, 389-406. https://doi.org/10.2165/00003495-200363040-00005
  • Koç, K. (2011). Investigation of In vitro Genotoxic and Oxidative Effects of Some Edible Insects, Master Thesis, Atatürk University, Institute of Science, Erzurum (in Turkish)
  • Koç, K., İncekara, Ü., Türkez, H., & Çelik, K. (2019). In vitro Assessment of Genotoxic And Oxidative Effects Potentials Of Edible Bamboo Worms And Weaver Ants. Munis Entomology and Zoology Journal, 14(2), 496-501.
  • Liu S., Sun J., Yu L., Zhang C., Bi J., Zhu F., Qu M., & Yang Q. (2012). Antioxidant activity and phenolic compounds of Holotrichia parallela Motschulsky extracts. Food Chemistry 134, 1885-1891. https://doi.org/10.1016/j.foodchem.2012.03.091
  • Mart, A. (2009). Water scavenger beetles (Coleoptera: Hydrophilidae) provinces of Central Black Sea region of Turkey. Journal of The Entomological Reserch Society, 11(1), 47-70.
  • Mittapalli, O., Neal, J.J., & Shukle, R.H. (2007). Antioxidant defense response in a galling insect. Proceedings of the National Academy of Sciences, 104(6), 1889-1894. https://doi.org/10.1073/pnas.0604722104
  • McKenzie, E.A., & Abbott, W.M. (2018). Expression of recombinant proteins in insect and mammalian cells. Methods, 147, 40-49. https://doi.org/10.1016/j.ymeth.2018.05.013
  • Polat, A., Darılmaz, M.C. & İncekara, Ü. (2021). An annotated checklist of the Hydrophiloidea (Coleoptera) of Turkey. Munis Entomology & Zoology, 16 (1), 151-178.
  • Porter, A.G., & Jänicke, R.U. (1999). Emerging roles of caspase-3 in apoptosis. Cell Death and Differentiation, 6, 99-145. https://doi.org/10.1038/sj.cdd.4400476
  • Riccio, A. (2010). Dynamic epigenetic regulation in neurons: enzymes, stimuli and signaling pathways. Nature neuroscience, 13, 1330-1337. https://doi.org/10.1038/nn.2671
  • Stuible, M., Burlacu, A., Perret, S., Brochu, D., Paul-Roc, B., Baardsnes, J., Loignon, M., Grazzini, E., & Durocher, Y. (2018). Optimization of a high-cell-density polyethylenimine trasfection method for rapid protein production in CHO-EBNA1 cells. Journal of Biotechnology, 281, 39-47. https://doi.org/10.1016/j.jbiotec.2018.06.307
  • Suh, H. J., Kim, S. R., Lee, K. S., Park, S., & Kang, S.C. (2010). Antioxidant activity of various solvent extracts from Allomyrina dichotoma (Arthropoda: Insecta) larvae. Journal of Photochemistry and Photobiology B: Biology, 99(2), 67-73. https://doi.org/10.1016/j.jphotobiol.2010.02.005
  • Torres-Fuentes, C., Alaiz, M., & Vioque, J. (2011). Affinity purification and characterisation of chelating peptides from chickpea protein hydrolysates. Food Chemistry, 129, 485-490. https://doi.org/10.1016/j.foodchem.2011.04.103
  • Yılmaz, A. (2011). Faunistic and Systematic Investigation of Helophoridae, Hydrophilidae (Coleoptera) Species in Ista Province, Master Thesis, Süleyman Demirel University, Institute of Science, Isparta (in Turkish)
  • Van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual review of entomology, 58, 563-583. https://doi.org/10.1146/annurev-ento-120811-153704
  • Wenli, Y., Yaping, Z., & Bo, S, (2004). The radical scavenging activities of radix puerariae isoflavonoids: A chemiluminescence study. Food Chemistry, 86(4), 525-529. https://doi.org/10.1016/j.foodchem.2003.09.005
  • Wu, Q.Y., Jia, J.Q., Tan, G.X., Xu, J.L., & Gui, Z.Z. (2011). Physicochemical properties of silkworm larvae protein isolate and gastrointestinal hydrolysate bioactivities. African Journal of Biotechnology, 10, 6145-6153.
  • Zieliǹska, E., Baraniak, B., Karas, M., Rybczynska, K., & Jakubczyk, A. (2015). Selected species of edible insects as a source of nutrient composition. Food Research International, 77, 460-466. https://doi.org/10.1016/j.foodres.2015.09.008
  • Zielińska, E., Karaś, M., & Jakubczyk, A. (2017). Antioxidant activity of predigested protein obtained from a range of farmed edible insects. International Journal of Food Science & Technology, 52, 306-312. https://doi.org/10.1111/ijfs.13282
  • Zielińska, E., Karaś, M., & Baraniak, B. (2018). Comparison of functional properties of edible insects and protein preparations thereof. LWT - Food Science and Technology, 91, 168-174. https://doi.org/10.1016/j.lwt.2018.01.058

Sucul Helophorus (Coleoptera: Helophoridae) böceklerinden elde edilen protein ekstraktlarının anti-kanser ve antioksidan özelliklerinin belirlenmesi

Year 2023, Volume: 40 Issue: 1, 35 - 42, 15.03.2023
https://doi.org/10.12714/egejfas.40.1.05

Abstract



Bu çalışmada, Helophorus (Coleoptera: Helophoridae) cinsine ait sucul böcek Helophorus aquaticus ve Helophorus syriacus türlerinden protein ekstraksiyonu yapılmıştır. Böcek türleri 2017 Mayıs-Haziran ayları arasında ve Bingöl il merkezi ve ilçelerinden çeşitli akarsu, kaynak, dere, birikinti ve sıcak su gözelerinin sığ kesimlerinden toplandı. Protein miktarı H. aquaticus’da 34,78 mg/mL, H. syriacus’da 35,14 mg/mL olarak belirlenmiştir. Daha sonra elde edilen protein ekstraktlarının antioksidan kapasitesi incelendi. Metal şelatlama aktivitesi H. aquaticus ve H. syriacus için sırasıyla %90-88,5, DPPH uzaklaştırma aktivitesi %53,19-61,7 olarak belirlendi. Her iki türe ait protein numuneleri, in vitro hücre kültürü ile PC-3 (prostat kanseri) hücrelerinde WST-1 ile hücre canlılığı açısından test edildi. Test sonuçlarının incelenmesi üzerine, çalışılan türlerin her ikisinden alınan protein ekstraktları, hücre inhibisyonunda bir azalmaya neden oldu. En yüksek hücre inhibisyonu, 1000 μg/mL böcek proteini ekstresi eklenen numunelerde gözlendi. Bu çalışmada, etkin doz belirlendikten sonra Western blot tekniği ile apoptozu sağlayan protein ekspresyonu incelenmiştir. Western blot tekniği ile Cyt-C ve Caspase-3 proteinlerine bakılarak, apoptoz dışı hücre ölümünde in vitro PC-3 hattı için her iki türden protein ekstraktlarının etkinliği etkili bir şekilde gösterildi. Çalışma sonucunda böcek proteinlerinin western blot tekniği ile hücre ölümünü sağlayan proteinlerin üretimini desteklediği gösterildi.



References

  • Berenbaum, M.R. (1993). Sequestered plant toxins and insect palatability. The Food Insects Newsletter, 6(3), 6-9.
  • Blum, M.S., 1994. The limits of entomophagy: a discretionary gourmand in a world of toxic Insects. The Food Insects Newsletter, 7(1), 6-11.
  • Bulet, P., Stöcklin, R., & Menin. L. (2004). Anti-microbial peptides: from invertebrates to vertebrates. Immunological Reviews, 198, 169-184. https://doi.org/10.1111/j.0105-2896.2004.0124.x
  • Caf, F., Yildiz, G., Özdemir, N.S., & Mart A. (2020). A chemotaxonomic approach to fatty acid composition of the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae). Turkish Journal of Entomology, 44(3), 399-412. https://doi.org/10.16970/entoted.657190
  • Chernysh, S., Kim, S.I., Bekker, G., Pleskach, V.A., Filatova, N.A., Anikin, V.B., & Bulet, P. (2002). Antiviral and antitumor peptides from insects. Proceedings of the National Academy of Sciences, 99(20), 12628-12632. https://doi.org/10.1073/pnas.192301899
  • Charbonnier, S., Gallego, O., & Gavin, A.C. (2008). The social network of a cell: Recent advances in interactome mapping. Biotechnology Annual Review, 14, 1-28. https://doi.org/10.1016/S1387-2656(08)00001-X
  • Colell, A., Ricci, J.E., Tait S., Milasta, S., Maurer, U., Bouchier-Hayes, L., Fitzgerald, P., Guio-Carrion, A., Waterhouse, N.J., Li, C.W., Mari, B., Barbry, P., Newmeyer, D.D., Beere, H.M., & Green D.R. (2007). GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell, 129(5), 983-997. https://doi.org/10.1016/j.cell.2007.03.045
  • Costa-Neto, E.M. (2002). The use of insects folk medicine in the State of Bahai, Northeastern Brazil, with notes on insects reported elsewhere in Brazilian folk medicine. Human Ecology, 30(2), 254-263. https://doi.org/10.1023/A:1015696830997
  • Coşkun, M., Kayis, T., Ozalp, P., Kocalar, K., Tatlicioğlu, C. I., & Emre, I. (2009). The effects of a meridic diet on the sex ratio of offspring, on glycogen and protein content, and on productivity and longevity of adult Pimpla turionellae (Hymenoptera: Ichneumonidae) for five generations. Belgian Journal of Zoology, 139(2), 103-108.
  • Darılmaz, M. (2010). Investigation of Inner West Anatolia Aquatic Coleoptera Fauna. Doctoral dissertation, Gazi University Institute of Science and Technology, Turkey (in Turkish)
  • da Silva Lucas, A. J., de Oliveira, L. M., da Rocha, M., & Prentice, C. (2020). Edible insects: an alternative of nutritional, functional and bioactive compounds. Food Chemistry, 311, 126022. https://doi.org/10.1016/j.foodchem.2019.126022
  • Defoliart, G.R. (1995). Edible insects as minilivestock. Biodiversity and Conservation, 4, 306-321. https://doi.org/10.1007/BF00055976
  • Di Mattia, C., Battista, N., Sacchetti, G., & Serafini, M. (2019). Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects and invertebrates. Frontiers in Nutrition, 6, (106). https://doi.org/10.3389/fnut.2019.00106
  • Doucet, C.M., & Hetzer, M.W. (2010). Nuclear pore biogenesis into an intact nuclear envelope. Choromosoma, 119, 469-477. https://doi.org/10.1007/s00412-010-0289-2
  • Duffey, S.S. (1980). Sequestration of plant natural products by insects. Annual Review of Entomology, 25, 447-477. https://doi.org/10.1146/annurev.en.25.010180.002311
  • Fikáček M., Schmied H., & Prokop, J. (2010). Fossil hydrophilid beetles (Coleoptera: Hydrophilidae) of the Late Oligocene Rott Formation (Germany). Acta Geologica Sinica 84 (4), 732-750. https://doi.org/10.1111/j.1755-6724.2010.00239.x
  • Gil, M.I., Tomás-Barberán, F.A., Hess-Pierce, B., Holcroft, D.M., & Kader, A.A. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry 48, 4581-4589. https://doi.org/10.1021/jf000404a
  • Hatano, T., Kagawa, H., Yasuhara, T., & Okuda, T. (1988). Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects, Chemical and Pharmaceutical Bulletin, 36(6), 2090-2097. https://doi.org/10.1248/cpb.36.2090
  • Jantzen da Silva Lucas, A., Menegon de Oliveira, L., da Rocha, M., & Prentice, C. (2020). Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chemistry, 311, 126022. https://doi.org/10.1016/j.foodchem.2019.126022
  • Karaś, M., Baraniak, B., Rybczynska, K., Gminski, J., Gaweł- Bezben, K., & Jakubczyk, A. (2015). The influence of heat treatment of chickpea seeds on antioxidant and fibroblast growth-stimulating activity of peptide fractions obtained from proteins digested under simulated gastrointestinal conditions. International Journal of Food Science & Technology, 50, 2097-2103. https://doi.org/10.1111/ijfs.12872
  • Koczulla, A.R., & Bals, R. (2003). Antimicrobial peptides-current status and therapeutic potentials. Drugs, 63, 389-406. https://doi.org/10.2165/00003495-200363040-00005
  • Koç, K. (2011). Investigation of In vitro Genotoxic and Oxidative Effects of Some Edible Insects, Master Thesis, Atatürk University, Institute of Science, Erzurum (in Turkish)
  • Koç, K., İncekara, Ü., Türkez, H., & Çelik, K. (2019). In vitro Assessment of Genotoxic And Oxidative Effects Potentials Of Edible Bamboo Worms And Weaver Ants. Munis Entomology and Zoology Journal, 14(2), 496-501.
  • Liu S., Sun J., Yu L., Zhang C., Bi J., Zhu F., Qu M., & Yang Q. (2012). Antioxidant activity and phenolic compounds of Holotrichia parallela Motschulsky extracts. Food Chemistry 134, 1885-1891. https://doi.org/10.1016/j.foodchem.2012.03.091
  • Mart, A. (2009). Water scavenger beetles (Coleoptera: Hydrophilidae) provinces of Central Black Sea region of Turkey. Journal of The Entomological Reserch Society, 11(1), 47-70.
  • Mittapalli, O., Neal, J.J., & Shukle, R.H. (2007). Antioxidant defense response in a galling insect. Proceedings of the National Academy of Sciences, 104(6), 1889-1894. https://doi.org/10.1073/pnas.0604722104
  • McKenzie, E.A., & Abbott, W.M. (2018). Expression of recombinant proteins in insect and mammalian cells. Methods, 147, 40-49. https://doi.org/10.1016/j.ymeth.2018.05.013
  • Polat, A., Darılmaz, M.C. & İncekara, Ü. (2021). An annotated checklist of the Hydrophiloidea (Coleoptera) of Turkey. Munis Entomology & Zoology, 16 (1), 151-178.
  • Porter, A.G., & Jänicke, R.U. (1999). Emerging roles of caspase-3 in apoptosis. Cell Death and Differentiation, 6, 99-145. https://doi.org/10.1038/sj.cdd.4400476
  • Riccio, A. (2010). Dynamic epigenetic regulation in neurons: enzymes, stimuli and signaling pathways. Nature neuroscience, 13, 1330-1337. https://doi.org/10.1038/nn.2671
  • Stuible, M., Burlacu, A., Perret, S., Brochu, D., Paul-Roc, B., Baardsnes, J., Loignon, M., Grazzini, E., & Durocher, Y. (2018). Optimization of a high-cell-density polyethylenimine trasfection method for rapid protein production in CHO-EBNA1 cells. Journal of Biotechnology, 281, 39-47. https://doi.org/10.1016/j.jbiotec.2018.06.307
  • Suh, H. J., Kim, S. R., Lee, K. S., Park, S., & Kang, S.C. (2010). Antioxidant activity of various solvent extracts from Allomyrina dichotoma (Arthropoda: Insecta) larvae. Journal of Photochemistry and Photobiology B: Biology, 99(2), 67-73. https://doi.org/10.1016/j.jphotobiol.2010.02.005
  • Torres-Fuentes, C., Alaiz, M., & Vioque, J. (2011). Affinity purification and characterisation of chelating peptides from chickpea protein hydrolysates. Food Chemistry, 129, 485-490. https://doi.org/10.1016/j.foodchem.2011.04.103
  • Yılmaz, A. (2011). Faunistic and Systematic Investigation of Helophoridae, Hydrophilidae (Coleoptera) Species in Ista Province, Master Thesis, Süleyman Demirel University, Institute of Science, Isparta (in Turkish)
  • Van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual review of entomology, 58, 563-583. https://doi.org/10.1146/annurev-ento-120811-153704
  • Wenli, Y., Yaping, Z., & Bo, S, (2004). The radical scavenging activities of radix puerariae isoflavonoids: A chemiluminescence study. Food Chemistry, 86(4), 525-529. https://doi.org/10.1016/j.foodchem.2003.09.005
  • Wu, Q.Y., Jia, J.Q., Tan, G.X., Xu, J.L., & Gui, Z.Z. (2011). Physicochemical properties of silkworm larvae protein isolate and gastrointestinal hydrolysate bioactivities. African Journal of Biotechnology, 10, 6145-6153.
  • Zieliǹska, E., Baraniak, B., Karas, M., Rybczynska, K., & Jakubczyk, A. (2015). Selected species of edible insects as a source of nutrient composition. Food Research International, 77, 460-466. https://doi.org/10.1016/j.foodres.2015.09.008
  • Zielińska, E., Karaś, M., & Jakubczyk, A. (2017). Antioxidant activity of predigested protein obtained from a range of farmed edible insects. International Journal of Food Science & Technology, 52, 306-312. https://doi.org/10.1111/ijfs.13282
  • Zielińska, E., Karaś, M., & Baraniak, B. (2018). Comparison of functional properties of edible insects and protein preparations thereof. LWT - Food Science and Technology, 91, 168-174. https://doi.org/10.1016/j.lwt.2018.01.058

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Tuba ELHAZAR 0000-0003-3632-1159

Bülent KAYA 0000-0002-1216-6441

Fatma CAF 0000-0002-0363-4848

Project Number Project number: BAP-FEF.2017.00.003
Publication Date March 15, 2023
Submission Date September 2, 2022
Published in Issue Year 2023Volume: 40 Issue: 1

Cite

APA ELHAZAR, T., KAYA, B., & CAF, F. (2023). Determination of anti-cancer and antioxidant properties of protein extracts obtained from aquatic Helophorus (Coleoptera: Helophoridae) insects. Ege Journal of Fisheries and Aquatic Sciences, 40(1), 35-42. https://doi.org/10.12714/egejfas.40.1.05