Assessment of environmental applicability of TiO2 coated self-cleaning glass for photocatalytic degradation of estrone, 17β-estradiol and their byproducts
Year 2019,
Volume: 36 Issue: 4, 347 - 359, 15.12.2019
Golnar Matin
,
Ali Reza Amani-ghadim
Amir Abbas Matin
Navid Kargar
,
Hasan Baha Buyukışık
Abstract
Optimization of photocatalytic degradation of two natural estrogenic compounds, estrone (E1) and 17β-estradiol (17β-E2) in aqueous medium was performed on TiO2 coated Pilkington ActivTM self-cleaning glass as a novel approach to eliminate free nano-TiO2 releasing to the intended environment after treatment. The active glass was characterized by Atomic Force Microscopy (AFM), X-ray diffraction (XRD), and Raman spectroscopy to characterize the TiO2 nanoparticles. The main purposes were mineralization of target compounds in the treated water during the photocatalytic reaction and also to investigate the oxidation by products. Response Surface Methodology (RSM) has been applied to optimize the photocatalytic degradation by changing time, pH, and light intensity as effective factors. According to the results, time was the more effective parameter. The maximum efficiency degradation was achieved in alkaline media. Due to interactive effects between variable factors, 1 mg/L aqueous solution of E1 and 17β-E2 in water was totally decomposed by TiO2 photocatalyzed reactions under UV-C irradiation of 10.08 W/m2 for 52.49 min at pH 9.42. Results of GC-MS analysis were introduced 17-deoxy Estrone and 2-Hydroxyestradiol as intermediate products for E1 and 17β-E2, respectively. All of the peaks finally disappeared after 170 min. Optimized conditions were applied for real sample of wastewater, presenting 30.40% and 56.84% in the efficiency degradation of E1 and 17β-E2, respectively.
Supporting Institution
Ege University
Project Number
2017/SÜF/014
Thanks
Authors acknowledge Dr. Ozan Ünsalan (Ege University, Department of Physics) for help with the analysis of Raman spectrums. Golnar Matin thank Prof. Yury Gogotsi (A.J. Drexel Nanotechnology Institute, Drexel University) for his kind comments and suggestions on the characterization of TiO2 nanocrystals coated on the glass.
References
- Adeel, M., Song, X., Wang, Y., Francis, D., & Yang, Y. (2017). Environmental impact of estrogens on human, animal and plant life: A critical review. Environment International, 99, 107–119. DOI:10.1016/j.envint.2016.12.010
- Arlos, M. J., Liang, R., Hatat-Fraile, M. M., Bragg, L. M., Zhou, N. Y., Servos, M. R., & Andrews, S. A. (2016). Photocatalytic decomposition of selected estrogens and their estrogenic activity by UV-LED irradiated TiO2 immobilized on porous titanium sheets via thermal-chemical oxidation. Journal of Hazardous Materials, 318, 541–550. DOI:10.1016/j.jhazmat.2016.07.048
- Battin, T. J., Kammer, F. v.d., Weilhartner, A., Ottofuelling, S., & Hofmann, T. (2009). Nanostructured TiO 2 : Transport Behavior and Effects on Aquatic Microbial Communities under Environmental Conditions. Environmental Science & Technology, 43(21), 8098–8104. DOI:10.1021/es9017046
- Belver, C., Bedia, J., Gómez-Avilés, A., Peñas-Garzón, M., & Rodriguez, J. J. (2019). Semiconductor Photocatalysis for Water Purification. In Nanoscale Materials in Water Purification (pp. 581–651). Elsevier. DOI:10.1016/B978-0-12-813926-4.00028-8
- Blanchfield, P. J., Kidd, K. A., Docker, M. F., Palace, V. P., Park, B. J., & Postma, L. D. (2015). Recovery of a Wild Fish Population from Whole-Lake Additions of a Synthetic Estrogen. Environmental Science & Technology, 49(5), 3136–3144. DOI:10.1021/es5060513
- Blanco-Galvez, J., Fernández-Ibáñez, P., & Malato-Rodríguez, S. (2007). Solar Photocatalytic Detoxification and Disinfection of Water: Recent Overview. Journal of Solar Energy Engineering, 129(1), 4. DOI:10.1115/1.2390948
- Bodhipaksha, L. C., Sharpless, C. M., Chin, Y., & MacKay, A. A. (2017). Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin. Water Research, 110, 170–179. DOI:10.1016/j.watres.2016.12.016
- Cai, P.-S., Li, D., Chen, J., Xiong, C.-M., & Ruan, J.-L. (2015). Comparison of two thin-film microextractions for the analysis of estrogens in aqueous tea extract and environmental water samples by high performance liquid chromatography-ultraviolet detection. Food Chemistry, 173, 1158–1166. DOI:10.1016/j.foodchem.2014.11.002
- Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997–3027. DOI:10.1016/j.watres.2010.02.039
- Christian, P., Von der Kammer, F., Baalousha, M., & Hofmann, T. (2008). Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 17(5), 326–343. DOI:10.1007/s10646-008-0213-1
- Daghrir, R., Drogui, P., Dimboukou-Mpira, A., & El Khakani, M. A. (2013). Photoelectrocatalytic degradation of carbamazepine using Ti/TiO2 nanostructured electrodes deposited by means of a pulsed laser deposition process. Chemosphere, 93(11), 2756–2766. DOI:10.1016/j.chemosphere.2013.09.031
- Deguchi, Y., Wu, N. X., Toyoizumi, T., Masuda, S., Nagaoka, H., Watanabe, T., … Kinae, N. (2008). Application of a new bioassay technique using goldfish for assessment of water toxicity. Environmental Toxicology, 23(6), 720–727. DOI:10.1002/tox.20379
- FUJISHIMA, A., ZHANG, X., & TRYK, D. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515–582. DOI:10.1016/j.surfrep.2008.10.001
- Gmurek, M., Olak-Kucharczyk, M., & Ledakowicz, S. (2017). Photochemical decomposition of endocrine disrupting compounds – A review. Chemical Engineering Journal, 310, 437–456. DOI:10.1016/j.cej.2016.05.014
- Gu, J.-D., Fan, Y., & Shi, H. (2002). Relationship between structures of substituted indolic compounds and their degradation by marine anaerobic microorganisms. Marine Pollution Bulletin, 45(1–12), 379–384. DOI:10.1016/S0025-326X(02)00091-7
- H.Myers, R., C.Montgomery, D., & Anderson-Cook, M, C. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. (Intergovernmental Panel on Climate Change, Ed.), Climate Change 2013 - The Physical Science Basis (4th Editio). Hoboken, New Jersey: John Wiley & Sons, Inc. Retrieved from https://www.wiley.com/en-tr/Response+Surface+Methodology%3A+Process+and+Product+Optimization+Using+Designed+Experiments%2C+4th+Edition-p-9781118916032
- Hamid, H., & Eskicioglu, C. (2013). Effect of microwave hydrolysis on transformation of steroidal hormones during anaerobic digestion of municipal sludge cake. Water Research, 47(14), 4966–4977. DOI:10.1016/j.watres.2013.05.042
- Han, J., Liu, Y., Singhal, N., Wang, L., & Gao, W. (2012a). Comparative photocatalytic degradation of estrone in water by ZnO and TiO2 under artificial UVA and solar irradiation. Chemical Engineering Journal, 213, 150–162. DOI:10.1016/j.cej.2012.09.066
- Han, J., Liu, Y., Singhal, N., Wang, L., & Gao, W. (2012b). Comparative photocatalytic degradation of estrone in water by ZnO and TiO2 under artificial UVA and solar irradiation. Chemical Engineering Journal, 213, 150–162. DOI:10.1016/j.cej.2012.09.066
- Huy, T. H., Bui, D. P., Kang, F., Wang, Y.-F., Liu, S.-H., Thi, C. M., … Pham, V. V. (2019). SnO2/TiO2 nanotube heterojunction: The first investigation of NO degradation by visible light-driven photocatalysis. Chemosphere, 215, 323–332. DOI:10.1016/j.chemosphere.2018.10.033
- Iwanowicz, L. R., & Blazer, V. S. (2011). An Overview Of Estrogen-Associated Endocrine Disruption In Fishes : Evidence Of Effects On Reproductive And Immune Physiology (pp. 266–275).
- Khayet, M., Zahrim, A. Y., & Hilal, N. (2011). Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology. Chemical Engineering Journal, 167(1), 77–83. DOI:10.1016/j.cej.2010.11.108
- Kurtoglu, M. E., Longenbach, T., & Gogotsi, Y. (2011). Preventing Sodium Poisoning of Photocatalytic TiO2 Films on Glass by Metal Doping. International Journal of Applied Glass Science, 2(2), 108–116. DOI:10.1111/j.2041-1294.2011.00040.x
- Kurtoglu, M. E., Longenbach, T., Reddington, P., & Gogotsi, Y. (2011). Effect of calcination temperature and environment on photocatalytic and mechanical properties of ultrathin sol-gel titanium dioxide films. Journal of the American Ceramic Society, 94(4), 1101–1108. DOI:10.1111/j.1551-2916.2010.04218.x
- Lee, J., Kim, J., & Choi, W. (2011). TiO 2 Photocatalysis for the Redox Conversion of Aquatic Pollutants. In Aquatic Redox Chemistry (Vol. Ch 10, pp. 199–222). DOI:10.1021/bk-2011-1071.ch010
- Long, M., Strand, J., Lassen, P., Krüger, T., Dahllöf, I., Bossi, R., … Bonefeld-Jørgensen, E. C. (2014). Endocrine-Disrupting Effects of Compounds in Danish Streams. Archives of Environmental Contamination and Toxicology, 66(1), 1–18. DOI:10.1007/s00244-013-9959-4
- Marfil-Vega, R., Suidan, M. T., & Mills, M. A. (2010). Abiotic transformation of estrogens in synthetic municipal wastewater: An alternative for treatment? Environmental Pollution, 158(11), 3372–3377. DOI:10.1016/j.envpol.2010.07.042
- Mayer, B. K., Johnson, C., Yang, Y., Wellenstein, N., Maher, E., & McNamara, P. J. (2019). From micro to macro-contaminants: The impact of low-energy titanium dioxide photocatalysis followed by filtration on the mitigation of drinking water organics. Chemosphere, 217, 111–121. DOI:10.1016/j.chemosphere.2018.10.213
- Mockler, E. M., Deakin, J., Archbold, M., Gill, L., Daly, D., & Bruen, M. (2017). Sources of nitrogen and phosphorus emissions to Irish rivers and coastal waters: Estimates from a nutrient load apportionment framework. Science of The Total Environment, 601–602, 326–339. DOI:10.1016/j.scitotenv.2017.05.186
- Mueller, N. C., & Nowack, B. (2008). Exposure Modeling of Engineered Nanoparticles in the Environment. Environmental Science & Technology, 42(12), 4447–4453. DOI:10.1021/es7029637
- Noppe, H., Le Bizec, B., Verheyden, K., & De Brabander, H. F. (2008). Novel analytical methods for the determination of steroid hormones in edible matrices. Analytica Chimica Acta, 611(1), 1–16. DOI:10.1016/j.aca.2008.01.066
- Ohko, Y., Iuchi, K., Niwa, C., Tatsuma, T., Nakashima, T., Iguchi, T., … Fujishima, A. (2002). 17β-Estradiol Degradation by TiO 2 Photocatalysis as a Means of Reducing Estrogenic Activity. Environmental Science & Technology, 36(19), 4175–4181. DOI:10.1021/es011500a
- Orozco-Hernández, L., Gómez-Oliván, L. M., Elizalde-Velázquez, A., Natividad, R., Fabian-Castoño, L., & SanJuan-Reyes, N. (2019). 17-β-Estradiol: Significant reduction of its toxicity in water treated by photocatalysis. Science of The Total Environment, 669, 955–963. DOI:10.1016/j.scitotenv.2019.03.190
- Oturan, M. A., & Aaron, J.-J. (2014). Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Critical Reviews in Environmental Science and Technology, 44(23), 2577–2641. DOI:10.1080/10643389.2013.829765
- Paredes, L., Murgolo, S., Dzinun, H., Dzarfan Othman, M. H., Ismail, A. F., Carballa, M., & Mascolo, G. (2019). Application of immobilized TiO2 on PVDF dual layer hollow fibre membrane to improve the photocatalytic removal of pharmaceuticals in different water matrices. Applied Catalysis B: Environmental, 240, 9–18. DOI:10.1016/j.apcatb.2018.08.067
- Song, X., Wen, Y., Wang, Y., Adeel, M., & Yang, Y. (2018). Environmental risk assessment of the emerging EDCs contaminants from rural soil and aqueous sources: Analytical and modelling approaches. Chemosphere, 198, 546–555. DOI:10.1016/j.chemosphere.2018.01.060
- Sornalingam, K., McDonagh, A., & Zhou, J. L. (2016). Photodegradation of estrogenic endocrine disrupting steroidal hormones in aqueous systems: Progress and future challenges. Science of The Total Environment, 550, 209–224. DOI:10.1016/j.scitotenv.2016.01.086
- Tong, T., Shereef, A., Wu, J., Binh, C. T. T., Kelly, J. J., Gaillard, J.-F., & Gray, K. A. (2013). Effects of Material Morphology on the Phototoxicity of Nano-TiO 2 to Bacteria. Environmental Science & Technology, 47(21), 12486–12495. DOI:10.1021/es403079h
- Vulliet, E., & Cren-Olivé, C. (2011). Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environmental Pollution, 159(10), 2929–2934. DOI:10.1016/j.envpol.2011.04.033
- Wang, D.-G., Alaee, M., Byer, J., Liu, Y.-J., & Tian, C.-G. (2011). Fugacity approach to evaluate the sediment-water diffusion of polycyclic aromatic hydrocarbons. Journal of Environmental Monitoring : JEM, 13(6), 1589–96. DOI:10.1039/c0em00731e
- Wang, L., Zhang, F., Liu, R., Zhang, T. Y., Xue, X., Xu, Q., & Liang, X. (2007). FeCl 3 /NaNO 2 : An Efficient Photocatalyst for the Degradation of Aquatic Steroid Estrogens under Natural Light Irradiation. Environmental Science & Technology, 41(10), 3747–3751. DOI:10.1021/es0625778
- Wert, E. C., Rosario-Ortiz, F. L., & Snyder, S. A. (2009). Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater. Water Research, 43(4), 1005–1014. DOI:10.1016/j.watres.2008.11.050
- Zhang, A., & Li, Y. (2014). Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: Effects of reaction conditions and sludge matrix. Science of The Total Environment, 493, 307–323. DOI:10.1016/j.scitotenv.2014.05.149
- Zhang, X., Li, Q., Li, G., Wang, Z., & Yan, C. (2009). Levels of estrogenic compounds in Xiamen Bay sediment, China. Marine Pollution Bulletin, 58(8), 1210–1216. DOI:10.1016/j.marpolbul.2009.03.011
- Zhang, Y., Zhou, J. L., & Ning, B. (2007). Photodegradation of estrone and 17β-estradiol in water. Water Research, 41(1), 19–26. DOI:10.1016/j.watres.2006.09.020
- Zodi, S., Potier, O., Lapicque, F., & Leclerc, J.-P. (2010). Treatment of the industrial wastewaters by electrocoagulation: Optimization of coupled electrochemical and sedimentation processes. Desalination, 261(1–2), 186–190. DOI:10.1016/j.desal.2010.04.024
Year 2019,
Volume: 36 Issue: 4, 347 - 359, 15.12.2019
Golnar Matin
,
Ali Reza Amani-ghadim
Amir Abbas Matin
Navid Kargar
,
Hasan Baha Buyukışık
Project Number
2017/SÜF/014
References
- Adeel, M., Song, X., Wang, Y., Francis, D., & Yang, Y. (2017). Environmental impact of estrogens on human, animal and plant life: A critical review. Environment International, 99, 107–119. DOI:10.1016/j.envint.2016.12.010
- Arlos, M. J., Liang, R., Hatat-Fraile, M. M., Bragg, L. M., Zhou, N. Y., Servos, M. R., & Andrews, S. A. (2016). Photocatalytic decomposition of selected estrogens and their estrogenic activity by UV-LED irradiated TiO2 immobilized on porous titanium sheets via thermal-chemical oxidation. Journal of Hazardous Materials, 318, 541–550. DOI:10.1016/j.jhazmat.2016.07.048
- Battin, T. J., Kammer, F. v.d., Weilhartner, A., Ottofuelling, S., & Hofmann, T. (2009). Nanostructured TiO 2 : Transport Behavior and Effects on Aquatic Microbial Communities under Environmental Conditions. Environmental Science & Technology, 43(21), 8098–8104. DOI:10.1021/es9017046
- Belver, C., Bedia, J., Gómez-Avilés, A., Peñas-Garzón, M., & Rodriguez, J. J. (2019). Semiconductor Photocatalysis for Water Purification. In Nanoscale Materials in Water Purification (pp. 581–651). Elsevier. DOI:10.1016/B978-0-12-813926-4.00028-8
- Blanchfield, P. J., Kidd, K. A., Docker, M. F., Palace, V. P., Park, B. J., & Postma, L. D. (2015). Recovery of a Wild Fish Population from Whole-Lake Additions of a Synthetic Estrogen. Environmental Science & Technology, 49(5), 3136–3144. DOI:10.1021/es5060513
- Blanco-Galvez, J., Fernández-Ibáñez, P., & Malato-Rodríguez, S. (2007). Solar Photocatalytic Detoxification and Disinfection of Water: Recent Overview. Journal of Solar Energy Engineering, 129(1), 4. DOI:10.1115/1.2390948
- Bodhipaksha, L. C., Sharpless, C. M., Chin, Y., & MacKay, A. A. (2017). Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin. Water Research, 110, 170–179. DOI:10.1016/j.watres.2016.12.016
- Cai, P.-S., Li, D., Chen, J., Xiong, C.-M., & Ruan, J.-L. (2015). Comparison of two thin-film microextractions for the analysis of estrogens in aqueous tea extract and environmental water samples by high performance liquid chromatography-ultraviolet detection. Food Chemistry, 173, 1158–1166. DOI:10.1016/j.foodchem.2014.11.002
- Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997–3027. DOI:10.1016/j.watres.2010.02.039
- Christian, P., Von der Kammer, F., Baalousha, M., & Hofmann, T. (2008). Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 17(5), 326–343. DOI:10.1007/s10646-008-0213-1
- Daghrir, R., Drogui, P., Dimboukou-Mpira, A., & El Khakani, M. A. (2013). Photoelectrocatalytic degradation of carbamazepine using Ti/TiO2 nanostructured electrodes deposited by means of a pulsed laser deposition process. Chemosphere, 93(11), 2756–2766. DOI:10.1016/j.chemosphere.2013.09.031
- Deguchi, Y., Wu, N. X., Toyoizumi, T., Masuda, S., Nagaoka, H., Watanabe, T., … Kinae, N. (2008). Application of a new bioassay technique using goldfish for assessment of water toxicity. Environmental Toxicology, 23(6), 720–727. DOI:10.1002/tox.20379
- FUJISHIMA, A., ZHANG, X., & TRYK, D. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515–582. DOI:10.1016/j.surfrep.2008.10.001
- Gmurek, M., Olak-Kucharczyk, M., & Ledakowicz, S. (2017). Photochemical decomposition of endocrine disrupting compounds – A review. Chemical Engineering Journal, 310, 437–456. DOI:10.1016/j.cej.2016.05.014
- Gu, J.-D., Fan, Y., & Shi, H. (2002). Relationship between structures of substituted indolic compounds and their degradation by marine anaerobic microorganisms. Marine Pollution Bulletin, 45(1–12), 379–384. DOI:10.1016/S0025-326X(02)00091-7
- H.Myers, R., C.Montgomery, D., & Anderson-Cook, M, C. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. (Intergovernmental Panel on Climate Change, Ed.), Climate Change 2013 - The Physical Science Basis (4th Editio). Hoboken, New Jersey: John Wiley & Sons, Inc. Retrieved from https://www.wiley.com/en-tr/Response+Surface+Methodology%3A+Process+and+Product+Optimization+Using+Designed+Experiments%2C+4th+Edition-p-9781118916032
- Hamid, H., & Eskicioglu, C. (2013). Effect of microwave hydrolysis on transformation of steroidal hormones during anaerobic digestion of municipal sludge cake. Water Research, 47(14), 4966–4977. DOI:10.1016/j.watres.2013.05.042
- Han, J., Liu, Y., Singhal, N., Wang, L., & Gao, W. (2012a). Comparative photocatalytic degradation of estrone in water by ZnO and TiO2 under artificial UVA and solar irradiation. Chemical Engineering Journal, 213, 150–162. DOI:10.1016/j.cej.2012.09.066
- Han, J., Liu, Y., Singhal, N., Wang, L., & Gao, W. (2012b). Comparative photocatalytic degradation of estrone in water by ZnO and TiO2 under artificial UVA and solar irradiation. Chemical Engineering Journal, 213, 150–162. DOI:10.1016/j.cej.2012.09.066
- Huy, T. H., Bui, D. P., Kang, F., Wang, Y.-F., Liu, S.-H., Thi, C. M., … Pham, V. V. (2019). SnO2/TiO2 nanotube heterojunction: The first investigation of NO degradation by visible light-driven photocatalysis. Chemosphere, 215, 323–332. DOI:10.1016/j.chemosphere.2018.10.033
- Iwanowicz, L. R., & Blazer, V. S. (2011). An Overview Of Estrogen-Associated Endocrine Disruption In Fishes : Evidence Of Effects On Reproductive And Immune Physiology (pp. 266–275).
- Khayet, M., Zahrim, A. Y., & Hilal, N. (2011). Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology. Chemical Engineering Journal, 167(1), 77–83. DOI:10.1016/j.cej.2010.11.108
- Kurtoglu, M. E., Longenbach, T., & Gogotsi, Y. (2011). Preventing Sodium Poisoning of Photocatalytic TiO2 Films on Glass by Metal Doping. International Journal of Applied Glass Science, 2(2), 108–116. DOI:10.1111/j.2041-1294.2011.00040.x
- Kurtoglu, M. E., Longenbach, T., Reddington, P., & Gogotsi, Y. (2011). Effect of calcination temperature and environment on photocatalytic and mechanical properties of ultrathin sol-gel titanium dioxide films. Journal of the American Ceramic Society, 94(4), 1101–1108. DOI:10.1111/j.1551-2916.2010.04218.x
- Lee, J., Kim, J., & Choi, W. (2011). TiO 2 Photocatalysis for the Redox Conversion of Aquatic Pollutants. In Aquatic Redox Chemistry (Vol. Ch 10, pp. 199–222). DOI:10.1021/bk-2011-1071.ch010
- Long, M., Strand, J., Lassen, P., Krüger, T., Dahllöf, I., Bossi, R., … Bonefeld-Jørgensen, E. C. (2014). Endocrine-Disrupting Effects of Compounds in Danish Streams. Archives of Environmental Contamination and Toxicology, 66(1), 1–18. DOI:10.1007/s00244-013-9959-4
- Marfil-Vega, R., Suidan, M. T., & Mills, M. A. (2010). Abiotic transformation of estrogens in synthetic municipal wastewater: An alternative for treatment? Environmental Pollution, 158(11), 3372–3377. DOI:10.1016/j.envpol.2010.07.042
- Mayer, B. K., Johnson, C., Yang, Y., Wellenstein, N., Maher, E., & McNamara, P. J. (2019). From micro to macro-contaminants: The impact of low-energy titanium dioxide photocatalysis followed by filtration on the mitigation of drinking water organics. Chemosphere, 217, 111–121. DOI:10.1016/j.chemosphere.2018.10.213
- Mockler, E. M., Deakin, J., Archbold, M., Gill, L., Daly, D., & Bruen, M. (2017). Sources of nitrogen and phosphorus emissions to Irish rivers and coastal waters: Estimates from a nutrient load apportionment framework. Science of The Total Environment, 601–602, 326–339. DOI:10.1016/j.scitotenv.2017.05.186
- Mueller, N. C., & Nowack, B. (2008). Exposure Modeling of Engineered Nanoparticles in the Environment. Environmental Science & Technology, 42(12), 4447–4453. DOI:10.1021/es7029637
- Noppe, H., Le Bizec, B., Verheyden, K., & De Brabander, H. F. (2008). Novel analytical methods for the determination of steroid hormones in edible matrices. Analytica Chimica Acta, 611(1), 1–16. DOI:10.1016/j.aca.2008.01.066
- Ohko, Y., Iuchi, K., Niwa, C., Tatsuma, T., Nakashima, T., Iguchi, T., … Fujishima, A. (2002). 17β-Estradiol Degradation by TiO 2 Photocatalysis as a Means of Reducing Estrogenic Activity. Environmental Science & Technology, 36(19), 4175–4181. DOI:10.1021/es011500a
- Orozco-Hernández, L., Gómez-Oliván, L. M., Elizalde-Velázquez, A., Natividad, R., Fabian-Castoño, L., & SanJuan-Reyes, N. (2019). 17-β-Estradiol: Significant reduction of its toxicity in water treated by photocatalysis. Science of The Total Environment, 669, 955–963. DOI:10.1016/j.scitotenv.2019.03.190
- Oturan, M. A., & Aaron, J.-J. (2014). Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Critical Reviews in Environmental Science and Technology, 44(23), 2577–2641. DOI:10.1080/10643389.2013.829765
- Paredes, L., Murgolo, S., Dzinun, H., Dzarfan Othman, M. H., Ismail, A. F., Carballa, M., & Mascolo, G. (2019). Application of immobilized TiO2 on PVDF dual layer hollow fibre membrane to improve the photocatalytic removal of pharmaceuticals in different water matrices. Applied Catalysis B: Environmental, 240, 9–18. DOI:10.1016/j.apcatb.2018.08.067
- Song, X., Wen, Y., Wang, Y., Adeel, M., & Yang, Y. (2018). Environmental risk assessment of the emerging EDCs contaminants from rural soil and aqueous sources: Analytical and modelling approaches. Chemosphere, 198, 546–555. DOI:10.1016/j.chemosphere.2018.01.060
- Sornalingam, K., McDonagh, A., & Zhou, J. L. (2016). Photodegradation of estrogenic endocrine disrupting steroidal hormones in aqueous systems: Progress and future challenges. Science of The Total Environment, 550, 209–224. DOI:10.1016/j.scitotenv.2016.01.086
- Tong, T., Shereef, A., Wu, J., Binh, C. T. T., Kelly, J. J., Gaillard, J.-F., & Gray, K. A. (2013). Effects of Material Morphology on the Phototoxicity of Nano-TiO 2 to Bacteria. Environmental Science & Technology, 47(21), 12486–12495. DOI:10.1021/es403079h
- Vulliet, E., & Cren-Olivé, C. (2011). Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environmental Pollution, 159(10), 2929–2934. DOI:10.1016/j.envpol.2011.04.033
- Wang, D.-G., Alaee, M., Byer, J., Liu, Y.-J., & Tian, C.-G. (2011). Fugacity approach to evaluate the sediment-water diffusion of polycyclic aromatic hydrocarbons. Journal of Environmental Monitoring : JEM, 13(6), 1589–96. DOI:10.1039/c0em00731e
- Wang, L., Zhang, F., Liu, R., Zhang, T. Y., Xue, X., Xu, Q., & Liang, X. (2007). FeCl 3 /NaNO 2 : An Efficient Photocatalyst for the Degradation of Aquatic Steroid Estrogens under Natural Light Irradiation. Environmental Science & Technology, 41(10), 3747–3751. DOI:10.1021/es0625778
- Wert, E. C., Rosario-Ortiz, F. L., & Snyder, S. A. (2009). Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater. Water Research, 43(4), 1005–1014. DOI:10.1016/j.watres.2008.11.050
- Zhang, A., & Li, Y. (2014). Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: Effects of reaction conditions and sludge matrix. Science of The Total Environment, 493, 307–323. DOI:10.1016/j.scitotenv.2014.05.149
- Zhang, X., Li, Q., Li, G., Wang, Z., & Yan, C. (2009). Levels of estrogenic compounds in Xiamen Bay sediment, China. Marine Pollution Bulletin, 58(8), 1210–1216. DOI:10.1016/j.marpolbul.2009.03.011
- Zhang, Y., Zhou, J. L., & Ning, B. (2007). Photodegradation of estrone and 17β-estradiol in water. Water Research, 41(1), 19–26. DOI:10.1016/j.watres.2006.09.020
- Zodi, S., Potier, O., Lapicque, F., & Leclerc, J.-P. (2010). Treatment of the industrial wastewaters by electrocoagulation: Optimization of coupled electrochemical and sedimentation processes. Desalination, 261(1–2), 186–190. DOI:10.1016/j.desal.2010.04.024