Research Article
BibTex RIS Cite

Çipura (Sparus aurata), levrek (Dicentrarchus labrax) ve alabalık (Oncorhyncus mykiss)’ların baş bölgesinden elde edilen protein hidrolizatlarının depolamadaki kararlılığı

Year 2017, Volume: 34 Issue: 3, 327 - 336, 26.09.2017
https://doi.org/10.12714/egejfas.2017.34.3.12

Abstract



Bu çalışma kapsamında, Türkiye’de
kültüre edilen çipura (Sparus aurata), levrek (Dicentrarchus labrax)
ve alabalıkların (Oncorhyncus mykiss) fileto edilmesi sonucunda ortaya
çıkan atıklarından olan baş bölgesinden, protein hidrolizatı elde edilmiştir.
Elde edilen ürünlerin bazı fonksiyonel ve antioksidan özellikleri tespit
edildikten sonra dondurularak 6 ay süreyle depolanan protein hidrolizatlarının
depolama sonrası kararlılığı analizlerle belirlenmiştir.



Bu çalışmada elde edilen
hidrolizatlarda; hidroliz derecesinin ölçülmesi, fonksiyonel özellikler
(protein çözünürlüğü, emülsiyon özellikleri, köpürme özellikleri, renk
özellikleri, su tutma kapasitesi tespiti (WHC)), antioksidan özellikler (DPPH (1,1-diphenyl-2-pic-ryhydrayl)
serbest radikali giderme kapasitesi, antioksidatif aktivite tespiti, metal
şelatlama ve aminoasit diziliminin tanımlanması yapılmıştır. Üretimden sonra
-18 °C’ de depolamaya alınan balık protein hidrolizatlarında depolama süresinin
etkisini değerlendirmek amacıyla, yukarıda açıklanan fonksiyonel ve
antioksidatif özelllikleri kapsayan analizler 6 aylık depolama periyodu sonunda
tekrarlanmıştır. Tüm sonuçlar istatiksel analizler kullanılarak yorumlanmıştır.  Balık
protein hidrolizatının fonksiyonel ve antioksidatif özelliklerine göre en
yüksek antioksidan aktivitesi, çipura hidrolizatında belirlenmiştir. Tüm balık
protein hidrolizatlarının üretim verimi % 5’tir. Balık protein
hidrolizatlarının fonksiyonel ve antioksidan özellikleri balık türüne göre
değişkendir.



References

  • TÜİK, (2016). Su ürünleri İstatistikleri, ANKARA
  • Aylangan A., Öztan A., (2008). Hayvansal gıda sanayisi yan ürünleri kullanılarak protein hidrolizatları üretimi. Türkiye 10. Gıda Kongresi, 21-23 Mayıs 2008, Erzurum.
  • Çaklı, Ş., (2008). Su Ürünleri İşleme Teknolojisi 2. Ege Üniversitesi Yayınları, Su ürünleri Fakültesi yayın no: 77.
  • Deraz S., (2015). Protein hydrolysate from visceral waste proteins of Bolti fish (Tilapia nilotica): chemical and nutritional variations as affected by processing pHs and time of hydrolysis, Journal of Aquatic Food Product Technology, Volume 24,- Issue 6
  • Tanuja S., Viji P., Zynudheen A.A., Joshy C.G., (2012). Composition, functional properties and antioxidative activity of hydrolysates prepared from the frame meat of Striped catfish (Pangasianodon hypophthalmus). Egyptian Journal of Biology, 2012, Vol. 14, pp 27-35.
  • Kristinsson H.G., Rasco B.A. (2000). Fish Protein Hydrolysates: Production, Biochemical, and Functional Properties. Critical Reviews in Food Science and Nutrition, 40(1):43–81.
  • Beak H.H., Cadwallader K.R. (1995) Enzymatic hydrolysis of crayfish processing by-products, Journal of Food Science 60 (5), pp. 929–935.
  • Benjakul S., Morrissey, M.T. (1997). Protein hydrolysates from Pacific whiting solid wastes, Journal of Agricultural and Food Chemistry 45 (9), pp. 3423–3430.
  • Bougatef A., Nedjar-Arroume N., Manni L., Ravallec R., Barkia A. Guillochon D., Nasri M. (2010) Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins, Food Chemistry, vol. 118, no. 3, pp. 559-565.
  • Chen H.M. Muramoto K., Yamaguchi F. (1995). Structural analysis of antioxidative peptides from soybean beta-conglycinin, Journal of Agricultural and Food Chemistry 43 (3), pp. 574–578.
  • Chung Y.C. Chang C.T. Chao W.W., Lin C.F., Chou, S.T (2002). Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1, Journal of Agricultural and Food Chemistry 50, pp. 2454–2458.
  • Eide O, Borresen T, Strom T. (1982). Minced fish production from capelin (Mallotus villosus). A new method of gutting, skinning and removal of fat from small fatty fish species. Journal of Food Science 47 (1982), p. 354.
  • Lowry O.H. Rosebrough N.J., Farr A.L., Randall R.J. (1951). Protein measurement with the Folin phenol reagent, Journal of Biological Chemistry 193 (1), pp. 265–275.
  • Pearce K.N., Kinsella J.E. (1978). Emulsifying properties of proteins: Evaluation of a turbidimetric technique, Journal of Agricultural and Food Chemistry 26 (3) ,716-723. Schubring, R. (2002). Influence of freezing/thawing and frozen storage on the texture and colour of brown shrimp (Crangon crangon). Archiv für Lebensmittel hygiene. 53 :25-48
  • Shahidi F., Han X.-Q., Synowiecki J. (1995). Production and characteristics of protein hydrolysates from capelin (Mallotus villosus), Food Chemistry 53 (3) , pp. 285–293.
  • Yen G.C., Wu J.Y. (1999). Antioxidant and radical properties of extracts from Ganoderma tsugae, Food Chemistry 65 (3) , pp. 375–379.
  • Thiansilakul Y., Benjakul B., Shahidi F., (2007a). Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chemistry. 103, 1385–1394.
  • Thiansilakul Y., Benjakul B., Shahidi F., (2007b). Antıoxıdatıve Actıvıty Of Proteın Hydrolysate From Round Scad Muscle Usıng Alcalase. Journal of Food Biochemistry 31, 266–287.
  • Klompong V., Benjakul S., Kantachote D., Shahidi S., (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry 102, 1317–1327. Wasswa J., Tang J, Gub X.,Yuan X., (2007). Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. Food Chemistry. 104, 1698–1704.
  • Nguyen H.T., Sylla B.S.K., Randriamahatody Z., Donnay-Moreno C., Moreau J., Tran T.L., Berge P.J., (2011). Enzymatic Hydrolysis of Yellowfin Tuna (Thunnus albacares) By-Products Using Protamex Protease. Food Technol. Biotechnol. 49 (1) 48–55.
  • Muzaifa M., Safriani N., Zakaria F., (2012). Production of protein hydrolysates from fish by-product prepared by enzymatic hydrolysis. International Journal of the Bioflux Society. Vol. 5, issue 1. Pg. 36-39.

Stability of fish protein hydrolysate from heads of gilthead sea bream (Sparus aurata), european sea bass (Dicentrarchus labrax) and rainbow trout (Oncorhyncus mykiss) during storage

Year 2017, Volume: 34 Issue: 3, 327 - 336, 26.09.2017
https://doi.org/10.12714/egejfas.2017.34.3.12

Abstract



In the present study, protein
hydrolyzate was obtained from the head region from the wastes produced during
filleting of seabream (Sparus aurata),
seabass (Dicentrarchus labrax) and
trout (Oncorhyncus mykiss) cultured
in Turkey. After the functional and antioxidant properties of the obtained
products were determined, the post-storage stability of the protein
hydrolysates stored frozen for 6 months was determined by analysis.



In this study, degree of hydrolysis,
functional properties (protein solubility, emulsion properties, foaming
properties, color properties, water holding capacity (WHC)), antioxidant
properties (DPPH (1,1 –diphenyl-2-pic-ryhydrayl) free radical scavenging
capacity, antioxidative activity, metal chelating) and determination of aminoacid
sequencing were carried out in protein hydrolysate. To evaluate the effect of
storage time on fish protein hydrolysates stored at -18°C after production, the
above-mentioned analyzes including functional and antioxidative properties were
repeated at the end of the 6 month storage period. Results were interpreted
using statistical analysis. According to the functional and antioxidative
properties of fish protein hydrolyzate, the highest antioxidant activity was
determined in seabream head hydrolyzate. The production yield of all fish
protein hydrolysates is 5%. The functional and antioxidant properties of fish
protein hydrolysates varied according to fish species. 



References

  • TÜİK, (2016). Su ürünleri İstatistikleri, ANKARA
  • Aylangan A., Öztan A., (2008). Hayvansal gıda sanayisi yan ürünleri kullanılarak protein hidrolizatları üretimi. Türkiye 10. Gıda Kongresi, 21-23 Mayıs 2008, Erzurum.
  • Çaklı, Ş., (2008). Su Ürünleri İşleme Teknolojisi 2. Ege Üniversitesi Yayınları, Su ürünleri Fakültesi yayın no: 77.
  • Deraz S., (2015). Protein hydrolysate from visceral waste proteins of Bolti fish (Tilapia nilotica): chemical and nutritional variations as affected by processing pHs and time of hydrolysis, Journal of Aquatic Food Product Technology, Volume 24,- Issue 6
  • Tanuja S., Viji P., Zynudheen A.A., Joshy C.G., (2012). Composition, functional properties and antioxidative activity of hydrolysates prepared from the frame meat of Striped catfish (Pangasianodon hypophthalmus). Egyptian Journal of Biology, 2012, Vol. 14, pp 27-35.
  • Kristinsson H.G., Rasco B.A. (2000). Fish Protein Hydrolysates: Production, Biochemical, and Functional Properties. Critical Reviews in Food Science and Nutrition, 40(1):43–81.
  • Beak H.H., Cadwallader K.R. (1995) Enzymatic hydrolysis of crayfish processing by-products, Journal of Food Science 60 (5), pp. 929–935.
  • Benjakul S., Morrissey, M.T. (1997). Protein hydrolysates from Pacific whiting solid wastes, Journal of Agricultural and Food Chemistry 45 (9), pp. 3423–3430.
  • Bougatef A., Nedjar-Arroume N., Manni L., Ravallec R., Barkia A. Guillochon D., Nasri M. (2010) Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins, Food Chemistry, vol. 118, no. 3, pp. 559-565.
  • Chen H.M. Muramoto K., Yamaguchi F. (1995). Structural analysis of antioxidative peptides from soybean beta-conglycinin, Journal of Agricultural and Food Chemistry 43 (3), pp. 574–578.
  • Chung Y.C. Chang C.T. Chao W.W., Lin C.F., Chou, S.T (2002). Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1, Journal of Agricultural and Food Chemistry 50, pp. 2454–2458.
  • Eide O, Borresen T, Strom T. (1982). Minced fish production from capelin (Mallotus villosus). A new method of gutting, skinning and removal of fat from small fatty fish species. Journal of Food Science 47 (1982), p. 354.
  • Lowry O.H. Rosebrough N.J., Farr A.L., Randall R.J. (1951). Protein measurement with the Folin phenol reagent, Journal of Biological Chemistry 193 (1), pp. 265–275.
  • Pearce K.N., Kinsella J.E. (1978). Emulsifying properties of proteins: Evaluation of a turbidimetric technique, Journal of Agricultural and Food Chemistry 26 (3) ,716-723. Schubring, R. (2002). Influence of freezing/thawing and frozen storage on the texture and colour of brown shrimp (Crangon crangon). Archiv für Lebensmittel hygiene. 53 :25-48
  • Shahidi F., Han X.-Q., Synowiecki J. (1995). Production and characteristics of protein hydrolysates from capelin (Mallotus villosus), Food Chemistry 53 (3) , pp. 285–293.
  • Yen G.C., Wu J.Y. (1999). Antioxidant and radical properties of extracts from Ganoderma tsugae, Food Chemistry 65 (3) , pp. 375–379.
  • Thiansilakul Y., Benjakul B., Shahidi F., (2007a). Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chemistry. 103, 1385–1394.
  • Thiansilakul Y., Benjakul B., Shahidi F., (2007b). Antıoxıdatıve Actıvıty Of Proteın Hydrolysate From Round Scad Muscle Usıng Alcalase. Journal of Food Biochemistry 31, 266–287.
  • Klompong V., Benjakul S., Kantachote D., Shahidi S., (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry 102, 1317–1327. Wasswa J., Tang J, Gub X.,Yuan X., (2007). Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. Food Chemistry. 104, 1698–1704.
  • Nguyen H.T., Sylla B.S.K., Randriamahatody Z., Donnay-Moreno C., Moreau J., Tran T.L., Berge P.J., (2011). Enzymatic Hydrolysis of Yellowfin Tuna (Thunnus albacares) By-Products Using Protamex Protease. Food Technol. Biotechnol. 49 (1) 48–55.
  • Muzaifa M., Safriani N., Zakaria F., (2012). Production of protein hydrolysates from fish by-product prepared by enzymatic hydrolysis. International Journal of the Bioflux Society. Vol. 5, issue 1. Pg. 36-39.
There are 21 citations in total.

Details

Journal Section Articles
Authors

Nida Demirtaş Erol

Ömer Alper Erdem

Şükran Çaklı

Publication Date September 26, 2017
Submission Date June 6, 2017
Published in Issue Year 2017Volume: 34 Issue: 3

Cite

APA Demirtaş Erol, N., Erdem, Ö. A., & Çaklı, Ş. (2017). Stability of fish protein hydrolysate from heads of gilthead sea bream (Sparus aurata), european sea bass (Dicentrarchus labrax) and rainbow trout (Oncorhyncus mykiss) during storage. Ege Journal of Fisheries and Aquatic Sciences, 34(3), 327-336. https://doi.org/10.12714/egejfas.2017.34.3.12